* Copyright 2018, Jérôme Duval, jerome.duval@gmail.com.
* Copyright 2002-2010, Axel Dörfler, axeld@pinc-software.de.
* Copyright 2013, Paweł Dziepak, pdziepak@quarnos.org.
* Copyright 2012, Alex Smith, alex@alex-smith.me.uk.
* Distributed under the terms of the MIT License.
*
* Copyright 2001-2002, Travis Geiselbrecht. All rights reserved.
* Distributed under the terms of the NewOS License.
*/
#include <cpu.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <algorithm>
#include <ACPI.h>
#include <boot_device.h>
#include <commpage.h>
#include <debug.h>
#include <elf.h>
#include <safemode.h>
#include <smp.h>
#include <util/BitUtils.h>
#include <vm/vm.h>
#include <vm/vm_types.h>
#include <vm/VMAddressSpace.h>
#include <arch_system_info.h>
#include <arch/x86/apic.h>
#include <boot/kernel_args.h>
#include "paging/X86PagingStructures.h"
#include "paging/X86VMTranslationMap.h"
#define DUMP_FEATURE_STRING 1
#define DUMP_CPU_TOPOLOGY 1
#define DUMP_CPU_PATCHLEVEL_TYPE 1
struct cpu_vendor_info {
const char *vendor;
const char *ident_string[2];
};
static const struct cpu_vendor_info vendor_info[VENDOR_NUM] = {
{ "Intel", { "GenuineIntel" } },
{ "AMD", { "AuthenticAMD" } },
{ "Cyrix", { "CyrixInstead" } },
{ "UMC", { "UMC UMC UMC" } },
{ "NexGen", { "NexGenDriven" } },
{ "Centaur", { "CentaurHauls" } },
{ "Rise", { "RiseRiseRise" } },
{ "Transmeta", { "GenuineTMx86", "TransmetaCPU" } },
{ "NSC", { "Geode by NSC" } },
{ "Hygon", { "HygonGenuine" } },
};
#define K8_SMIONCMPHALT (1ULL << 27)
#define K8_C1EONCMPHALT (1ULL << 28)
#define K8_CMPHALT (K8_SMIONCMPHALT | K8_C1EONCMPHALT)
struct set_mtrr_parameter {
int32 index;
uint64 base;
uint64 length;
uint8 type;
};
struct set_mtrrs_parameter {
const x86_mtrr_info* infos;
uint32 count;
uint8 defaultType;
};
#ifdef __x86_64__
extern addr_t _stac;
extern addr_t _clac;
extern addr_t _xsave;
extern addr_t _xsavec;
extern addr_t _xrstor;
uint64 gXsaveMask;
uint64 gFPUSaveLength = 512;
bool gHasXsave = false;
bool gHasXsavec = false;
#endif
extern "C" void x86_reboot(void);
void (*gCpuIdleFunc)(void);
#ifndef __x86_64__
void (*gX86SwapFPUFunc)(void* oldState, const void* newState) = x86_noop_swap;
bool gHasSSE = false;
#endif
static uint32 sCpuRendezvous;
static uint32 sCpuRendezvous2;
static uint32 sCpuRendezvous3;
static vint32 sTSCSyncRendezvous;
static addr_t sDoubleFaultStacks = 0;
static const size_t kDoubleFaultStackSize = 4096;
static x86_cpu_module_info* sCpuModule;
static uint32 (*sGetCPUTopologyID)(int currentCPU);
static uint32 sHierarchyMask[CPU_TOPOLOGY_LEVELS];
static uint32 sHierarchyShift[CPU_TOPOLOGY_LEVELS];
static uint32 sCacheSharingMask[CPU_MAX_CACHE_LEVEL];
static void* sUcodeData = NULL;
static size_t sUcodeDataSize = 0;
static void* sLoadedUcodeUpdate;
static spinlock sUcodeUpdateLock = B_SPINLOCK_INITIALIZER;
static bool sUsePAT = false;
static status_t
acpi_shutdown(bool rebootSystem)
{
if (debug_debugger_running() || !are_interrupts_enabled())
return B_ERROR;
acpi_module_info* acpi;
if (get_module(B_ACPI_MODULE_NAME, (module_info**)&acpi) != B_OK)
return B_NOT_SUPPORTED;
status_t status;
if (rebootSystem) {
status = acpi->reboot();
} else {
status = acpi->prepare_sleep_state(ACPI_POWER_STATE_OFF, NULL, 0);
if (status == B_OK) {
status = acpi->enter_sleep_state(ACPI_POWER_STATE_OFF);
}
}
put_module(B_ACPI_MODULE_NAME);
return status;
}
static void
disable_caches()
{
x86_write_cr0((x86_read_cr0() | CR0_CACHE_DISABLE)
& ~CR0_NOT_WRITE_THROUGH);
wbinvd();
arch_cpu_global_TLB_invalidate();
}
static void
enable_caches()
{
wbinvd();
arch_cpu_global_TLB_invalidate();
x86_write_cr0(x86_read_cr0()
& ~(CR0_CACHE_DISABLE | CR0_NOT_WRITE_THROUGH));
}
static void
set_mtrr(void* _parameter, int cpu)
{
struct set_mtrr_parameter* parameter
= (struct set_mtrr_parameter*)_parameter;
smp_cpu_rendezvous(&sCpuRendezvous);
if (cpu == 0)
atomic_set((int32*)&sCpuRendezvous3, 0);
disable_caches();
sCpuModule->set_mtrr(parameter->index, parameter->base, parameter->length,
parameter->type);
enable_caches();
smp_cpu_rendezvous(&sCpuRendezvous2);
smp_cpu_rendezvous(&sCpuRendezvous3);
}
static void
set_mtrrs(void* _parameter, int cpu)
{
set_mtrrs_parameter* parameter = (set_mtrrs_parameter*)_parameter;
smp_cpu_rendezvous(&sCpuRendezvous);
if (cpu == 0)
atomic_set((int32*)&sCpuRendezvous3, 0);
disable_caches();
sCpuModule->set_mtrrs(parameter->defaultType, parameter->infos,
parameter->count);
enable_caches();
smp_cpu_rendezvous(&sCpuRendezvous2);
smp_cpu_rendezvous(&sCpuRendezvous3);
}
static void
init_mtrrs(void* _unused, int cpu)
{
smp_cpu_rendezvous(&sCpuRendezvous);
if (cpu == 0)
atomic_set((int32*)&sCpuRendezvous3, 0);
disable_caches();
sCpuModule->init_mtrrs();
enable_caches();
smp_cpu_rendezvous(&sCpuRendezvous2);
smp_cpu_rendezvous(&sCpuRendezvous3);
}
uint32
x86_count_mtrrs(void)
{
if (sUsePAT) {
dprintf("ignoring MTRRs due to PAT support\n");
return 0;
}
if (sCpuModule == NULL)
return 0;
return sCpuModule->count_mtrrs();
}
void
x86_set_mtrr(uint32 index, uint64 base, uint64 length, uint8 type)
{
struct set_mtrr_parameter parameter;
parameter.index = index;
parameter.base = base;
parameter.length = length;
parameter.type = type;
sCpuRendezvous = sCpuRendezvous2 = 0;
call_all_cpus(&set_mtrr, ¶meter);
}
status_t
x86_get_mtrr(uint32 index, uint64* _base, uint64* _length, uint8* _type)
{
return sCpuModule->get_mtrr(index, _base, _length, _type);
}
void
x86_set_mtrrs(uint8 defaultType, const x86_mtrr_info* infos, uint32 count)
{
if (sCpuModule == NULL)
return;
struct set_mtrrs_parameter parameter;
parameter.defaultType = defaultType;
parameter.infos = infos;
parameter.count = count;
sCpuRendezvous = sCpuRendezvous2 = 0;
call_all_cpus(&set_mtrrs, ¶meter);
}
static void
init_pat(int cpu)
{
disable_caches();
uint64 value = x86_read_msr(IA32_MSR_PAT);
dprintf("PAT MSR on CPU %d before init: %#" B_PRIx64 "\n", cpu, value);
value &= ~(IA32_MSR_PAT_ENTRY_MASK << IA32_MSR_PAT_ENTRY_SHIFT(4));
value |= IA32_MSR_PAT_TYPE_WRITE_COMBINING << IA32_MSR_PAT_ENTRY_SHIFT(4);
dprintf("PAT MSR on CPU %d after init: %#" B_PRIx64 "\n", cpu, value);
x86_write_msr(IA32_MSR_PAT, value);
enable_caches();
}
void
x86_init_fpu(void)
{
#ifndef __x86_64__
if (!x86_check_feature(IA32_FEATURE_FPU, FEATURE_COMMON)) {
dprintf("%s: Warning: CPU has no reported FPU.\n", __func__);
gX86SwapFPUFunc = x86_noop_swap;
return;
}
if (!x86_check_feature(IA32_FEATURE_SSE, FEATURE_COMMON)
|| !x86_check_feature(IA32_FEATURE_FXSR, FEATURE_COMMON)) {
dprintf("%s: CPU has no SSE... just enabling FPU.\n", __func__);
x86_write_cr0(x86_read_cr0() & ~(CR0_FPU_EMULATION | CR0_MONITOR_FPU));
gX86SwapFPUFunc = x86_fnsave_swap;
return;
}
#endif
dprintf("%s: CPU has SSE... enabling FXSR and XMM.\n", __func__);
#ifndef __x86_64__
x86_write_cr4(x86_read_cr4() | CR4_OS_FXSR | CR4_OS_XMM_EXCEPTION);
x86_write_cr0(x86_read_cr0() & ~(CR0_FPU_EMULATION | CR0_MONITOR_FPU));
