* Copyright 2007, Hugo Santos. All Rights Reserved.
* Copyright 2004, Marcus Overhagen. All Rights Reserved.
* Distributed under the terms of the MIT License.
*/
extern "C" {
#include "device.h"
}
#include <cstdlib>
#include <arch/cpu.h>
#include <interrupts.h>
extern "C" {
#include <compat/dev/pci/pcireg.h>
#include <compat/dev/pci/pcivar.h>
#include <compat/machine/resource.h>
#include <compat/sys/mutex.h>
#include <compat/machine/bus.h>
#include <compat/sys/rman.h>
#include <compat/sys/bus.h>
}
#ifdef DEBUG_BUS_SPACE_RW
# define TRACE_BUS_SPACE_RW(x) driver_printf x
#else
# define TRACE_BUS_SPACE_RW(x)
#endif
struct internal_intr {
device_t dev;
driver_filter_t* filter;
driver_intr_t *handler;
void *arg;
int irq;
uint32 flags;
thread_id thread;
sem_id sem;
int32 handling;
};
static int32 intr_wrapper(void *data);
static area_id
map_mem(void **virtualAddr, phys_addr_t _phy, size_t size, uint32 protection,
const char *name)
{
uint32 offset = _phy & (B_PAGE_SIZE - 1);
phys_addr_t physicalAddr = _phy - offset;
area_id area;
size = roundup(size + offset, B_PAGE_SIZE);
area = map_physical_memory(name, physicalAddr, size, B_ANY_KERNEL_ADDRESS,
protection, virtualAddr);
if (area < B_OK)
return area;
*virtualAddr = (uint8 *)(*virtualAddr) + offset;
return area;
}
static int
bus_alloc_irq_resource(device_t dev, struct resource *res)
{
uint8 irq = pci_read_config(dev, PCI_interrupt_line, 1);
if (irq == 0 || irq == 0xff)
return -1;
res->r_bustag = BUS_SPACE_TAG_IRQ;
res->r_bushandle = irq;
return 0;
}
static int
bus_alloc_mem_resource(device_t dev, struct resource *res, pci_info *info,
int bar_index)
{
phys_addr_t addr = info->u.h0.base_registers[bar_index];
uint64 size = info->u.h0.base_register_sizes[bar_index];
uchar flags = info->u.h0.base_register_flags[bar_index];
if (size == 0)
return -1;
if ((flags & PCI_address_space) != 0)
return -1;
if ((flags & PCI_address_type) == PCI_address_type_64) {
addr |= (uint64)info->u.h0.base_registers[bar_index + 1] << 32;
size |= (uint64)info->u.h0.base_register_sizes[bar_index + 1] << 32;
}
if (pci_enable_io(dev, SYS_RES_MEMORY) != 0)
return -1;
void *virtualAddr;
res->r_mapped_area = map_mem(&virtualAddr, addr, size,
B_KERNEL_READ_AREA | B_KERNEL_WRITE_AREA, "bus_alloc_resource(MEMORY)");
if (res->r_mapped_area < B_OK)
return -1;
res->r_bustag = BUS_SPACE_TAG_MEM;
res->r_bushandle = (bus_space_handle_t)virtualAddr;
return 0;
}
static int
bus_alloc_ioport_resource(device_t dev, struct resource *res, pci_info *info,
int bar_index)
{
uint32 size = info->u.h0.base_register_sizes[bar_index];
uchar flags = info->u.h0.base_register_flags[bar_index];
if (size == 0)
return -1;
if ((flags & PCI_address_space) == 0)
return -1;
if (pci_enable_io(dev, SYS_RES_IOPORT) != 0)
return -1;
res->r_bustag = BUS_SPACE_TAG_IO;
res->r_bushandle = info->u.h0.base_registers[bar_index];
return 0;
}
static int
bus_register_to_bar_index(pci_info *info, int regid)
{
if (regid < PCI_base_registers || (regid % sizeof(uint32) != 0)
|| (regid >= PCI_base_registers + 6 * (int)sizeof(uint32))) {
return -1;
}
regid -= PCI_base_registers;
regid /= sizeof(uint32);
return regid;
}
struct resource *
bus_alloc_resource(device_t dev, int type, int *rid, unsigned long start,
unsigned long end, unsigned long count, uint32 flags)
{
struct resource *res;
int result = -1;
if (type != SYS_RES_IRQ && type != SYS_RES_MEMORY
&& type != SYS_RES_IOPORT)
return NULL;
