* Copyright 2003-2008, Marcus Overhagen. All rights reserved.
* Copyright 2005-2008, Axel Dörfler, axeld@pinc-software.de. All rights reserved.
*
* Distributed under the terms of the MIT License.
*/
#include <string.h>
#include <KernelExport.h>
#define __HAIKU_PCI_BUS_MANAGER_TESTING 1
#include <PCI.h>
#include <arch/generic/msi.h>
#if defined(__i386__) || defined(__x86_64__)
#include <arch/x86/msi.h>
#endif
#include "util/kernel_cpp.h"
#include "pci_fixup.h"
#include "pci_info.h"
#include "pci_private.h"
#include "pci.h"
#define TRACE_CAP(x...) dprintf(x)
#define FLOW(x...)
PCI *gPCI;
long
pci_get_nth_pci_info(long index, pci_info *outInfo)
{
return gPCI->GetNthInfo(index, outInfo);
}
uint32
pci_read_config(uint8 virtualBus, uint8 device, uint8 function, uint16 offset,
uint8 size)
{
uint8 bus;
uint8 domain;
uint32 value;
if (gPCI->ResolveVirtualBus(virtualBus, &domain, &bus) != B_OK)
return 0xffffffff;
if (gPCI->ReadConfig(domain, bus, device, function, offset, size,
&value) != B_OK)
return 0xffffffff;
return value;
}
void
pci_write_config(uint8 virtualBus, uint8 device, uint8 function, uint16 offset,
uint8 size, uint32 value)
{
uint8 bus;
uint8 domain;
if (gPCI->ResolveVirtualBus(virtualBus, &domain, &bus) != B_OK)
return;
gPCI->WriteConfig(domain, bus, device, function, offset, size, value);
}
phys_addr_t
pci_ram_address(phys_addr_t childAdr)
{
phys_addr_t hostAdr = 0;
#if defined(__i386__) || defined(__x86_64__)
hostAdr = childAdr;
#else
uint8 domain;
pci_resource_range range;
if (gPCI->LookupRange(B_IO_MEMORY, childAdr, domain, range) >= B_OK)
hostAdr = childAdr - range.pci_address + range.host_address;
#endif
return hostAdr;
}
status_t
pci_find_capability(uint8 virtualBus, uint8 device, uint8 function,
uint8 capID, uint8 *offset)
{
uint8 bus;
uint8 domain;
if (gPCI->ResolveVirtualBus(virtualBus, &domain, &bus) != B_OK)
return B_ERROR;
return gPCI->FindCapability(domain, bus, device, function, capID, offset);
}
status_t
pci_find_extended_capability(uint8 virtualBus, uint8 device, uint8 function,
uint16 capID, uint16 *offset)
{
uint8 bus;
uint8 domain;
if (gPCI->ResolveVirtualBus(virtualBus, &domain, &bus) != B_OK)
return B_ERROR;
return gPCI->FindExtendedCapability(domain, bus, device, function, capID,
offset);
}
status_t
pci_reserve_device(uchar virtualBus, uchar device, uchar function,
const char *driverName, void *nodeCookie)
{
status_t status;
uint8 bus;
uint8 domain;
TRACE(("pci_reserve_device(%d, %d, %d, %s)\n", virtualBus, device, function,
driverName));
* we add 2 nodes to the PCI devices, one with constant attributes,
* so adding for another driver fails, and a subnode with the
* driver-provided informations.
*/
if (gPCI->ResolveVirtualBus(virtualBus, &domain, &bus) != B_OK)
return B_ERROR;
device_attr matchThis[] = {
{B_DEVICE_BUS, B_STRING_TYPE, {.string = "pci"}},
{B_PCI_DEVICE_DOMAIN, B_UINT8_TYPE, {.ui8 = domain}},
{B_PCI_DEVICE_BUS, B_UINT8_TYPE, {.ui8 = bus}},
{B_PCI_DEVICE_DEVICE, B_UINT8_TYPE, {.ui8 = device}},
{B_PCI_DEVICE_FUNCTION, B_UINT8_TYPE, {.ui8 = function}},
{NULL}
};
device_attr legacyAttrs[] = {
{B_DEVICE_BUS, B_STRING_TYPE, {.string = "legacy_driver"}},
{B_DEVICE_PRETTY_NAME, B_STRING_TYPE, {.string = "Legacy Driver Reservation"}},
{NULL}
};
device_attr drvAttrs[] = {
{B_DEVICE_BUS, B_STRING_TYPE, {.string = "legacy_driver"}},
{B_DEVICE_PRETTY_NAME, B_STRING_TYPE, {.string = driverName}},
{"legacy_driver", B_STRING_TYPE, {.string = driverName}},
{"legacy_driver_cookie", B_UINT64_TYPE, {.ui64 = (uint64)nodeCookie}},
{NULL}
};
device_node *node, *legacy;
status = B_DEVICE_NOT_FOUND;
device_node *root_pci_node = gPCI->_GetDomainData(domain)->root_node;
node = NULL;
if (gDeviceManager->get_next_child_node(root_pci_node,
matchThis, &node) < B_OK) {
goto err1;
}
status = gDeviceManager->register_node(node, PCI_LEGACY_DRIVER_MODULE_NAME,
legacyAttrs, NULL, &legacy);
if (status < B_OK)
goto err2;
status = gDeviceManager->register_node(legacy, PCI_LEGACY_DRIVER_MODULE_NAME,
drvAttrs, NULL, NULL);
if (status < B_OK)
goto err3;
gDeviceManager->put_node(node);
return B_OK;
err3:
gDeviceManager->unregister_node(legacy);
err2:
gDeviceManager->put_node(node);
err1:
TRACE(("pci_reserve_device for driver %s failed: %s\n", driverName,
strerror(status)));
return status;
}
status_t
pci_unreserve_device(uchar virtualBus, uchar device, uchar function,
const char *driverName, void *nodeCookie)
{
status_t status;
uint8 bus;
uint8 domain;
TRACE(("pci_unreserve_device(%d, %d, %d, %s)\n", virtualBus, device,
function, driverName));
if (gPCI->ResolveVirtualBus(virtualBus, &domain, &bus) != B_OK)
return B_ERROR;
device_attr matchThis[] = {
{B_DEVICE_BUS, B_STRING_TYPE, {.string = "pci"}},
{B_PCI_DEVICE_DOMAIN, B_UINT8_TYPE, {.ui8 = domain}},
{B_PCI_DEVICE_BUS, B_UINT8_TYPE, {.ui8 = bus}},
{B_PCI_DEVICE_DEVICE, B_UINT8_TYPE, {.ui8 = device}},
{B_PCI_DEVICE_FUNCTION, B_UINT8_TYPE, {.ui8 = function}},
{NULL}
};
device_attr legacyAttrs[] = {
{B_DEVICE_BUS, B_STRING_TYPE, {.string = "legacy_driver"}},
{B_DEVICE_PRETTY_NAME, B_STRING_TYPE, {.string = "Legacy Driver Reservation"}},
{NULL}
};
device_attr drvAttrs[] = {
{B_DEVICE_BUS, B_STRING_TYPE, {.string = "legacy_driver"}},
{"legacy_driver", B_STRING_TYPE, {.string = driverName}},
{"legacy_driver_cookie", B_UINT64_TYPE, {.ui64 = (uint64)nodeCookie}},
{NULL}
};
device_node *pci, *node, *legacy, *drv;
status = B_DEVICE_NOT_FOUND;
pci = gPCI->_GetDomainData(domain)->root_node;
node = NULL;
if (gDeviceManager->get_next_child_node(pci, matchThis, &node) < B_OK)
goto err1;
legacy = NULL;
if (gDeviceManager->get_next_child_node(node, legacyAttrs, &legacy) < B_OK)
goto err2;
drv = NULL;
if (gDeviceManager->get_next_child_node(legacy, drvAttrs, &drv) < B_OK)
goto err3;
gDeviceManager->put_node(drv);
status = gDeviceManager->unregister_node(drv);
gDeviceManager->put_node(legacy);
status = gDeviceManager->unregister_node(legacy);
gDeviceManager->put_node(node);
return B_OK;
err3:
gDeviceManager->put_node(legacy);
err2:
gDeviceManager->put_node(node);
err1:
TRACE(("pci_unreserve_device for driver %s failed: %s\n", driverName,
strerror(status)));
return status;
}
status_t
pci_update_interrupt_line(uchar virtualBus, uchar device, uchar function,
uchar newInterruptLineValue)
{
uint8 bus;
uint8 domain;
if (gPCI->ResolveVirtualBus(virtualBus, &domain, &bus) != B_OK)
return B_ERROR;
return gPCI->UpdateInterruptLine(domain, bus, device, function,
newInterruptLineValue);
}
status_t
pci_get_powerstate(uchar virtualBus, uint8 device, uint8 function, uint8* state)
{
uint8 bus;
uint8 domain;
if (gPCI->ResolveVirtualBus(virtualBus, &domain, &bus) != B_OK)
return B_ERROR;
return gPCI->GetPowerstate(domain, bus, device, function, state);
}
status_t
pci_set_powerstate(uchar virtualBus, uint8 device, uint8 function, uint8 newState)
{
uint8 bus;
uint8 domain;
if (gPCI->ResolveVirtualBus(virtualBus, &domain, &bus) != B_OK)
return B_ERROR;
return gPCI->SetPowerstate(domain, bus, device, function, newState);
}
void
__pci_resolve_virtual_bus(uint8 virtualBus, uint8 *domain, uint8 *bus)
{
if (gPCI->ResolveVirtualBus(virtualBus, domain, bus) < B_OK)
panic("ResolveVirtualBus failed");
}
static int
display_io(int argc, char **argv)
{
int32 displayWidth;
int32 itemSize;
int32 num = 1;
int address;
int i = 1, j;
switch (argc) {
case 3:
num = atoi(argv[2]);
case 2:
address = strtoul(argv[1], NULL, 0);
break;
default:
kprintf("usage: %s <address> [num]\n", argv[0]);
return 0;
}
if (strcmp(argv[0], "inb") == 0 || strcmp(argv[0], "in8") == 0) {
itemSize = 1;
displayWidth = 16;
} else if (strcmp(argv[0], "ins") == 0 || strcmp(argv[0], "in16") == 0) {
itemSize = 2;
displayWidth = 8;
} else if (strcmp(argv[0], "inw") == 0 || strcmp(argv[0], "in32") == 0) {
itemSize = 4;
displayWidth = 4;
} else {
kprintf("display_io called in an invalid way!\n");
return 0;
}
for (i = 0; i < num; i++) {
if ((i % displayWidth) == 0) {
int32 displayed = min_c(displayWidth, (num-i)) * itemSize;
if (i != 0)
kprintf("\n");
kprintf("[0x%" B_PRIx32 "] ", address + i * itemSize);
if (num > displayWidth) {
for (j = displayed; j < displayWidth * itemSize; j++)
kprintf(" ");
}
kprintf(" ");
}
switch (itemSize) {
case 1:
kprintf(" %02" B_PRIx8, pci_read_io_8(address + i * itemSize));
break;
case 2:
kprintf(" %04" B_PRIx16, pci_read_io_16(address + i * itemSize));
break;
case 4:
kprintf(" %08" B_PRIx32, pci_read_io_32(address + i * itemSize));