gX86SwapFPUFunc = x86_fxsave_swap;
gHasSSE = true;
#endif
}
#if DUMP_FEATURE_STRING
static void
dump_feature_string(int currentCPU, cpu_ent* cpu)
{
char features[768];
features[0] = 0;
if (cpu->arch.feature[FEATURE_COMMON] & IA32_FEATURE_FPU)
strlcat(features, "fpu ", sizeof(features));
if (cpu->arch.feature[FEATURE_COMMON] & IA32_FEATURE_VME)
strlcat(features, "vme ", sizeof(features));
if (cpu->arch.feature[FEATURE_COMMON] & IA32_FEATURE_DE)
strlcat(features, "de ", sizeof(features));
if (cpu->arch.feature[FEATURE_COMMON] & IA32_FEATURE_PSE)
strlcat(features, "pse ", sizeof(features));
if (cpu->arch.feature[FEATURE_COMMON] & IA32_FEATURE_TSC)
strlcat(features, "tsc ", sizeof(features));
if (cpu->arch.feature[FEATURE_COMMON] & IA32_FEATURE_MSR)
strlcat(features, "msr ", sizeof(features));
if (cpu->arch.feature[FEATURE_COMMON] & IA32_FEATURE_PAE)
strlcat(features, "pae ", sizeof(features));
if (cpu->arch.feature[FEATURE_COMMON] & IA32_FEATURE_MCE)
strlcat(features, "mce ", sizeof(features));
if (cpu->arch.feature[FEATURE_COMMON] & IA32_FEATURE_CX8)
strlcat(features, "cx8 ", sizeof(features));
if (cpu->arch.feature[FEATURE_COMMON] & IA32_FEATURE_APIC)
strlcat(features, "apic ", sizeof(features));
if (cpu->arch.feature[FEATURE_COMMON] & IA32_FEATURE_SEP)
strlcat(features, "sep ", sizeof(features));
if (cpu->arch.feature[FEATURE_COMMON] & IA32_FEATURE_MTRR)
strlcat(features, "mtrr ", sizeof(features));
if (cpu->arch.feature[FEATURE_COMMON] & IA32_FEATURE_PGE)
strlcat(features, "pge ", sizeof(features));
if (cpu->arch.feature[FEATURE_COMMON] & IA32_FEATURE_MCA)
strlcat(features, "mca ", sizeof(features));
if (cpu->arch.feature[FEATURE_COMMON] & IA32_FEATURE_CMOV)
strlcat(features, "cmov ", sizeof(features));
if (cpu->arch.feature[FEATURE_COMMON] & IA32_FEATURE_PAT)
strlcat(features, "pat ", sizeof(features));
if (cpu->arch.feature[FEATURE_COMMON] & IA32_FEATURE_PSE36)
strlcat(features, "pse36 ", sizeof(features));
if (cpu->arch.feature[FEATURE_COMMON] & IA32_FEATURE_PSN)
strlcat(features, "psn ", sizeof(features));
if (cpu->arch.feature[FEATURE_COMMON] & IA32_FEATURE_CLFSH)
strlcat(features, "clfsh ", sizeof(features));
if (cpu->arch.feature[FEATURE_COMMON] & IA32_FEATURE_DS)
strlcat(features, "ds ", sizeof(features));
if (cpu->arch.feature[FEATURE_COMMON] & IA32_FEATURE_ACPI)
strlcat(features, "acpi ", sizeof(features));
if (cpu->arch.feature[FEATURE_COMMON] & IA32_FEATURE_MMX)
strlcat(features, "mmx ", sizeof(features));
if (cpu->arch.feature[FEATURE_COMMON] & IA32_FEATURE_FXSR)
strlcat(features, "fxsr ", sizeof(features));
if (cpu->arch.feature[FEATURE_COMMON] & IA32_FEATURE_SSE)
strlcat(features, "sse ", sizeof(features));
if (cpu->arch.feature[FEATURE_COMMON] & IA32_FEATURE_SSE2)
strlcat(features, "sse2 ", sizeof(features));
if (cpu->arch.feature[FEATURE_COMMON] & IA32_FEATURE_SS)
strlcat(features, "ss ", sizeof(features));
if (cpu->arch.feature[FEATURE_COMMON] & IA32_FEATURE_HTT)
strlcat(features, "htt ", sizeof(features));
if (cpu->arch.feature[FEATURE_COMMON] & IA32_FEATURE_TM)
strlcat(features, "tm ", sizeof(features));
if (cpu->arch.feature[FEATURE_COMMON] & IA32_FEATURE_PBE)
strlcat(features, "pbe ", sizeof(features));
if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_SSE3)
strlcat(features, "sse3 ", sizeof(features));
if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_PCLMULQDQ)
strlcat(features, "pclmulqdq ", sizeof(features));
if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_DTES64)
strlcat(features, "dtes64 ", sizeof(features));
if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_MONITOR)
strlcat(features, "monitor ", sizeof(features));
if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_DSCPL)
strlcat(features, "dscpl ", sizeof(features));
if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_VMX)
strlcat(features, "vmx ", sizeof(features));
if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_SMX)
strlcat(features, "smx ", sizeof(features));
if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_EST)
strlcat(features, "est ", sizeof(features));
if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_TM2)
strlcat(features, "tm2 ", sizeof(features));
if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_SSSE3)
strlcat(features, "ssse3 ", sizeof(features));
if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_CNXTID)
strlcat(features, "cnxtid ", sizeof(features));
if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_FMA)
strlcat(features, "fma ", sizeof(features));
if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_CX16)
strlcat(features, "cx16 ", sizeof(features));
if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_XTPR)
strlcat(features, "xtpr ", sizeof(features));
if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_PDCM)
strlcat(features, "pdcm ", sizeof(features));
if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_PCID)
strlcat(features, "pcid ", sizeof(features));
if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_DCA)
strlcat(features, "dca ", sizeof(features));
if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_SSE4_1)
strlcat(features, "sse4_1 ", sizeof(features));
if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_SSE4_2)
strlcat(features, "sse4_2 ", sizeof(features));
if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_X2APIC)
strlcat(features, "x2apic ", sizeof(features));
if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_MOVBE)
strlcat(features, "movbe ", sizeof(features));
if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_POPCNT)
strlcat(features, "popcnt ", sizeof(features));
if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_TSCDEADLINE)
strlcat(features, "tscdeadline ", sizeof(features));
if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_AES)
strlcat(features, "aes ", sizeof(features));
if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_XSAVE)
strlcat(features, "xsave ", sizeof(features));
if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_OSXSAVE)
strlcat(features, "osxsave ", sizeof(features));
if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_AVX)
strlcat(features, "avx ", sizeof(features));
if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_F16C)
strlcat(features, "f16c ", sizeof(features));
if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_RDRND)
strlcat(features, "rdrnd ", sizeof(features));
if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_HYPERVISOR)
strlcat(features, "hypervisor ", sizeof(features));
if (cpu->arch.feature[FEATURE_EXT_AMD_ECX] & IA32_FEATURE_AMD_EXT_MWAITX)
strlcat(features, "mwaitx ", sizeof(features));
if (cpu->arch.feature[FEATURE_EXT_AMD] & IA32_FEATURE_AMD_EXT_SYSCALL)
strlcat(features, "syscall ", sizeof(features));
if (cpu->arch.feature[FEATURE_EXT_AMD] & IA32_FEATURE_AMD_EXT_NX)