device_printf(dev, "bus_alloc_resource(%i, [%i], 0x%lx, 0x%lx, 0x%lx,"
"0x%" B_PRIx32 ")\n", type, *rid, start, end, count, flags);
res = (struct resource *)malloc(sizeof(struct resource));
if (res == NULL)
return NULL;
if (type == SYS_RES_IRQ) {
if (*rid == 0) {
result = bus_alloc_irq_resource(dev, res);
} else {
pci_info* info = get_device_pci_info(dev);
res->r_bustag = BUS_SPACE_TAG_MSI;
res->r_bushandle = info->u.h0.interrupt_line + *rid - 1;
result = 0;
}
} else if (type == SYS_RES_MEMORY || type == SYS_RES_IOPORT) {
pci_info* info = get_device_pci_info(dev);
int bar_index = bus_register_to_bar_index(info, *rid);
if (bar_index >= 0) {
if (type == SYS_RES_MEMORY)
result = bus_alloc_mem_resource(dev, res, info, bar_index);
else
result = bus_alloc_ioport_resource(dev, res, info, bar_index);
}
}
if (result < 0) {
free(res);
return NULL;
}
res->r_type = type;
return res;
}
int
bus_release_resource(device_t dev, int type, int rid, struct resource *res)
{
if (res->r_type != type)
panic("bus_release_resource: mismatch");
if (type == SYS_RES_MEMORY)
delete_area(res->r_mapped_area);
free(res);
return 0;
}
int
bus_alloc_resources(device_t dev, struct resource_spec *resourceSpec,
struct resource **resources)
{
int i;
for (i = 0; resourceSpec[i].type != -1; i++) {
resources[i] = bus_alloc_resource_any(dev,
resourceSpec[i].type, &resourceSpec[i].rid, resourceSpec[i].flags);
if (resources[i] == NULL
&& (resourceSpec[i].flags & RF_OPTIONAL) == 0) {
for (++i; resourceSpec[i].type != -1; i++) {
resources[i] = NULL;
}
bus_release_resources(dev, resourceSpec, resources);
return ENXIO;
}
}
return 0;
}
void
bus_release_resources(device_t dev, const struct resource_spec *resourceSpec,
struct resource **resources)
{
int i;
for (i = 0; resourceSpec[i].type != -1; i++) {
if (resources[i] == NULL)
continue;
bus_release_resource(dev, resourceSpec[i].type, resourceSpec[i].rid,
resources[i]);
resources[i] = NULL;
}
}
bus_space_handle_t
rman_get_bushandle(struct resource *res)
{
return res->r_bushandle;
}
bus_space_tag_t
rman_get_bustag(struct resource *res)
{
return res->r_bustag;
}
int
rman_get_rid(struct resource *res)
{
return 0;
}
void*
rman_get_virtual(struct resource *res)
{
return NULL;
}
bus_addr_t
rman_get_start(struct resource *res)
{
return res->r_bushandle;
}
bus_size_t
rman_get_size(struct resource *res)
{
area_info info;
if (get_area_info(res->r_mapped_area, &info) != B_OK)
return 0;
return info.size;
}
static int32
intr_wrapper(void *data)
{
struct internal_intr *intr = (struct internal_intr *)data;
if (!HAIKU_CHECK_DISABLE_INTERRUPTS(intr->dev))
return B_UNHANDLED_INTERRUPT;
release_sem_etc(intr->sem, 1, B_DO_NOT_RESCHEDULE);
return intr->handling ? B_HANDLED_INTERRUPT : B_INVOKE_SCHEDULER;
}
static int32
intr_handler(void *data)
{
struct internal_intr *intr = (struct internal_intr *)data;
status_t status;
while (1) {
status = acquire_sem(intr->sem);
if (status < B_OK)
break;
atomic_or(&intr->handling, 1);
if ((intr->flags & INTR_MPSAFE) == 0)
mtx_lock(&Giant);
intr->handler(intr->arg);
if ((intr->flags & INTR_MPSAFE) == 0)
mtx_unlock(&Giant);
atomic_and(&intr->handling, 0);
HAIKU_REENABLE_INTERRUPTS(intr->dev);
}
return 0;
}
static void
free_internal_intr(struct internal_intr *intr)
{
if (intr->sem >= B_OK) {
status_t status;
delete_sem(intr->sem);
wait_for_thread(intr->thread, &status);
}
free(intr);
}
int
bus_setup_intr(device_t dev, struct resource *res, int flags,
driver_filter_t* filter, driver_intr_t handler, void *arg, void **_cookie)