break;
}
}
kprintf("\n");
return 0;
}
static int
write_io(int argc, char **argv)
{
int32 itemSize;
uint32 value;
int address;
int i = 1;
if (argc < 3) {
kprintf("usage: %s <address> <value> [value [...]]\n", argv[0]);
return 0;
}
address = strtoul(argv[1], NULL, 0);
if (strcmp(argv[0], "outb") == 0 || strcmp(argv[0], "out8") == 0) {
itemSize = 1;
} else if (strcmp(argv[0], "outs") == 0 || strcmp(argv[0], "out16") == 0) {
itemSize = 2;
} else if (strcmp(argv[0], "outw") == 0 || strcmp(argv[0], "out32") == 0) {
itemSize = 4;
} else {
kprintf("write_io called in an invalid way!\n");
return 0;
}
argv += 2;
argc -= 2;
for (i = 0; i < argc; i++) {
value = strtoul(argv[i], NULL, 0);
switch (itemSize) {
case 1:
pci_write_io_8(address + i * itemSize, value);
break;
case 2:
pci_write_io_16(address + i * itemSize, value);
break;
case 4:
pci_write_io_32(address + i * itemSize, value);
break;
}
}
return 0;
}
static int
pcistatus(int argc, char **argv)
{
for (uint32 domain = 0; ; domain++) {
domain_data *data = gPCI->_GetDomainData(domain);
if (data == NULL)
break;
gPCI->ClearDeviceStatus(data->bus, true);
}
return 0;
}
static int
pcirefresh(int argc, char **argv)
{
gPCI->RefreshDeviceInfo();
pci_print_info();
return 0;
}
status_t
pci_init(void)
{
gPCI = new PCI;
add_debugger_command("inw", &display_io, "dump io words (32-bit)");
add_debugger_command("in32", &display_io, "dump io words (32-bit)");
add_debugger_command("ins", &display_io, "dump io shorts (16-bit)");
add_debugger_command("in16", &display_io, "dump io shorts (16-bit)");
add_debugger_command("inb", &display_io, "dump io bytes (8-bit)");
add_debugger_command("in8", &display_io, "dump io bytes (8-bit)");
add_debugger_command("outw", &write_io, "write io words (32-bit)");
add_debugger_command("out32", &write_io, "write io words (32-bit)");
add_debugger_command("outs", &write_io, "write io shorts (16-bit)");
add_debugger_command("out16", &write_io, "write io shorts (16-bit)");
add_debugger_command("outb", &write_io, "write io bytes (8-bit)");
add_debugger_command("out8", &write_io, "write io bytes (8-bit)");
add_debugger_command("pcistatus", &pcistatus, "dump and clear pci device status registers");
add_debugger_command("pcirefresh", &pcirefresh, "refresh and print all pci_info");
return B_OK;
}
void
pci_uninit(void)
{
delete gPCI;
remove_debugger_command("outw", &write_io);
remove_debugger_command("out32", &write_io);
remove_debugger_command("outs", &write_io);
remove_debugger_command("out16", &write_io);
remove_debugger_command("outb", &write_io);
remove_debugger_command("out8", &write_io);
remove_debugger_command("inw", &display_io);
remove_debugger_command("in32", &display_io);
remove_debugger_command("ins", &display_io);
remove_debugger_command("in16", &display_io);
remove_debugger_command("inb", &display_io);
remove_debugger_command("in8", &display_io);
remove_debugger_command("pcistatus", &pcistatus);
remove_debugger_command("pcirefresh", &pcirefresh);
}
PCI::PCI()
:
fDomainCount(0),
fBusEnumeration(false),
fVirtualBusMap(),
fNextVirtualBus(0)
{
#if defined(__POWERPC__) || defined(__M68K__)
fBusEnumeration = true;
#endif
}
void
PCI::InitBus(PCIBus *bus)
{
if (fBusEnumeration) {
_EnumerateBus(bus->domain, 0);
}
if (1) {
_FixupDevices(bus->domain, 0);
}
_DiscoverBus(bus);
_ConfigureBridges(bus);
ClearDeviceStatus(bus, false);
_RefreshDeviceInfo(bus);
}
PCI::~PCI()
{
}
status_t
PCI::_CreateVirtualBus(uint8 domain, uint8 bus, uint8 *virtualBus)
{
#if defined(__i386__) || defined(__x86_64__)
if (domain)
panic("PCI::CreateVirtualBus domain != 0");
*virtualBus = bus;
return B_OK;
#else
if (fNextVirtualBus > 0xff)
panic("PCI::CreateVirtualBus: virtual bus number space exhausted");
uint16 value = domain << 8 | bus;
for (VirtualBusMap::Iterator it = fVirtualBusMap.Begin();
it != fVirtualBusMap.End(); ++it) {
if (it->Value() == value) {
*virtualBus = it->Key();
FLOW("PCI::CreateVirtualBus: domain %d, bus %d already in map => "
"virtualBus %d\n", domain, bus, *virtualBus);
return B_OK;
}
}
*virtualBus = fNextVirtualBus++;
FLOW("PCI::CreateVirtualBus: domain %d, bus %d => virtualBus %d\n", domain,
bus, *virtualBus);