strlcat(features, "nx ", sizeof(features));
if (cpu->arch.feature[FEATURE_EXT_AMD] & IA32_FEATURE_AMD_EXT_MMXEXT)
strlcat(features, "mmxext ", sizeof(features));
if (cpu->arch.feature[FEATURE_EXT_AMD] & IA32_FEATURE_AMD_EXT_FFXSR)
strlcat(features, "ffxsr ", sizeof(features));
if (cpu->arch.feature[FEATURE_EXT_AMD] & IA32_FEATURE_AMD_EXT_PDPE1GB)
strlcat(features, "pdpe1gb ", sizeof(features));
if (cpu->arch.feature[FEATURE_EXT_AMD] & IA32_FEATURE_AMD_EXT_LONG)
strlcat(features, "long ", sizeof(features));
if (cpu->arch.feature[FEATURE_EXT_AMD] & IA32_FEATURE_AMD_EXT_3DNOWEXT)
strlcat(features, "3dnowext ", sizeof(features));
if (cpu->arch.feature[FEATURE_EXT_AMD] & IA32_FEATURE_AMD_EXT_3DNOW)
strlcat(features, "3dnow ", sizeof(features));
if (cpu->arch.feature[FEATURE_6_EAX] & IA32_FEATURE_DTS)
strlcat(features, "dts ", sizeof(features));
if (cpu->arch.feature[FEATURE_6_EAX] & IA32_FEATURE_ITB)
strlcat(features, "itb ", sizeof(features));
if (cpu->arch.feature[FEATURE_6_EAX] & IA32_FEATURE_ARAT)
strlcat(features, "arat ", sizeof(features));
if (cpu->arch.feature[FEATURE_6_EAX] & IA32_FEATURE_PLN)
strlcat(features, "pln ", sizeof(features));
if (cpu->arch.feature[FEATURE_6_EAX] & IA32_FEATURE_ECMD)
strlcat(features, "ecmd ", sizeof(features));
if (cpu->arch.feature[FEATURE_6_EAX] & IA32_FEATURE_PTM)
strlcat(features, "ptm ", sizeof(features));
if (cpu->arch.feature[FEATURE_6_EAX] & IA32_FEATURE_HWP)
strlcat(features, "hwp ", sizeof(features));
if (cpu->arch.feature[FEATURE_6_EAX] & IA32_FEATURE_HWP_NOTIFY)
strlcat(features, "hwp_notify ", sizeof(features));
if (cpu->arch.feature[FEATURE_6_EAX] & IA32_FEATURE_HWP_ACTWIN)
strlcat(features, "hwp_actwin ", sizeof(features));
if (cpu->arch.feature[FEATURE_6_EAX] & IA32_FEATURE_HWP_EPP)
strlcat(features, "hwp_epp ", sizeof(features));
if (cpu->arch.feature[FEATURE_6_EAX] & IA32_FEATURE_HWP_PLR)
strlcat(features, "hwp_plr ", sizeof(features));
if (cpu->arch.feature[FEATURE_6_EAX] & IA32_FEATURE_HDC)
strlcat(features, "hdc ", sizeof(features));
if (cpu->arch.feature[FEATURE_6_EAX] & IA32_FEATURE_TBMT3)
strlcat(features, "tbmt3 ", sizeof(features));
if (cpu->arch.feature[FEATURE_6_EAX] & IA32_FEATURE_HWP_CAP)
strlcat(features, "hwp_cap ", sizeof(features));
if (cpu->arch.feature[FEATURE_6_EAX] & IA32_FEATURE_HWP_PECI)
strlcat(features, "hwp_peci ", sizeof(features));
if (cpu->arch.feature[FEATURE_6_EAX] & IA32_FEATURE_HWP_FLEX)
strlcat(features, "hwp_flex ", sizeof(features));
if (cpu->arch.feature[FEATURE_6_EAX] & IA32_FEATURE_HWP_FAST)
strlcat(features, "hwp_fast ", sizeof(features));
if (cpu->arch.feature[FEATURE_6_EAX] & IA32_FEATURE_HW_FEEDBACK)
strlcat(features, "hw_feedback ", sizeof(features));
if (cpu->arch.feature[FEATURE_6_EAX] & IA32_FEATURE_HWP_IGNIDL)
strlcat(features, "hwp_ignidl ", sizeof(features));
if (cpu->arch.feature[FEATURE_6_ECX] & IA32_FEATURE_APERFMPERF)
strlcat(features, "aperfmperf ", sizeof(features));
if (cpu->arch.feature[FEATURE_6_ECX] & IA32_FEATURE_EPB)
strlcat(features, "epb ", sizeof(features));
if (cpu->arch.feature[FEATURE_7_EBX] & IA32_FEATURE_TSC_ADJUST)
strlcat(features, "tsc_adjust ", sizeof(features));
if (cpu->arch.feature[FEATURE_7_EBX] & IA32_FEATURE_SGX)
strlcat(features, "sgx ", sizeof(features));
if (cpu->arch.feature[FEATURE_7_EBX] & IA32_FEATURE_BMI1)
strlcat(features, "bmi1 ", sizeof(features));
if (cpu->arch.feature[FEATURE_7_EBX] & IA32_FEATURE_HLE)
strlcat(features, "hle ", sizeof(features));
if (cpu->arch.feature[FEATURE_7_EBX] & IA32_FEATURE_AVX2)
strlcat(features, "avx2 ", sizeof(features));
if (cpu->arch.feature[FEATURE_7_EBX] & IA32_FEATURE_SMEP)
strlcat(features, "smep ", sizeof(features));
if (cpu->arch.feature[FEATURE_7_EBX] & IA32_FEATURE_BMI2)
strlcat(features, "bmi2 ", sizeof(features));
if (cpu->arch.feature[FEATURE_7_EBX] & IA32_FEATURE_ERMS)
strlcat(features, "erms ", sizeof(features));
if (cpu->arch.feature[FEATURE_7_EBX] & IA32_FEATURE_INVPCID)
strlcat(features, "invpcid ", sizeof(features));
if (cpu->arch.feature[FEATURE_7_EBX] & IA32_FEATURE_RTM)
strlcat(features, "rtm ", sizeof(features));
if (cpu->arch.feature[FEATURE_7_EBX] & IA32_FEATURE_CQM)
strlcat(features, "cqm ", sizeof(features));
if (cpu->arch.feature[FEATURE_7_EBX] & IA32_FEATURE_MPX)
strlcat(features, "mpx ", sizeof(features));
if (cpu->arch.feature[FEATURE_7_EBX] & IA32_FEATURE_RDT_A)
strlcat(features, "rdt_a ", sizeof(features));
if (cpu->arch.feature[FEATURE_7_EBX] & IA32_FEATURE_AVX512F)
strlcat(features, "avx512f ", sizeof(features));
if (cpu->arch.feature[FEATURE_7_EBX] & IA32_FEATURE_AVX512DQ)
strlcat(features, "avx512dq ", sizeof(features));
if (cpu->arch.feature[FEATURE_7_EBX] & IA32_FEATURE_RDSEED)
strlcat(features, "rdseed ", sizeof(features));
if (cpu->arch.feature[FEATURE_7_EBX] & IA32_FEATURE_ADX)
strlcat(features, "adx ", sizeof(features));
if (cpu->arch.feature[FEATURE_7_EBX] & IA32_FEATURE_SMAP)
strlcat(features, "smap ", sizeof(features));
if (cpu->arch.feature[FEATURE_7_EBX] & IA32_FEATURE_AVX512IFMA)
strlcat(features, "avx512ifma ", sizeof(features));
if (cpu->arch.feature[FEATURE_7_EBX] & IA32_FEATURE_PCOMMIT)
strlcat(features, "pcommit ", sizeof(features));
if (cpu->arch.feature[FEATURE_7_EBX] & IA32_FEATURE_CLFLUSHOPT)
strlcat(features, "cflushopt ", sizeof(features));
if (cpu->arch.feature[FEATURE_7_EBX] & IA32_FEATURE_CLWB)
strlcat(features, "clwb ", sizeof(features));
if (cpu->arch.feature[FEATURE_7_EBX] & IA32_FEATURE_INTEL_PT)
strlcat(features, "intel_pt ", sizeof(features));
if (cpu->arch.feature[FEATURE_7_EBX] & IA32_FEATURE_AVX512PF)
strlcat(features, "avx512pf ", sizeof(features));
if (cpu->arch.feature[FEATURE_7_EBX] & IA32_FEATURE_AVX512ER)
strlcat(features, "avx512er ", sizeof(features));
if (cpu->arch.feature[FEATURE_7_EBX] & IA32_FEATURE_AVX512CD)
strlcat(features, "avx512cd ", sizeof(features));
if (cpu->arch.feature[FEATURE_7_EBX] & IA32_FEATURE_SHA_NI)
strlcat(features, "sha_ni ", sizeof(features));
if (cpu->arch.feature[FEATURE_7_EBX] & IA32_FEATURE_AVX512BW)
strlcat(features, "avx512bw ", sizeof(features));
if (cpu->arch.feature[FEATURE_7_EBX] & IA32_FEATURE_AVX512VI)
strlcat(features, "avx512vi ", sizeof(features));
if (cpu->arch.feature[FEATURE_7_ECX] & IA32_FEATURE_AVX512VMBI)
strlcat(features, "avx512vmbi ", sizeof(features));
if (cpu->arch.feature[FEATURE_7_ECX] & IA32_FEATURE_UMIP)
strlcat(features, "umip ", sizeof(features));
if (cpu->arch.feature[FEATURE_7_ECX] & IA32_FEATURE_PKU)
strlcat(features, "pku ", sizeof(features));
if (cpu->arch.feature[FEATURE_7_ECX] & IA32_FEATURE_OSPKE)
strlcat(features, "ospke ", sizeof(features));
if (cpu->arch.feature[FEATURE_7_ECX] & IA32_FEATURE_WAITPKG)
strlcat(features, "waitpkg ", sizeof(features));
if (cpu->arch.feature[FEATURE_7_ECX] & IA32_FEATURE_AVX512VMBI2)
strlcat(features, "avx512vmbi2 ", sizeof(features));
if (cpu->arch.feature[FEATURE_7_ECX] & IA32_FEATURE_GFNI)