{
struct internal_intr *intr = (struct internal_intr *)malloc(
sizeof(struct internal_intr));
char semName[64];
status_t status;
if (intr == NULL)
return B_NO_MEMORY;
intr->dev = dev;
intr->filter = filter;
intr->handler = handler;
intr->arg = arg;
intr->irq = res->r_bushandle;
intr->flags = flags;
intr->sem = -1;
intr->thread = -1;
if (filter != NULL) {
status = install_io_interrupt_handler(intr->irq,
(interrupt_handler)intr->filter, intr->arg, 0);
} else {
snprintf(semName, sizeof(semName), "%s intr", dev->device_name);
intr->sem = create_sem(0, semName);
if (intr->sem < B_OK) {
free(intr);
return B_NO_MEMORY;
}
snprintf(semName, sizeof(semName), "%s intr handler", dev->device_name);
intr->thread = spawn_kernel_thread(intr_handler, semName,
B_REAL_TIME_DISPLAY_PRIORITY, intr);
if (intr->thread < B_OK) {
delete_sem(intr->sem);
free(intr);
return B_NO_MEMORY;
}
status = install_io_interrupt_handler(intr->irq,
intr_wrapper, intr, 0);
}
if (status == B_OK && res->r_bustag == BUS_SPACE_TAG_MSI) {
struct root_device_softc* root_softc = ((struct root_device_softc *)dev->root->softc);
if (root_softc->is_msi) {
if (gPci->enable_msi(root_softc->pci_info.bus, root_softc->pci_info.device,
root_softc->pci_info.function) != B_OK) {
device_printf(dev, "enabling msi failed\n");
bus_teardown_intr(dev, res, intr);
return ENODEV;
}
} else if (root_softc->is_msix) {
if (gPci->enable_msix(root_softc->pci_info.bus, root_softc->pci_info.device,
root_softc->pci_info.function) != B_OK) {
device_printf(dev, "enabling msix failed\n");
bus_teardown_intr(dev, res, intr);
return ENODEV;
}
}
}
if (status < B_OK) {
free_internal_intr(intr);
return status;
}
resume_thread(intr->thread);
*_cookie = intr;
return 0;
}
int
bus_teardown_intr(device_t dev, struct resource *res, void *arg)
{
struct internal_intr *intr = (struct internal_intr *)arg;
if (intr == NULL)
return -1;
struct root_device_softc *root = (struct root_device_softc *)dev->root->softc;
if (root->is_msi || root->is_msix) {
pci_info *info = &root->pci_info;
gPci->disable_msi(info->bus, info->device, info->function);
}
if (intr->filter != NULL) {
remove_io_interrupt_handler(intr->irq, (interrupt_handler)intr->filter,
intr->arg);
} else {
remove_io_interrupt_handler(intr->irq, intr_wrapper, intr);
}
free_internal_intr(intr);
return 0;
}
int
bus_bind_intr(device_t dev, struct resource *res, int cpu)
{
if (dev->parent == NULL)
return EINVAL;
return 0;
}
int bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
const char* fmt, ...)
{
if (dev->parent == NULL)
return EINVAL;
return 0;
}
bus_dma_tag_t
bus_get_dma_tag(device_t dev)
{
return NULL;
}
int
bus_generic_suspend(device_t dev)
{
UNIMPLEMENTED();
return B_ERROR;
}
int
bus_generic_resume(device_t dev)
{
UNIMPLEMENTED();
return B_ERROR;
}
void
bus_generic_shutdown(device_t dev)
{
UNIMPLEMENTED();
}
int
bus_print_child_header(device_t dev, device_t child)
{
UNIMPLEMENTED();
return B_ERROR;
}
int
bus_print_child_footer(device_t dev, device_t child)
{
UNIMPLEMENTED();
return B_ERROR;
}
int
bus_generic_print_child(device_t dev, device_t child)
{
UNIMPLEMENTED();
return B_ERROR;
}
void
bus_generic_driver_added(device_t dev, driver_t *driver)
{
UNIMPLEMENTED();
}
int
bus_child_present(device_t child)
{
device_t parent = device_get_parent(child);
if (parent == NULL)
return 0;
return bus_child_present(parent);
}
void
bus_enumerate_hinted_children(device_t bus)
{
#if 0
UNIMPLEMENTED();
#endif
}