return fVirtualBusMap.Insert(*virtualBus, value);
#endif
}
status_t
PCI::ResolveVirtualBus(uint8 virtualBus, uint8 *domain, uint8 *bus)
{
#if defined(__i386__) || defined(__x86_64__)
*bus = virtualBus;
*domain = 0;
return B_OK;
#else
if (virtualBus >= fNextVirtualBus)
return B_ERROR;
uint16 value = fVirtualBusMap.Get(virtualBus);
*domain = value >> 8;
*bus = value & 0xff;
return B_OK;
#endif
}
status_t
PCI::AddController(pci_controller_module_info *controller,
void *controllerCookie, device_node *rootNode, domain_data **domainData)
{
if (fDomainCount == MAX_PCI_DOMAINS)
return B_ERROR;
uint8 domain = fDomainCount;
domain_data& data = fDomainData[domain];
data.controller = controller;
data.controller_cookie = controllerCookie;
data.root_node = rootNode;
data.bus = new(std::nothrow) PCIBus {.domain = domain};
if (data.bus == NULL)
return B_NO_MEMORY;
data.max_bus_devices = -1;
fDomainCount++;
InitDomainData(data);
InitBus(data.bus);
if (data.controller->finalize != NULL)
data.controller->finalize(data.controller_cookie);
_RefreshDeviceInfo(data.bus);
pci_print_info();
*domainData = &data;
return B_OK;
}
status_t
PCI::LookupRange(uint32 type, phys_addr_t pciAddr,
uint8 &domain, pci_resource_range &range, uint8 **mappedAdr)
{
for (uint8 curDomain = 0; curDomain < fDomainCount; curDomain++) {
const auto &ranges = fDomainData[curDomain].ranges;
for (int32 i = 0; i < ranges.Count(); i++) {
const pci_resource_range curRange = ranges[i];
if (curRange.type != type)
continue;
if (pciAddr >= curRange.pci_address
&& pciAddr < (curRange.pci_address + curRange.size)) {
domain = curDomain;
range = curRange;
#if !(defined(__i386__) || defined(__x86_64__))
if (type == B_IO_PORT && mappedAdr != NULL)
*mappedAdr = fDomainData[curDomain].io_port_adr;
#endif
return B_OK;
}
}
}
return B_ENTRY_NOT_FOUND;
}
void
PCI::InitDomainData(domain_data &data)
{
int32 count;
status_t status;
pci_controller_module_info *ctrl = data.controller;
void *ctrlCookie = data.controller_cookie;
status = ctrl->get_max_bus_devices(ctrlCookie, &count);
data.max_bus_devices = (status == B_OK) ? count : 0;
pci_resource_range range;
for (uint32 j = 0; ctrl->get_range(ctrlCookie, j, &range) >= B_OK; j++)
data.ranges.Add(range);
#if !(defined(__i386__) || defined(__x86_64__))
for (int32 i = 0; i < data.ranges.Count(); i++) {
pci_resource_range &ioPortRange = data.ranges[i];
if (ioPortRange.type != B_IO_PORT)
continue;
if (ioPortRange.size > 0) {
data.io_port_area = map_physical_memory("PCI IO Ports",
ioPortRange.host_address, ioPortRange.size, B_ANY_KERNEL_ADDRESS,
B_KERNEL_READ_AREA | B_KERNEL_WRITE_AREA, (void **)&data.io_port_adr);
if (data.io_port_area < B_OK)
data.io_port_adr = NULL;
break;
}
}
#endif
}
domain_data *
PCI::_GetDomainData(uint8 domain)
{
if (domain >= fDomainCount)
return NULL;
return &fDomainData[domain];
}
inline int
PCI::_NumFunctions(uint8 domain, uint8 bus, uint8 device)
{
uint8 type = ReadConfig(domain, bus, device,
0, PCI_header_type, 1);
return (type & PCI_multifunction) != 0 ? 8 : 1;
}
status_t
PCI::GetNthInfo(long index, pci_info *outInfo)
{
long currentIndex = 0;
for (uint32 domain = 0; domain < fDomainCount; domain++) {
if (_GetNthInfo(fDomainData[domain].bus, ¤tIndex, index, outInfo) >= B_OK)
return B_OK;
}
return B_ERROR;
}
status_t
PCI::_GetNthInfo(PCIBus *bus, long *currentIndex, long wantIndex,
pci_info *outInfo)
{
PCIDev *dev = bus->child;
while (dev) {
if (*currentIndex == wantIndex) {
*outInfo = dev->info;
return B_OK;
}
*currentIndex += 1;
if (dev->child && B_OK == _GetNthInfo(dev->child, currentIndex,
wantIndex, outInfo))
return B_OK;
dev = dev->next;
}
return B_ERROR;
}
void
PCI::_EnumerateBus(uint8 domain, uint8 bus, uint8 *subordinateBus)
{
TRACE(("PCI: EnumerateBus: domain %u, bus %u\n", domain, bus));
int maxBusDevices = _GetDomainData(domain)->max_bus_devices;
for (int dev = 0; dev < maxBusDevices; dev++) {
uint16 vendor_id = ReadConfig(domain, bus, dev, 0, PCI_vendor_id, 2);
if (vendor_id == 0xffff)
continue;
int numFunctions = _NumFunctions(domain, bus, dev);
for (int function = 0; function < numFunctions; function++) {
uint16 device_id = ReadConfig(domain, bus, dev, function,
PCI_device_id, 2);
if (device_id == 0xffff)