strlcat(features, "gfni ", sizeof(features));
if (cpu->arch.feature[FEATURE_7_ECX] & IA32_FEATURE_VAES)
strlcat(features, "vaes ", sizeof(features));
if (cpu->arch.feature[FEATURE_7_ECX] & IA32_FEATURE_VPCLMULQDQ)
strlcat(features, "vpclmulqdq ", sizeof(features));
if (cpu->arch.feature[FEATURE_7_ECX] & IA32_FEATURE_AVX512_VNNI)
strlcat(features, "avx512vnni ", sizeof(features));
if (cpu->arch.feature[FEATURE_7_ECX] & IA32_FEATURE_AVX512_BITALG)
strlcat(features, "avx512bitalg ", sizeof(features));
if (cpu->arch.feature[FEATURE_7_ECX] & IA32_FEATURE_AVX512_VPOPCNTDQ)
strlcat(features, "avx512vpopcntdq ", sizeof(features));
if (cpu->arch.feature[FEATURE_7_ECX] & IA32_FEATURE_LA57)
strlcat(features, "la57 ", sizeof(features));
if (cpu->arch.feature[FEATURE_7_ECX] & IA32_FEATURE_RDPID)
strlcat(features, "rdpid ", sizeof(features));
if (cpu->arch.feature[FEATURE_7_ECX] & IA32_FEATURE_SGX_LC)
strlcat(features, "sgx_lc ", sizeof(features));
if (cpu->arch.feature[FEATURE_7_EDX] & IA32_FEATURE_HYBRID_CPU)
strlcat(features, "hybrid ", sizeof(features));
if (cpu->arch.feature[FEATURE_7_EDX] & IA32_FEATURE_IBRS)
strlcat(features, "ibrs ", sizeof(features));
if (cpu->arch.feature[FEATURE_7_EDX] & IA32_FEATURE_STIBP)
strlcat(features, "stibp ", sizeof(features));
if (cpu->arch.feature[FEATURE_7_EDX] & IA32_FEATURE_L1D_FLUSH)
strlcat(features, "l1d_flush ", sizeof(features));
if (cpu->arch.feature[FEATURE_7_EDX] & IA32_FEATURE_ARCH_CAPABILITIES)
strlcat(features, "msr_arch ", sizeof(features));
if (cpu->arch.feature[FEATURE_7_EDX] & IA32_FEATURE_SSBD)
strlcat(features, "ssbd ", sizeof(features));
if (cpu->arch.feature[FEATURE_EXT_7_EDX] & IA32_FEATURE_AMD_HW_PSTATE)
strlcat(features, "hwpstate ", sizeof(features));
if (cpu->arch.feature[FEATURE_EXT_7_EDX] & IA32_FEATURE_INVARIANT_TSC)
strlcat(features, "constant_tsc ", sizeof(features));
if (cpu->arch.feature[FEATURE_EXT_7_EDX] & IA32_FEATURE_CPB)
strlcat(features, "cpb ", sizeof(features));
if (cpu->arch.feature[FEATURE_EXT_7_EDX] & IA32_FEATURE_PROC_FEEDBACK)
strlcat(features, "proc_feedback ", sizeof(features));
if (cpu->arch.feature[FEATURE_D_1_EAX] & IA32_FEATURE_XSAVEOPT)
strlcat(features, "xsaveopt ", sizeof(features));
if (cpu->arch.feature[FEATURE_D_1_EAX] & IA32_FEATURE_XSAVEC)
strlcat(features, "xsavec ", sizeof(features));
if (cpu->arch.feature[FEATURE_D_1_EAX] & IA32_FEATURE_XGETBV1)
strlcat(features, "xgetbv1 ", sizeof(features));
if (cpu->arch.feature[FEATURE_D_1_EAX] & IA32_FEATURE_XSAVES)
strlcat(features, "xsaves ", sizeof(features));
if (cpu->arch.feature[FEATURE_EXT_8_EBX] & IA32_FEATURE_CLZERO)
strlcat(features, "clzero ", sizeof(features));
if (cpu->arch.feature[FEATURE_EXT_8_EBX] & IA32_FEATURE_IBPB)
strlcat(features, "ibpb ", sizeof(features));
if (cpu->arch.feature[FEATURE_EXT_8_EBX] & IA32_FEATURE_AMD_SSBD)
strlcat(features, "amd_ssbd ", sizeof(features));
if (cpu->arch.feature[FEATURE_EXT_8_EBX] & IA32_FEATURE_VIRT_SSBD)
strlcat(features, "virt_ssbd ", sizeof(features));
if (cpu->arch.feature[FEATURE_EXT_8_EBX] & IA32_FEATURE_AMD_SSB_NO)
strlcat(features, "amd_ssb_no ", sizeof(features));
if (cpu->arch.feature[FEATURE_EXT_8_EBX] & IA32_FEATURE_CPPC)
strlcat(features, "cppc ", sizeof(features));
dprintf("CPU %d: features: %s\n", currentCPU, features);
}
#endif
static void
compute_cpu_hierarchy_masks(int maxLogicalID, int maxCoreID)
{
ASSERT(maxLogicalID >= maxCoreID);
const int kMaxSMTID = maxLogicalID / maxCoreID;
sHierarchyMask[CPU_TOPOLOGY_SMT] = kMaxSMTID - 1;
sHierarchyShift[CPU_TOPOLOGY_SMT] = 0;
sHierarchyMask[CPU_TOPOLOGY_CORE] = (maxCoreID - 1) * kMaxSMTID;
sHierarchyShift[CPU_TOPOLOGY_CORE]
= count_set_bits(sHierarchyMask[CPU_TOPOLOGY_SMT]);
const uint32 kSinglePackageMask = sHierarchyMask[CPU_TOPOLOGY_SMT]
| sHierarchyMask[CPU_TOPOLOGY_CORE];
sHierarchyMask[CPU_TOPOLOGY_PACKAGE] = ~kSinglePackageMask;
sHierarchyShift[CPU_TOPOLOGY_PACKAGE] = count_set_bits(kSinglePackageMask);
}
static uint32
get_cpu_legacy_initial_apic_id(int )
{
cpuid_info cpuid;
get_current_cpuid(&cpuid, 1, 0);
return cpuid.regs.ebx >> 24;
}
static inline status_t
detect_amd_cpu_topology(uint32 maxBasicLeaf, uint32 maxExtendedLeaf)
{
sGetCPUTopologyID = get_cpu_legacy_initial_apic_id;
cpuid_info cpuid;
get_current_cpuid(&cpuid, 1, 0);
int maxLogicalID = next_power_of_2((cpuid.regs.ebx >> 16) & 0xff);
int maxCoreID = 1;
if (maxExtendedLeaf >= 0x80000008) {
get_current_cpuid(&cpuid, 0x80000008, 0);
maxCoreID = (cpuid.regs.ecx >> 12) & 0xf;
if (maxCoreID != 0)
maxCoreID = 1 << maxCoreID;
else
maxCoreID = next_power_of_2((cpuid.regs.edx & 0xf) + 1);
}
if (maxExtendedLeaf >= 0x80000001) {
get_current_cpuid(&cpuid, 0x80000001, 0);
if (x86_check_feature(IA32_FEATURE_AMD_EXT_CMPLEGACY,
FEATURE_EXT_AMD_ECX))
maxCoreID = maxLogicalID;
}
compute_cpu_hierarchy_masks(maxLogicalID, maxCoreID);
return B_OK;
}
static void
detect_amd_cache_topology(uint32 maxExtendedLeaf)
{
if (!x86_check_feature(IA32_FEATURE_AMD_EXT_TOPOLOGY, FEATURE_EXT_AMD_ECX))
return;
if (maxExtendedLeaf < 0x8000001d)
return;
uint8 hierarchyLevels[CPU_MAX_CACHE_LEVEL];
int maxCacheLevel = 0;
int currentLevel = 0;
int cacheType;
do {
cpuid_info cpuid;
get_current_cpuid(&cpuid, 0x8000001d, currentLevel);
cacheType = cpuid.regs.eax & 0x1f;
if (cacheType == 0)
break;
int cacheLevel = (cpuid.regs.eax >> 5) & 0x7;
int coresCount = next_power_of_2(((cpuid.regs.eax >> 14) & 0x3f) + 1);
hierarchyLevels[cacheLevel - 1]
= coresCount * (sHierarchyMask[CPU_TOPOLOGY_SMT] + 1);
maxCacheLevel = std::max(maxCacheLevel, cacheLevel);
currentLevel++;
} while (true);
for (int i = 0; i < maxCacheLevel; i++)
sCacheSharingMask[i] = ~uint32(hierarchyLevels[i] - 1);
gCPUCacheLevelCount = maxCacheLevel;
}
static uint32
get_intel_cpu_initial_x2apic_id(int )
{
cpuid_info cpuid;
get_current_cpuid(&cpuid, 11, 0);
return cpuid.regs.edx;
}
static inline status_t
detect_intel_cpu_topology_x2apic(uint32 maxBasicLeaf)
{
uint32 leaf = 0;
cpuid_info cpuid;
if (maxBasicLeaf >= 0x1f) {
get_current_cpuid(&cpuid, 0x1f, 0);
if (cpuid.regs.ebx != 0)
leaf = 0x1f;
}
if (maxBasicLeaf >= 0xb && leaf == 0) {
get_current_cpuid(&cpuid, 0xb, 0);
if (cpuid.regs.ebx != 0)
leaf = 0xb;
}
if (leaf == 0)
return B_UNSUPPORTED;
uint8 hierarchyLevels[CPU_TOPOLOGY_LEVELS] = { 0 };
int currentLevel = 0;
unsigned int levelsSet = 0;
do {
cpuid_info cpuid;
get_current_cpuid(&cpuid, leaf, currentLevel++);
int levelType = (cpuid.regs.ecx >> 8) & 0xff;
int levelValue = cpuid.regs.eax & 0x1f;
if (levelType == 0)
break;
switch (levelType) {
case 1:
hierarchyLevels[CPU_TOPOLOGY_SMT] = levelValue;
levelsSet |= 1;
break;
case 2:
hierarchyLevels[CPU_TOPOLOGY_CORE] = levelValue;
levelsSet |= 2;
break;
}
} while (levelsSet != 3);
sGetCPUTopologyID = get_intel_cpu_initial_x2apic_id;
for (int i = 1; i < CPU_TOPOLOGY_LEVELS; i++) {
if ((levelsSet & (1u << i)) != 0)
continue;
hierarchyLevels[i] = hierarchyLevels[i - 1];
}
for (int i = 0; i < CPU_TOPOLOGY_LEVELS; i++) {
uint32 mask = ~uint32(0);
if (i < CPU_TOPOLOGY_LEVELS - 1)
mask = (1u << hierarchyLevels[i]) - 1;
if (i > 0)
mask &= ~sHierarchyMask[i - 1];
sHierarchyMask[i] = mask;
sHierarchyShift[i] = i > 0 ? hierarchyLevels[i - 1] : 0;
}
return B_OK;
}
static inline status_t
detect_intel_cpu_topology_legacy(uint32 maxBasicLeaf)
{
sGetCPUTopologyID = get_cpu_legacy_initial_apic_id;
cpuid_info cpuid;
get_current_cpuid(&cpuid, 1, 0);
int maxLogicalID = next_power_of_2((cpuid.regs.ebx >> 16) & 0xff);
int maxCoreID = 1;
if (maxBasicLeaf >= 4) {
get_current_cpuid(&cpuid, 4, 0);
maxCoreID = next_power_of_2((cpuid.regs.eax >> 26) + 1);
}
compute_cpu_hierarchy_masks(maxLogicalID, maxCoreID);
return B_OK;
}
static void
detect_intel_cache_topology(uint32 maxBasicLeaf)
{
if (maxBasicLeaf < 4)
return;
uint8 hierarchyLevels[CPU_MAX_CACHE_LEVEL];
int maxCacheLevel = 0;
int currentLevel = 0;
int cacheType;
do {
cpuid_info cpuid;
get_current_cpuid(&cpuid, 4, currentLevel);
cacheType = cpuid.regs.eax & 0x1f;
if (cacheType == 0)
break;
int cacheLevel = (cpuid.regs.eax >> 5) & 0x7;
hierarchyLevels[cacheLevel - 1]
= next_power_of_2(((cpuid.regs.eax >> 14) & 0x3f) + 1);
maxCacheLevel = std::max(maxCacheLevel, cacheLevel);
currentLevel++;
} while (true);
for (int i = 0; i < maxCacheLevel; i++)
sCacheSharingMask[i] = ~uint32(hierarchyLevels[i] - 1);
gCPUCacheLevelCount = maxCacheLevel;
}
static uint32
get_simple_cpu_topology_id(int currentCPU)
{
return currentCPU;
}
static inline int
get_topology_level_id(uint32 id, cpu_topology_level level)
{
ASSERT(level < CPU_TOPOLOGY_LEVELS);
return (id & sHierarchyMask[level]) >> sHierarchyShift[level];
}
static void
detect_cpu_topology(int currentCPU, cpu_ent* cpu, uint32 maxBasicLeaf,
uint32 maxExtendedLeaf)
{
if (currentCPU == 0) {
memset(sCacheSharingMask, 0xff, sizeof(sCacheSharingMask));
status_t result = B_UNSUPPORTED;
if (x86_check_feature(IA32_FEATURE_HTT, FEATURE_COMMON)) {
if (cpu->arch.vendor == VENDOR_AMD
|| cpu->arch.vendor == VENDOR_HYGON) {
result = detect_amd_cpu_topology(maxBasicLeaf, maxExtendedLeaf);
if (result == B_OK)
detect_amd_cache_topology(maxExtendedLeaf);
}
if (cpu->arch.vendor == VENDOR_INTEL) {
result = detect_intel_cpu_topology_x2apic(maxBasicLeaf);
if (result != B_OK)
result = detect_intel_cpu_topology_legacy(maxBasicLeaf);
if (result == B_OK)
detect_intel_cache_topology(maxBasicLeaf);
}
}
if (result != B_OK) {
dprintf("No CPU topology information available.\n");
sGetCPUTopologyID = get_simple_cpu_topology_id;
sHierarchyMask[CPU_TOPOLOGY_PACKAGE] = ~uint32(0);
}
}
ASSERT(sGetCPUTopologyID != NULL);
int topologyID = sGetCPUTopologyID(currentCPU);
cpu->topology_id[CPU_TOPOLOGY_SMT]
= get_topology_level_id(topologyID, CPU_TOPOLOGY_SMT);
cpu->topology_id[CPU_TOPOLOGY_CORE]
= get_topology_level_id(topologyID, CPU_TOPOLOGY_CORE);
cpu->topology_id[CPU_TOPOLOGY_PACKAGE]
= get_topology_level_id(topologyID, CPU_TOPOLOGY_PACKAGE);
unsigned int i;
for (i = 0; i < gCPUCacheLevelCount; i++)
cpu->cache_id[i] = topologyID & sCacheSharingMask[i];
for (; i < CPU_MAX_CACHE_LEVEL; i++)
cpu->cache_id[i] = -1;
#if DUMP_CPU_TOPOLOGY
dprintf("CPU %d: apic id %d, package %d, core %d, smt %d\n", currentCPU,
topologyID, cpu->topology_id[CPU_TOPOLOGY_PACKAGE],
cpu->topology_id[CPU_TOPOLOGY_CORE],
cpu->topology_id[CPU_TOPOLOGY_SMT]);
if (gCPUCacheLevelCount > 0) {
char cacheLevels[256];
unsigned int offset = 0;
for (i = 0; i < gCPUCacheLevelCount; i++) {
offset += snprintf(cacheLevels + offset,
sizeof(cacheLevels) - offset,
" L%d id %d%s", i + 1, cpu->cache_id[i],
i < gCPUCacheLevelCount - 1 ? "," : "");
if (offset >= sizeof(cacheLevels))
break;
}
dprintf("CPU %d: cache sharing:%s\n", currentCPU, cacheLevels);
}
#endif
}
static void
detect_intel_patch_level(cpu_ent* cpu)
{
if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_HYPERVISOR) {
cpu->arch.patch_level = 0;
return;
}
x86_write_msr(IA32_MSR_UCODE_REV, 0);
cpuid_info cpuid;
get_current_cpuid(&cpuid, 1, 0);
uint64 value = x86_read_msr(IA32_MSR_UCODE_REV);
cpu->arch.patch_level = value >> 32;
}
static void
detect_amd_patch_level(cpu_ent* cpu)
{
if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_HYPERVISOR) {
cpu->arch.patch_level = 0;
return;
}
uint64 value = x86_read_msr(IA32_MSR_UCODE_REV);
cpu->arch.patch_level = (uint32)value;
}
static struct intel_microcode_header*
find_microcode_intel(addr_t data, size_t size, uint32 patchLevel)
{
cpuid_info cpuid;
get_current_cpuid(&cpuid, 1, 0);
uint32 signature = cpuid.regs.eax;
uint64 platformBits = (x86_read_msr(IA32_MSR_PLATFORM_ID) >> 50) & 0x7;
uint64 mask = 1 << platformBits;
while (size > 0) {
if (size < sizeof(struct intel_microcode_header)) {
dprintf("find_microcode_intel update is too small for header\n");
break;
}
struct intel_microcode_header* header =
(struct intel_microcode_header*)data;
uint32 totalSize = header->total_size;
uint32 dataSize = header->data_size;
if (dataSize == 0) {
dataSize = 2000;
totalSize = sizeof(struct intel_microcode_header)
+ dataSize;
}
if (totalSize > size) {
dprintf("find_microcode_intel update is too small for data\n");
break;
}
uint32* dwords = (uint32*)data;
size -= totalSize;
data += totalSize;
if (header->loader_revision != 1) {
dprintf("find_microcode_intel incorrect loader version\n");
continue;
}
if (((addr_t)header % 16) != 0) {
dprintf("find_microcode_intel incorrect alignment\n");
continue;
}
uint32 sum = 0;
for (uint32 i = 0; i < totalSize / 4; i++) {
sum += dwords[i];
}
if (sum != 0) {
dprintf("find_microcode_intel incorrect checksum\n");
continue;
}
if (patchLevel > header->update_revision) {
dprintf("find_microcode_intel update_revision is lower\n");
continue;
}
if (signature == header->processor_signature
&& (mask & header->processor_flags) != 0) {
return header;
}
if (totalSize <= (sizeof(struct intel_microcode_header) + dataSize
+ sizeof(struct intel_microcode_extended_signature_header))) {
continue;
}
struct intel_microcode_extended_signature_header* extSigHeader =
(struct intel_microcode_extended_signature_header*)((addr_t)header
+ sizeof(struct intel_microcode_header) + dataSize);
struct intel_microcode_extended_signature* extended_signature =
(struct intel_microcode_extended_signature*)((addr_t)extSigHeader
+ sizeof(struct intel_microcode_extended_signature_header));
for (uint32 i = 0; i < extSigHeader->extended_signature_count; i++) {
if (signature == extended_signature[i].processor_signature
&& (mask & extended_signature[i].processor_flags) != 0)
return header;
}
}
return NULL;
}
static void
load_microcode_intel(int currentCPU, cpu_ent* cpu)
{
if (currentCPU != 0)
acquire_spinlock(&sUcodeUpdateLock);
detect_intel_patch_level(cpu);
uint32 revision = cpu->arch.patch_level;
struct intel_microcode_header* update = (struct intel_microcode_header*)sLoadedUcodeUpdate;