continue;
uint8 baseClass = ReadConfig(domain, bus, dev, function,
PCI_class_base, 1);
uint8 subClass = ReadConfig(domain, bus, dev, function,
PCI_class_sub, 1);
if (baseClass != PCI_bridge || subClass != PCI_pci)
continue;
uint8 headerType = ReadConfig(domain, bus, dev, function,
PCI_header_type, 1) & PCI_header_type_mask;
if (headerType != PCI_header_type_PCI_to_PCI_bridge)
continue;
TRACE(("PCI: found PCI-PCI bridge: domain %u, bus %u, dev %u, func %u\n",
domain, bus, dev, function));
TRACE(("PCI: original settings: pcicmd %04" B_PRIx32 ", primary-bus "
"%" B_PRIu32 ", secondary-bus %" B_PRIu32 ", subordinate-bus "
"%" B_PRIu32 "\n",
ReadConfig(domain, bus, dev, function, PCI_command, 2),
ReadConfig(domain, bus, dev, function, PCI_primary_bus, 1),
ReadConfig(domain, bus, dev, function, PCI_secondary_bus, 1),
ReadConfig(domain, bus, dev, function, PCI_subordinate_bus, 1)));
uint16 pcicmd;
pcicmd = ReadConfig(domain, bus, dev, function, PCI_command, 2);
pcicmd &= ~(PCI_command_io | PCI_command_memory
| PCI_command_master);
WriteConfig(domain, bus, dev, function, PCI_command, 2, pcicmd);
WriteConfig(domain, bus, dev, function, PCI_primary_bus, 1, 0);
WriteConfig(domain, bus, dev, function, PCI_secondary_bus, 1, 0);
WriteConfig(domain, bus, dev, function, PCI_subordinate_bus, 1, 0);
TRACE(("PCI: disabled settings: pcicmd %04" B_PRIx32 ", primary-bus "
"%" B_PRIu32 ", secondary-bus %" B_PRIu32 ", subordinate-bus "
"%" B_PRIu32 "\n",
ReadConfig(domain, bus, dev, function, PCI_command, 2),
ReadConfig(domain, bus, dev, function, PCI_primary_bus, 1),
ReadConfig(domain, bus, dev, function, PCI_secondary_bus, 1),
ReadConfig(domain, bus, dev, function, PCI_subordinate_bus, 1)));
}
}
uint8 lastUsedBusNumber = bus;
for (int dev = 0; dev < maxBusDevices; dev++) {
uint16 vendor_id = ReadConfig(domain, bus, dev, 0, PCI_vendor_id, 2);
if (vendor_id == 0xffff)
continue;
int numFunctions = _NumFunctions(domain, bus, dev);
for (int function = 0; function < numFunctions; function++) {
uint16 deviceID = ReadConfig(domain, bus, dev, function,
PCI_device_id, 2);
if (deviceID == 0xffff)
continue;
uint8 baseClass = ReadConfig(domain, bus, dev, function,
PCI_class_base, 1);
uint8 subClass = ReadConfig(domain, bus, dev, function,
PCI_class_sub, 1);
if (baseClass != PCI_bridge || subClass != PCI_pci)
continue;
uint8 headerType = ReadConfig(domain, bus, dev, function,
PCI_header_type, 1) & PCI_header_type_mask;
if (headerType != PCI_header_type_PCI_to_PCI_bridge)
continue;
TRACE(("PCI: configuring PCI-PCI bridge: domain %u, bus %u, dev %u, func %u\n",
domain, bus, dev, function));
WriteConfig(domain, bus, dev, function, PCI_primary_bus, 1, bus);
WriteConfig(domain, bus, dev, function, PCI_secondary_bus, 1,
lastUsedBusNumber + 1);
WriteConfig(domain, bus, dev, function, PCI_subordinate_bus, 1, 255);
uint16 pcicmd;
pcicmd = ReadConfig(domain, bus, dev, function, PCI_command, 2);
pcicmd |= PCI_command_io | PCI_command_memory | PCI_command_master;
WriteConfig(domain, bus, dev, function, PCI_command, 2, pcicmd);
TRACE(("PCI: probing settings: pcicmd %04" B_PRIx32 ", primary-bus "
"%" B_PRIu32 ", secondary-bus %" B_PRIu32 ", subordinate-bus "
"%" B_PRIu32 "\n",
ReadConfig(domain, bus, dev, function, PCI_command, 2),
ReadConfig(domain, bus, dev, function, PCI_primary_bus, 1),
ReadConfig(domain, bus, dev, function, PCI_secondary_bus, 1),
ReadConfig(domain, bus, dev, function, PCI_subordinate_bus, 1)));
_EnumerateBus(domain, lastUsedBusNumber + 1, &lastUsedBusNumber);
WriteConfig(domain, bus, dev, function, PCI_subordinate_bus, 1, lastUsedBusNumber);
TRACE(("PCI: configured settings: pcicmd %04" B_PRIx32 ", primary-bus "
"%" B_PRIu32 ", secondary-bus %" B_PRIu32 ", subordinate-bus "
"%" B_PRIu32 "\n",
ReadConfig(domain, bus, dev, function, PCI_command, 2),
ReadConfig(domain, bus, dev, function, PCI_primary_bus, 1),
ReadConfig(domain, bus, dev, function, PCI_secondary_bus, 1),
ReadConfig(domain, bus, dev, function, PCI_subordinate_bus, 1)));
}
}
if (subordinateBus)
*subordinateBus = lastUsedBusNumber;
TRACE(("PCI: EnumerateBus done: domain %u, bus %u, last used bus number %u\n", domain, bus, lastUsedBusNumber));
}
void
PCI::_FixupDevices(uint8 domain, uint8 bus)