if (update == NULL) {
update = find_microcode_intel((addr_t)sUcodeData, sUcodeDataSize,
revision);
}
if (update == NULL) {
dprintf("CPU %d: no update found\n", currentCPU);
} else if (update->update_revision != revision) {
addr_t data = (addr_t)update + sizeof(struct intel_microcode_header);
wbinvd();
x86_write_msr(IA32_MSR_UCODE_WRITE, data);
detect_intel_patch_level(cpu);
if (revision == cpu->arch.patch_level) {
dprintf("CPU %d: update failed\n", currentCPU);
} else {
if (sLoadedUcodeUpdate == NULL)
sLoadedUcodeUpdate = update;
dprintf("CPU %d: updated from revision 0x%" B_PRIx32 " to 0x%" B_PRIx32
"\n", currentCPU, revision, cpu->arch.patch_level);
}
}
if (currentCPU != 0)
release_spinlock(&sUcodeUpdateLock);
}
static struct amd_microcode_header*
find_microcode_amd(addr_t data, size_t size, uint32 patchLevel)
{
cpuid_info cpuid;
get_current_cpuid(&cpuid, 1, 0);
uint32 signature = cpuid.regs.eax;
if (size < sizeof(struct amd_container_header)) {
dprintf("find_microcode_amd update is too small for header\n");
return NULL;
}
struct amd_container_header* container = (struct amd_container_header*)data;
if (container->magic != 0x414d44) {
dprintf("find_microcode_amd update invalid magic\n");
return NULL;
}
size -= sizeof(*container);
data += sizeof(*container);
struct amd_section_header* section =
(struct amd_section_header*)data;
if (section->type != 0 || section->size == 0) {
dprintf("find_microcode_amd update first section invalid\n");
return NULL;
}
size -= sizeof(*section);
data += sizeof(*section);
amd_equiv_cpu_entry* table = (amd_equiv_cpu_entry*)data;
size -= section->size;
data += section->size;
uint16 equiv_id = 0;
for (uint32 i = 0; table[i].installed_cpu != 0; i++) {
if (signature == table[i].equiv_cpu) {
equiv_id = table[i].equiv_cpu;
dprintf("find_microcode_amd found equiv cpu: %x\n", equiv_id);
break;
}
}
if (equiv_id == 0) {
dprintf("find_microcode_amd update cpu not found in equiv table\n");
return NULL;
}
while (size > sizeof(amd_section_header)) {
struct amd_section_header* section = (struct amd_section_header*)data;
size -= sizeof(*section);
data += sizeof(*section);
if (section->type != 1 || section->size > size
|| section->size < sizeof(amd_microcode_header)) {
dprintf("find_microcode_amd update firmware section invalid\n");
return NULL;
}
struct amd_microcode_header* header = (struct amd_microcode_header*)data;
size -= section->size;
data += section->size;
if (header->processor_rev_id != equiv_id) {
dprintf("find_microcode_amd update found rev_id %x\n", header->processor_rev_id);
continue;
}
if (patchLevel >= header->patch_id) {
dprintf("find_microcode_intel update_revision is lower\n");
continue;
}
if (header->nb_dev_id != 0 || header->sb_dev_id != 0) {
dprintf("find_microcode_amd update chipset specific firmware\n");
continue;
}
if (((addr_t)header % 16) != 0) {
dprintf("find_microcode_amd incorrect alignment\n");
continue;
}
return header;
}
dprintf("find_microcode_amd no fw update found for this cpu\n");
return NULL;
}
static void
load_microcode_amd(int currentCPU, cpu_ent* cpu)
{
if (currentCPU != 0)
acquire_spinlock(&sUcodeUpdateLock);
detect_amd_patch_level(cpu);
uint32 revision = cpu->arch.patch_level;
struct amd_microcode_header* update = (struct amd_microcode_header*)sLoadedUcodeUpdate;
if (update == NULL) {
update = find_microcode_amd((addr_t)sUcodeData, sUcodeDataSize,
revision);
}
if (update != NULL) {
addr_t data = (addr_t)update;
wbinvd();
x86_write_msr(MSR_K8_UCODE_UPDATE, data);
detect_amd_patch_level(cpu);
if (revision == cpu->arch.patch_level) {
dprintf("CPU %d: update failed\n", currentCPU);
} else {
if (sLoadedUcodeUpdate == NULL)
sLoadedUcodeUpdate = update;
dprintf("CPU %d: updated from revision 0x%" B_PRIx32 " to 0x%" B_PRIx32
"\n", currentCPU, revision, cpu->arch.patch_level);
}
} else {
dprintf("CPU %d: no update found\n", currentCPU);
}
if (currentCPU != 0)
release_spinlock(&sUcodeUpdateLock);
}
static void
load_microcode(int currentCPU)
{
if (sUcodeData == NULL)
return;
cpu_ent* cpu = get_cpu_struct();
if ((cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_HYPERVISOR) != 0)
return;
if (cpu->arch.vendor == VENDOR_INTEL)
load_microcode_intel(currentCPU, cpu);
else if (cpu->arch.vendor == VENDOR_AMD)
load_microcode_amd(currentCPU, cpu);
}
static uint8
get_hybrid_cpu_type()
{
cpu_ent* cpu = get_cpu_struct();
if ((cpu->arch.feature[FEATURE_7_EDX] & IA32_FEATURE_HYBRID_CPU) == 0)
return 0;
#define X86_HYBRID_CPU_TYPE_ID_SHIFT 24
cpuid_info cpuid;
get_current_cpuid(&cpuid, 0x1a, 0);
return cpuid.regs.eax >> X86_HYBRID_CPU_TYPE_ID_SHIFT;
}
static const char*
get_hybrid_cpu_type_string(uint8 type)
{
switch (type) {
case 0x20:
return "Atom";
case 0x40:
return "Core";
default:
return "";
}
}
static void
detect_cpu(int currentCPU, bool full = true)
{
cpu_ent* cpu = get_cpu_struct();
char vendorString[17];
cpuid_info cpuid;
cpu->arch.vendor = VENDOR_UNKNOWN;
cpu->arch.vendor_name = "UNKNOWN VENDOR";
cpu->arch.feature[FEATURE_COMMON] = 0;
cpu->arch.feature[FEATURE_EXT] = 0;
cpu->arch.feature[FEATURE_EXT_AMD] = 0;
cpu->arch.feature[FEATURE_7_EBX] = 0;
cpu->arch.feature[FEATURE_7_ECX] = 0;
cpu->arch.feature[FEATURE_7_EDX] = 0;
cpu->arch.feature[FEATURE_D_1_EAX] = 0;
cpu->arch.model_name[0] = 0;
get_current_cpuid(&cpuid, 0, 0);
uint32 maxBasicLeaf = cpuid.eax_0.max_eax;
memset(vendorString, 0, sizeof(vendorString));
memcpy(vendorString, cpuid.eax_0.vendor_id, sizeof(cpuid.eax_0.vendor_id));
get_current_cpuid(&cpuid, 1, 0);
cpu->arch.type = cpuid.eax_1.type;
cpu->arch.family = cpuid.eax_1.family;
cpu->arch.extended_family = cpuid.eax_1.extended_family;
cpu->arch.model = cpuid.eax_1.model;
cpu->arch.extended_model = cpuid.eax_1.extended_model;
cpu->arch.stepping = cpuid.eax_1.stepping;
if (full) {
dprintf("CPU %d: type %d family %d extended_family %d model %d "
"extended_model %d stepping %d, string '%s'\n",
currentCPU, cpu->arch.type, cpu->arch.family,
cpu->arch.extended_family, cpu->arch.model,
cpu->arch.extended_model, cpu->arch.stepping, vendorString);
}
for (int32 i = 0; i < VENDOR_NUM; i++) {
if (vendor_info[i].ident_string[0]
&& !strcmp(vendorString, vendor_info[i].ident_string[0])) {
cpu->arch.vendor = (x86_vendors)i;
cpu->arch.vendor_name = vendor_info[i].vendor;
break;
}
if (vendor_info[i].ident_string[1]
&& !strcmp(vendorString, vendor_info[i].ident_string[1])) {
cpu->arch.vendor = (x86_vendors)i;
cpu->arch.vendor_name = vendor_info[i].vendor;
break;
}
}
get_current_cpuid(&cpuid, 0x80000000, 0);
uint32 maxExtendedLeaf = cpuid.eax_0.max_eax;
if (maxExtendedLeaf >= 0x80000004) {
unsigned int temp;
memset(cpu->arch.model_name, 0, sizeof(cpu->arch.model_name));
get_current_cpuid(&cpuid, 0x80000002, 0);
temp = cpuid.regs.edx;
cpuid.regs.edx = cpuid.regs.ecx;
cpuid.regs.ecx = temp;
memcpy(cpu->arch.model_name, cpuid.as_chars, sizeof(cpuid.as_chars));
get_current_cpuid(&cpuid, 0x80000003, 0);