{
FLOW("PCI: FixupDevices domain %u, bus %u\n", domain, bus);
int maxBusDevices = _GetDomainData(domain)->max_bus_devices;
static int recursed = 0;
if (recursed++ > 10) {
dprintf("PCI: FixupDevices: too many recursions (buggy chipset?)\n");
recursed--;
return;
}
for (int dev = 0; dev < maxBusDevices; dev++) {
uint16 vendorId = ReadConfig(domain, bus, dev, 0, PCI_vendor_id, 2);
if (vendorId == 0xffff)
continue;
int numFunctions = _NumFunctions(domain, bus, dev);
for (int function = 0; function < numFunctions; function++) {
uint16 deviceId = ReadConfig(domain, bus, dev, function,
PCI_device_id, 2);
if (deviceId == 0xffff)
continue;
pci_fixup_device(this, domain, bus, dev, function);
uint8 baseClass = ReadConfig(domain, bus, dev, function,
PCI_class_base, 1);
if (baseClass != PCI_bridge)
continue;
uint8 subClass = ReadConfig(domain, bus, dev, function,
PCI_class_sub, 1);
if (subClass != PCI_pci)
continue;
uint8 headerType = ReadConfig(domain, bus, dev, function,
PCI_header_type, 1) & PCI_header_type_mask;
if (headerType != PCI_header_type_PCI_to_PCI_bridge) {
dprintf("PCI: dom %u, bus %u, dev %2u, func %u, PCI bridge"
" class but wrong header type 0x%02x, ignoring.\n",
domain, bus, dev, function, headerType);
continue;
}
int busBehindBridge = ReadConfig(domain, bus, dev, function,
PCI_secondary_bus, 1);
TRACE(("PCI: FixupDevices: checking bus %d behind %04x:%04x\n",
busBehindBridge, vendorId, deviceId));
_FixupDevices(domain, busBehindBridge);
}
}
recursed--;
}
void
PCI::_ConfigureBridges(PCIBus *bus)
{
for (PCIDev *dev = bus->child; dev; dev = dev->next) {
if (dev->info.class_base == PCI_bridge
&& dev->info.class_sub == PCI_pci
&& (dev->info.header_type & PCI_header_type_mask)
== PCI_header_type_PCI_to_PCI_bridge) {
uint16 bridgeControlOld = ReadConfig(dev->domain, dev->bus,
dev->device, dev->function, PCI_bridge_control, 2);
uint16 bridgeControlNew = bridgeControlOld;
bridgeControlNew |= PCI_bridge_parity_error_response
| PCI_bridge_serr | PCI_bridge_master_abort
| PCI_bridge_discard_timer_status
| PCI_bridge_discard_timer_serr;
bridgeControlNew &= ~(PCI_bridge_primary_discard_timeout
| PCI_bridge_secondary_discard_timeout);
WriteConfig(dev->domain, dev->bus, dev->device, dev->function,
PCI_bridge_control, 2, bridgeControlNew);
bridgeControlNew = ReadConfig(dev->domain, dev->bus, dev->device,
dev->function, PCI_bridge_control, 2);
dprintf("PCI: dom %u, bus %u, dev %2u, func %u, changed PCI bridge"
" control from 0x%04x to 0x%04x\n", dev->domain, dev->bus,
dev->device, dev->function, bridgeControlOld,
bridgeControlNew);
}
if (dev->child)
_ConfigureBridges(dev->child);
}
}
void
PCI::ClearDeviceStatus(PCIBus *bus, bool dumpStatus)
{
for (PCIDev *dev = bus->child; dev; dev = dev->next) {
uint16 status = ReadConfig(dev->domain, dev->bus, dev->device,
dev->function, PCI_status, 2);
WriteConfig(dev->domain, dev->bus, dev->device, dev->function,
PCI_status, 2, status);
if (dumpStatus) {
kprintf("domain %u, bus %u, dev %2u, func %u, PCI device status "
"0x%04x\n", dev->domain, dev->bus, dev->device, dev->function,
status);
if (status & PCI_status_parity_error_detected)
kprintf(" Detected Parity Error\n");
if (status & PCI_status_serr_signalled)
kprintf(" Signalled System Error\n");
if (status & PCI_status_master_abort_received)
kprintf(" Received Master-Abort\n");
if (status & PCI_status_target_abort_received)
kprintf(" Received Target-Abort\n");
if (status & PCI_status_target_abort_signalled)
kprintf(" Signalled Target-Abort\n");
if (status & PCI_status_parity_signalled)
kprintf(" Master Data Parity Error\n");
}
if (dev->info.class_base == PCI_bridge
&& dev->info.class_sub == PCI_pci) {
uint16 secondaryStatus = ReadConfig(dev->domain, dev->bus,
dev->device, dev->function, PCI_secondary_status, 2);
WriteConfig(dev->domain, dev->bus, dev->device, dev->function,
PCI_secondary_status, 2, secondaryStatus);
if (dumpStatus) {
kprintf("domain %u, bus %u, dev %2u, func %u, PCI bridge "
"secondary status 0x%04x\n", dev->domain, dev->bus,
dev->device, dev->function, secondaryStatus);
if (secondaryStatus & PCI_status_parity_error_detected)
kprintf(" Detected Parity Error\n");