temp = cpuid.regs.edx;
cpuid.regs.edx = cpuid.regs.ecx;
cpuid.regs.ecx = temp;
memcpy(cpu->arch.model_name + 16, cpuid.as_chars,
sizeof(cpuid.as_chars));
get_current_cpuid(&cpuid, 0x80000004, 0);
temp = cpuid.regs.edx;
cpuid.regs.edx = cpuid.regs.ecx;
cpuid.regs.ecx = temp;
memcpy(cpu->arch.model_name + 32, cpuid.as_chars,
sizeof(cpuid.as_chars));
int32 i = 0;
while (cpu->arch.model_name[i] == ' ')
i++;
if (i > 0) {
memmove(cpu->arch.model_name, &cpu->arch.model_name[i],
strlen(&cpu->arch.model_name[i]) + 1);
}
if (full) {
dprintf("CPU %d: vendor '%s' model name '%s'\n",
currentCPU, cpu->arch.vendor_name, cpu->arch.model_name);
}
} else {
strlcpy(cpu->arch.model_name, "unknown", sizeof(cpu->arch.model_name));
}
get_current_cpuid(&cpuid, 1, 0);
cpu->arch.feature[FEATURE_COMMON] = cpuid.eax_1.features;
cpu->arch.feature[FEATURE_EXT] = cpuid.eax_1.extended_features;
if (!full)
return;
if (maxExtendedLeaf >= 0x80000001) {
get_current_cpuid(&cpuid, 0x80000001, 0);
if (cpu->arch.vendor == VENDOR_AMD)
cpu->arch.feature[FEATURE_EXT_AMD_ECX] = cpuid.regs.ecx;
cpu->arch.feature[FEATURE_EXT_AMD] = cpuid.regs.edx;
if (cpu->arch.vendor != VENDOR_AMD)
cpu->arch.feature[FEATURE_EXT_AMD] &= IA32_FEATURES_INTEL_EXT;
}
if (maxBasicLeaf >= 6) {
get_current_cpuid(&cpuid, 6, 0);
cpu->arch.feature[FEATURE_6_EAX] = cpuid.regs.eax;
cpu->arch.feature[FEATURE_6_ECX] = cpuid.regs.ecx;
}
if (maxBasicLeaf >= 7) {
get_current_cpuid(&cpuid, 7, 0);
cpu->arch.feature[FEATURE_7_EBX] = cpuid.regs.ebx;
cpu->arch.feature[FEATURE_7_ECX] = cpuid.regs.ecx;
cpu->arch.feature[FEATURE_7_EDX] = cpuid.regs.edx;
}
if (maxBasicLeaf >= 0xd) {
get_current_cpuid(&cpuid, 0xd, 1);
cpu->arch.feature[FEATURE_D_1_EAX] = cpuid.regs.eax;
}
if (maxExtendedLeaf >= 0x80000007) {
get_current_cpuid(&cpuid, 0x80000007, 0);
cpu->arch.feature[FEATURE_EXT_7_EDX] = cpuid.regs.edx;
}
if (maxExtendedLeaf >= 0x80000008) {
get_current_cpuid(&cpuid, 0x80000008, 0);
cpu->arch.feature[FEATURE_EXT_8_EBX] = cpuid.regs.ebx;
}
detect_cpu_topology(currentCPU, cpu, maxBasicLeaf, maxExtendedLeaf);
if (cpu->arch.vendor == VENDOR_INTEL)
detect_intel_patch_level(cpu);
else if (cpu->arch.vendor == VENDOR_AMD)
detect_amd_patch_level(cpu);
cpu->arch.hybrid_type = get_hybrid_cpu_type();
#if DUMP_FEATURE_STRING
dump_feature_string(currentCPU, cpu);
#endif
#if DUMP_CPU_PATCHLEVEL_TYPE
dprintf("CPU %d: patch_level 0x%" B_PRIx32 "%s%s\n", currentCPU,
cpu->arch.patch_level,
cpu->arch.hybrid_type != 0 ? ", hybrid type ": "",
get_hybrid_cpu_type_string(cpu->arch.hybrid_type));
#endif
}
bool
x86_check_feature(uint32 feature, enum x86_feature_type type)
{
cpu_ent* cpu = get_cpu_struct();
#if 0
int i;
dprintf("x86_check_feature: feature 0x%x, type %d\n", feature, type);
for (i = 0; i < FEATURE_NUM; i++) {
dprintf("features %d: 0x%x\n", i, cpu->arch.feature[i]);
}
#endif
return (cpu->arch.feature[type] & feature) != 0;
}
bool
x86_use_pat()
{
return sUsePAT;
}
void*
x86_get_double_fault_stack(int32 cpu, size_t* _size)
{
*_size = kDoubleFaultStackSize;
return (void*)(sDoubleFaultStacks + kDoubleFaultStackSize * cpu);
}
Otherwise, returns -1.
*/
int32
x86_double_fault_get_cpu()
{
addr_t stack = x86_get_stack_frame();
int32 cpu = (stack - sDoubleFaultStacks) / kDoubleFaultStackSize;
if (cpu < 0 || cpu >= smp_get_num_cpus())
return -1;
return cpu;
}
status_t
arch_cpu_preboot_init_percpu(kernel_args* args, int cpu)
{
if (cpu == 0) {
sDoubleFaultStacks = vm_allocate_early(args,
kDoubleFaultStackSize * smp_get_num_cpus(), 0, 0, 0);
}
if (smp_get_num_cpus() > 1) {
if (cpu == 0)
sTSCSyncRendezvous = smp_get_num_cpus() - 1;
while (sTSCSyncRendezvous != cpu) {
}
sTSCSyncRendezvous = cpu - 1;
while (sTSCSyncRendezvous != -1) {
}
x86_write_msr(IA32_MSR_TSC, 0);
}
x86_descriptors_preboot_init_percpu(args, cpu);
return B_OK;
}
static void
halt_idle(void)
{
asm("hlt");
}
static void
amdc1e_noarat_idle(void)
{
uint64 msr = x86_read_msr(K8_MSR_IPM);
if (msr & K8_CMPHALT)
x86_write_msr(K8_MSR_IPM, msr & ~K8_CMPHALT);
halt_idle();
}
static bool
detect_amdc1e_noarat()
{
cpu_ent* cpu = get_cpu_struct();
if (cpu->arch.vendor != VENDOR_AMD)
return false;
if (cpu->arch.feature[FEATURE_6_EAX] & IA32_FEATURE_ARAT)
return false;
uint32 family = cpu->arch.family + cpu->arch.extended_family;
uint32 model = (cpu->arch.extended_model << 4) | cpu->arch.model;
if (family >= 0x12) {
cpu->arch.feature[FEATURE_6_EAX] |= IA32_FEATURE_ARAT;
return false;
}
return (family > 0xf) || (family == 0xf && model > 0x40);
}
static void
init_tsc_with_cpuid(kernel_args* args, uint32* conversionFactor)
{
cpu_ent* cpu = get_cpu_struct();
if (cpu->arch.vendor != VENDOR_INTEL)
return;
uint32 model = (cpu->arch.extended_model << 4) | cpu->arch.model;
cpuid_info cpuid;
get_current_cpuid(&cpuid, 0, 0);
uint32 maxBasicLeaf = cpuid.eax_0.max_eax;
if (maxBasicLeaf < IA32_CPUID_LEAF_TSC)
return;
get_current_cpuid(&cpuid, IA32_CPUID_LEAF_TSC, 0);
if (cpuid.regs.eax == 0 || cpuid.regs.ebx == 0)
return;
uint32 khz = cpuid.regs.ecx / 1000;
uint32 denominator = cpuid.regs.eax;
uint32 numerator = cpuid.regs.ebx;
if (khz == 0 && model == 0x5f) {
khz = 25000;
}
if (khz == 0 && maxBasicLeaf >= IA32_CPUID_LEAF_FREQUENCY) {
get_current_cpuid(&cpuid, IA32_CPUID_LEAF_FREQUENCY, 0);
khz = cpuid.regs.eax * 1000 * denominator / numerator;
}
if (khz == 0)
return;
dprintf("CPU: using TSC frequency from CPUID\n");
*conversionFactor = (1000ULL << 32) / (khz * numerator / denominator);
args->arch_args.system_time_cv_factor = *conversionFactor;
}
static void
init_tsc_with_msr(kernel_args* args, uint32* conversionFactor)
{
cpu_ent* cpuEnt = get_cpu_struct();
if (cpuEnt->arch.vendor != VENDOR_AMD)
return;
uint32 family = cpuEnt->arch.family + cpuEnt->arch.extended_family;
if (family < 0x10)
return;
uint64 value = x86_read_msr(MSR_F10H_HWCR);
if ((value & HWCR_TSCFREQSEL) == 0)
return;
value = x86_read_msr(MSR_F10H_PSTATEDEF(0));
if ((value & PSTATEDEF_EN) == 0)
return;
if (family != 0x17 && family != 0x19)
return;
uint64 khz = 200 * 1000;
uint32 denominator = (value >> 8) & 0x3f;
if (denominator < 0x8 || denominator > 0x2c)
return;
if (denominator > 0x1a && (denominator % 2) == 1)
return;
uint32 numerator = value & 0xff;
if (numerator < 0x10)
return;
dprintf("CPU: using TSC frequency from MSR %" B_PRIu64 "\n", khz * numerator / denominator);
*conversionFactor = (1000ULL << 32) / (khz * numerator / denominator);
args->arch_args.system_time_cv_factor = *conversionFactor;
}
static void
init_tsc(kernel_args* args)
{
uint32 conversionFactor = args->arch_args.system_time_cv_factor;
init_tsc_with_cpuid(args, &conversionFactor);
init_tsc_with_msr(args, &conversionFactor);
uint64 conversionFactorNsecs = (uint64)conversionFactor * 1000;
#ifdef __x86_64__
__x86_setup_system_time((uint64)conversionFactor << 32,
conversionFactorNsecs);
#else
if (conversionFactorNsecs >> 32 != 0) {