if (secondaryStatus & PCI_status_serr_signalled)
kprintf(" Received System Error\n");
if (secondaryStatus & PCI_status_master_abort_received)
kprintf(" Received Master-Abort\n");
if (secondaryStatus & PCI_status_target_abort_received)
kprintf(" Received Target-Abort\n");
if (secondaryStatus & PCI_status_target_abort_signalled)
kprintf(" Signalled Target-Abort\n");
if (secondaryStatus & PCI_status_parity_signalled)
kprintf(" Data Parity Reported\n");
}
uint16 bridgeControl = ReadConfig(dev->domain, dev->bus,
dev->device, dev->function, PCI_bridge_control, 2);
WriteConfig(dev->domain, dev->bus, dev->device, dev->function,
PCI_bridge_control, 2, bridgeControl);
if (dumpStatus) {
kprintf("domain %u, bus %u, dev %2u, func %u, PCI bridge "
"control 0x%04x\n", dev->domain, dev->bus, dev->device,
dev->function, bridgeControl);
if (bridgeControl & PCI_bridge_discard_timer_status) {
kprintf(" bridge-control: Discard Timer Error\n");
}
}
}
if (dev->child)
ClearDeviceStatus(dev->child, dumpStatus);
}
}
void
PCI::_DiscoverBus(PCIBus *bus)
{
FLOW("PCI: DiscoverBus, domain %u, bus %u\n", bus->domain, bus->bus);
int maxBusDevices = _GetDomainData(bus->domain)->max_bus_devices;
static int recursed = 0;
if (recursed++ > 10) {
dprintf("PCI: DiscoverBus: too many recursions (buggy chipset?)\n");
recursed--;
return;
}
for (int dev = 0; dev < maxBusDevices; dev++) {
uint16 vendorID = ReadConfig(bus->domain, bus->bus, dev, 0,
PCI_vendor_id, 2);
if (vendorID == 0xffff)
continue;
int numFunctions = _NumFunctions(bus->domain, bus->bus, dev);
for (int function = 0; function < numFunctions; function++)
_DiscoverDevice(bus, dev, function);
}
recursed--;
}
void
PCI::_DiscoverDevice(PCIBus *bus, uint8 dev, uint8 function)
{
FLOW("PCI: DiscoverDevice, domain %u, bus %u, dev %u, func %u\n", bus->domain, bus->bus, dev, function);
uint16 deviceID = ReadConfig(bus->domain, bus->bus, dev, function,
PCI_device_id, 2);
if (deviceID == 0xffff)
return;
PCIDev *newDev = _CreateDevice(bus, dev, function);
uint8 baseClass = ReadConfig(bus->domain, bus->bus, dev, function,
PCI_class_base, 1);
uint8 subClass = ReadConfig(bus->domain, bus->bus, dev, function,
PCI_class_sub, 1);
uint8 headerType = ReadConfig(bus->domain, bus->bus, dev, function,
PCI_header_type, 1) & PCI_header_type_mask;
if (baseClass == PCI_bridge && subClass == PCI_pci
&& headerType == PCI_header_type_PCI_to_PCI_bridge) {
uint8 secondaryBus = ReadConfig(bus->domain, bus->bus, dev, function,
PCI_secondary_bus, 1);
PCIBus *newBus = _CreateBus(newDev, bus->domain, secondaryBus);
_DiscoverBus(newBus);
}
}
PCIBus *
PCI::_CreateBus(PCIDev *parent, uint8 domain, uint8 bus)
{
PCIBus *newBus = new(std::nothrow) PCIBus;
if (newBus == NULL)
return NULL;
newBus->parent = parent;
newBus->child = NULL;
newBus->domain = domain;
newBus->bus = bus;
parent->child = newBus;
return newBus;
}
PCIDev *
PCI::_CreateDevice(PCIBus *parent, uint8 device, uint8 function)
{
FLOW("PCI: CreateDevice, domain %u, bus %u, dev %u, func %u:\n", parent->domain,
parent->bus, device, function);
PCIDev *newDev = new(std::nothrow) PCIDev;
if (newDev == NULL)
return NULL;
newDev->next = NULL;
newDev->parent = parent;
newDev->child = NULL;
newDev->domain = parent->domain;
newDev->bus = parent->bus;
newDev->device = device;
newDev->function = function;
memset(&newDev->info, 0, sizeof(newDev->info));
_ReadBasicInfo(newDev);
FLOW("PCI: CreateDevice, vendor 0x%04x, device 0x%04x, class_base 0x%02x, "
"class_sub 0x%02x\n", newDev->info.vendor_id, newDev->info.device_id,
newDev->info.class_base, newDev->info.class_sub);
if (parent->child == NULL) {
parent->child = newDev;
} else {
PCIDev *sub = parent->child;
while (sub->next)
sub = sub->next;
sub->next = newDev;
}
return newDev;
}
uint64
PCI::_BarSize(uint64 bits)
{
if (!bits)
return 0;
uint64 size = 1;
while ((bits & size) == 0)
size <<= 1;
return size;
}
size_t
PCI::_GetBarInfo(PCIDev *dev, uint8 offset, uint32 &_ramAddress,
uint32 &_pciAddress, uint32 &_size, uint8 &flags, uint32 *_highRAMAddress,
uint32 *_highPCIAddress, uint32 *_highSize)
{
uint64 pciAddress = ReadConfig(dev->domain, dev->bus, dev->device,
dev->function, offset, 4);
WriteConfig(dev->domain, dev->bus, dev->device, dev->function, offset, 4,