__x86_setup_system_time(conversionFactor, conversionFactorNsecs >> 16,
true);
} else {
__x86_setup_system_time(conversionFactor, conversionFactorNsecs, false);
}
#endif
}
status_t
arch_cpu_init_percpu(kernel_args* args, int cpu)
{
detect_cpu(cpu, false);
load_microcode(cpu);
detect_cpu(cpu);
if (cpu == 0) {
init_tsc(args);
if (detect_amdc1e_noarat())
gCpuIdleFunc = amdc1e_noarat_idle;
else
gCpuIdleFunc = halt_idle;
}
if (x86_check_feature(IA32_FEATURE_MCE, FEATURE_COMMON))
x86_write_cr4(x86_read_cr4() | IA32_CR4_MCE);
cpu_ent* cpuEnt = get_cpu_struct();
if (cpu == 0) {
bool supportsPAT = x86_check_feature(IA32_FEATURE_PAT, FEATURE_COMMON);
bool brokenPAT = cpuEnt->arch.vendor == VENDOR_INTEL
&& cpuEnt->arch.extended_family == 0
&& cpuEnt->arch.extended_model == 0
&& ((cpuEnt->arch.family == 6 && cpuEnt->arch.model <= 13)
|| (cpuEnt->arch.family == 15 && cpuEnt->arch.model <= 6));
sUsePAT = supportsPAT && !brokenPAT
&& !get_safemode_boolean_early(args, B_SAFEMODE_DISABLE_PAT, false);
if (sUsePAT) {
dprintf("using PAT for memory type configuration\n");
} else {
dprintf("not using PAT for memory type configuration (%s)\n",
supportsPAT ? (brokenPAT ? "broken" : "disabled")
: "unsupported");
}
}
if (sUsePAT)
init_pat(cpu);
#ifdef __x86_64__
if (x86_check_feature(IA32_FEATURE_AMD_EXT_RDTSCP, FEATURE_EXT_AMD)
|| x86_check_feature(IA32_FEATURE_RDPID, FEATURE_7_ECX)) {
x86_write_msr(IA32_MSR_TSC_AUX, cpu);
}
if (cpuEnt->arch.vendor == VENDOR_AMD) {
uint32 family = cpuEnt->arch.family + cpuEnt->arch.extended_family;
if (family >= 0x10 && family != 0x11) {
uint64 value = x86_read_msr(MSR_F10H_DE_CFG);
if ((value & DE_CFG_SERIALIZE_LFENCE) == 0)
x86_write_msr(MSR_F10H_DE_CFG, value | DE_CFG_SERIALIZE_LFENCE);
}
}
#endif
if (x86_check_feature(IA32_FEATURE_APERFMPERF, FEATURE_6_ECX)) {
gCPU[cpu].arch.mperf_prev = x86_read_msr(IA32_MSR_MPERF);
gCPU[cpu].arch.aperf_prev = x86_read_msr(IA32_MSR_APERF);
gCPU[cpu].arch.frequency = 0;
gCPU[cpu].arch.perf_timestamp = 0;
}
return __x86_patch_errata_percpu(cpu);
}
status_t
arch_cpu_init(kernel_args* args)
{
if (args->ucode_data != NULL
&& args->ucode_data_size > 0) {
sUcodeData = args->ucode_data;
sUcodeDataSize = args->ucode_data_size;
} else {
dprintf("CPU: no microcode provided\n");
}
x86_descriptors_init(args);
return B_OK;
}
#ifdef __x86_64__
static void
enable_smap(void* dummy, int cpu)
{
x86_write_cr4(x86_read_cr4() | IA32_CR4_SMAP);
}
static void
enable_smep(void* dummy, int cpu)
{
x86_write_cr4(x86_read_cr4() | IA32_CR4_SMEP);
}
static void
enable_osxsave(void* dummy, int cpu)
{
x86_write_cr4(x86_read_cr4() | IA32_CR4_OSXSAVE);
}
static void
enable_xsavemask(void* dummy, int cpu)
{
xsetbv(0, gXsaveMask);
}
#endif
status_t
arch_cpu_init_post_vm(kernel_args* args)
{
area_id stacks = create_area("double fault stacks",
(void**)&sDoubleFaultStacks, B_EXACT_ADDRESS,
kDoubleFaultStackSize * smp_get_num_cpus(),
B_FULL_LOCK, B_KERNEL_READ_AREA | B_KERNEL_WRITE_AREA);
if (stacks < B_OK)
panic("failed to create double fault stacks area: %" B_PRId32, stacks);
X86PagingStructures* kernelPagingStructures
= static_cast<X86VMTranslationMap*>(
VMAddressSpace::Kernel()->TranslationMap())->PagingStructures();
for (uint32 i = 0; i < args->num_cpus; i++) {
gCPU[i].arch.active_paging_structures = kernelPagingStructures;
kernelPagingStructures->AddReference();
}
if (!apic_available())
x86_init_fpu();
#ifdef __x86_64__
if (x86_check_feature(IA32_FEATURE_SMEP, FEATURE_7_EBX)) {
if (!get_safemode_boolean(B_SAFEMODE_DISABLE_SMEP_SMAP, false)) {
dprintf("enable SMEP\n");
call_all_cpus_sync(&enable_smep, NULL);
} else
dprintf("SMEP disabled per safemode setting\n");
}
if (x86_check_feature(IA32_FEATURE_SMAP, FEATURE_7_EBX)) {
if (!get_safemode_boolean(B_SAFEMODE_DISABLE_SMEP_SMAP, false)) {
dprintf("enable SMAP\n");
call_all_cpus_sync(&enable_smap, NULL);
arch_altcodepatch_replace(ALTCODEPATCH_TAG_STAC, &_stac, 3);
arch_altcodepatch_replace(ALTCODEPATCH_TAG_CLAC, &_clac, 3);
} else
dprintf("SMAP disabled per safemode setting\n");
}
gHasXsave = x86_check_feature(IA32_FEATURE_EXT_XSAVE, FEATURE_EXT);
if (gHasXsave) {
gHasXsavec = x86_check_feature(IA32_FEATURE_XSAVEC,
FEATURE_D_1_EAX);
call_all_cpus_sync(&enable_osxsave, NULL);
gXsaveMask = IA32_XCR0_X87 | IA32_XCR0_SSE;
cpuid_info cpuid;
get_current_cpuid(&cpuid, IA32_CPUID_LEAF_XSTATE, 0);
gXsaveMask |= (cpuid.regs.eax & IA32_XCR0_AVX);
call_all_cpus_sync(&enable_xsavemask, NULL);
get_current_cpuid(&cpuid, IA32_CPUID_LEAF_XSTATE, 0);
gFPUSaveLength = cpuid.regs.ebx;
if (gFPUSaveLength > sizeof(((struct arch_thread *)0)->user_fpu_state))
gFPUSaveLength = 832;
arch_altcodepatch_replace(ALTCODEPATCH_TAG_XSAVE,
gHasXsavec ? &_xsavec : &_xsave, 4);
arch_altcodepatch_replace(ALTCODEPATCH_TAG_XRSTOR,
&_xrstor, 4);
dprintf("enable %s 0x%" B_PRIx64 " %" B_PRId64 "\n",
gHasXsavec ? "XSAVEC" : "XSAVE", gXsaveMask, gFPUSaveLength);
}
#endif
return B_OK;
}
status_t
arch_cpu_init_post_modules(kernel_args* args)
{
void* cookie = open_module_list("cpu");
while (true) {
char name[B_FILE_NAME_LENGTH];
size_t nameLength = sizeof(name);
if (read_next_module_name(cookie, name, &nameLength) != B_OK
|| get_module(name, (module_info**)&sCpuModule) == B_OK)
break;
}
close_module_list(cookie);
if (x86_count_mtrrs() > 0) {
sCpuRendezvous = sCpuRendezvous2 = 0;
call_all_cpus(&init_mtrrs, NULL);
}
size_t threadExitLen = (addr_t)x86_end_userspace_thread_exit
- (addr_t)x86_userspace_thread_exit;
addr_t threadExitPosition = fill_commpage_entry(
COMMPAGE_ENTRY_X86_THREAD_EXIT, (const void*)x86_userspace_thread_exit,
threadExitLen);
image_id image = get_commpage_image();
elf_add_memory_image_symbol(image, "commpage_thread_exit",
threadExitPosition, threadExitLen, B_SYMBOL_TYPE_TEXT);
return B_OK;
}
void
arch_cpu_user_TLB_invalidate(void)
{
x86_write_cr3(x86_read_cr3());
}
void
arch_cpu_global_TLB_invalidate(void)
{
uint32 flags = x86_read_cr4();
if (flags & IA32_CR4_GLOBAL_PAGES) {
x86_write_cr4(flags & ~IA32_CR4_GLOBAL_PAGES);
x86_write_cr4(flags | IA32_CR4_GLOBAL_PAGES);
} else {
cpu_status state = disable_interrupts();
arch_cpu_user_TLB_invalidate();
restore_interrupts(state);
}
}
void
arch_cpu_invalidate_TLB_range(addr_t start, addr_t end)
{
int32 num_pages = end / B_PAGE_SIZE - start / B_PAGE_SIZE;
while (num_pages-- >= 0) {
invalidate_TLB(start);
start += B_PAGE_SIZE;
}
}
void
arch_cpu_invalidate_TLB_list(addr_t pages[], int num_pages)
{
int i;
for (i = 0; i < num_pages; i++) {
invalidate_TLB(pages[i]);
}
}
status_t
arch_cpu_shutdown(bool rebootSystem)
{
if (acpi_shutdown(rebootSystem) == B_OK)
return B_OK;
if (!rebootSystem) {
#ifndef __x86_64__
return apm_shutdown();
#else
return B_NOT_SUPPORTED;
#endif
}
cpu_status state = disable_interrupts();
out8(0xfe, 0x64);
snooze(500000);
x86_reboot();
restore_interrupts(state);
return B_ERROR;
}
void
arch_cpu_sync_icache(void* address, size_t length)
{
}