0xffffffff);
uint64 size = ReadConfig(dev->domain, dev->bus, dev->device, dev->function,
offset, 4);
WriteConfig(dev->domain, dev->bus, dev->device, dev->function, offset, 4,
pciAddress);
uint32 mask = PCI_address_memory_32_mask;
bool is64bit = false;
if ((pciAddress & PCI_address_space) != 0)
mask = PCI_address_io_mask;
else {
is64bit = (pciAddress & PCI_address_type) == PCI_address_type_64;
if (is64bit && _highRAMAddress != NULL) {
uint64 highPCIAddress = ReadConfig(dev->domain, dev->bus,
dev->device, dev->function, offset + 4, 4);
WriteConfig(dev->domain, dev->bus, dev->device, dev->function,
offset + 4, 4, 0xffffffff);
uint64 highSize = ReadConfig(dev->domain, dev->bus, dev->device,
dev->function, offset + 4, 4);
WriteConfig(dev->domain, dev->bus, dev->device, dev->function,
offset + 4, 4, highPCIAddress);
pciAddress |= highPCIAddress << 32;
size |= highSize << 32;
}
}
flags = (uint32)pciAddress & ~mask;
pciAddress &= ((uint64)0xffffffff << 32) | mask;
size &= ((uint64)0xffffffff << 32) | mask;
size = _BarSize(size);
uint64 ramAddress = pci_ram_address(pciAddress);
_ramAddress = ramAddress;
_pciAddress = pciAddress;
_size = size;
if (!is64bit)
return 1;
if (_highRAMAddress == NULL || _highPCIAddress == NULL || _highSize == NULL)
panic("64 bit PCI BAR but no space to store high values\n");
else {
*_highRAMAddress = ramAddress >> 32;
*_highPCIAddress = pciAddress >> 32;
*_highSize = size >> 32;
}
return 2;
}
void
PCI::_GetRomBarInfo(PCIDev *dev, uint8 offset, uint32 &_address, uint32 *_size,
uint8 *_flags)
{
uint32 oldValue = ReadConfig(dev->domain, dev->bus, dev->device, dev->function,
offset, 4);
WriteConfig(dev->domain, dev->bus, dev->device, dev->function, offset, 4,
0xfffffffe);
uint32 newValue = ReadConfig(dev->domain, dev->bus, dev->device, dev->function,
offset, 4);
WriteConfig(dev->domain, dev->bus, dev->device, dev->function, offset, 4,
oldValue);
_address = oldValue & PCI_rom_address_mask;
if (_size != NULL)
*_size = _BarSize(newValue & PCI_rom_address_mask);
if (_flags != NULL)
*_flags = newValue & 0xf;
}
void
PCI::_ReadBasicInfo(PCIDev *dev)
{
uint8 virtualBus;
if (_CreateVirtualBus(dev->domain, dev->bus, &virtualBus) != B_OK) {
dprintf("PCI: CreateVirtualBus failed, domain %u, bus %u\n", dev->domain, dev->bus);
return;
}
dev->info.vendor_id = ReadConfig(dev->domain, dev->bus, dev->device,
dev->function, PCI_vendor_id, 2);
dev->info.device_id = ReadConfig(dev->domain, dev->bus, dev->device,
dev->function, PCI_device_id, 2);
dev->info.bus = virtualBus;
dev->info.device = dev->device;
dev->info.function = dev->function;
dev->info.revision = ReadConfig(dev->domain, dev->bus, dev->device,
dev->function, PCI_revision, 1);
dev->info.class_api = ReadConfig(dev->domain, dev->bus, dev->device,
dev->function, PCI_class_api, 1);
dev->info.class_sub = ReadConfig(dev->domain, dev->bus, dev->device,
dev->function, PCI_class_sub, 1);
dev->info.class_base = ReadConfig(dev->domain, dev->bus, dev->device,
dev->function, PCI_class_base, 1);
dev->info.line_size = ReadConfig(dev->domain, dev->bus, dev->device,
dev->function, PCI_line_size, 1);
dev->info.latency = ReadConfig(dev->domain, dev->bus, dev->device,
dev->function, PCI_latency, 1);
dev->info.header_type = ReadConfig(dev->domain, dev->bus, dev->device,
dev->function, PCI_header_type, 1);
dev->info.bist = ReadConfig(dev->domain, dev->bus, dev->device,
dev->function, PCI_bist, 1);
dev->info.reserved = 0;
}
void
PCI::_ReadHeaderInfo(PCIDev *dev)
{
switch (dev->info.header_type & PCI_header_type_mask) {
case PCI_header_type_generic:
{
uint16 pcicmd = ReadConfig(dev->domain, dev->bus, dev->device,
dev->function, PCI_command, 2);
WriteConfig(dev->domain, dev->bus, dev->device, dev->function,
PCI_command, 2,
pcicmd & ~(PCI_command_io | PCI_command_memory));
_GetRomBarInfo(dev, PCI_rom_base, dev->info.u.h0.rom_base_pci,
&dev->info.u.h0.rom_size);
for (int i = 0; i < 6;) {
i += _GetBarInfo(dev, PCI_base_registers + 4 * i,
dev->info.u.h0.base_registers[i],
dev->info.u.h0.base_registers_pci[i],
dev->info.u.h0.base_register_sizes[i],
dev->info.u.h0.base_register_flags[i],
i < 5 ? &dev->info.u.h0.base_registers[i + 1] : NULL,
i < 5 ? &dev->info.u.h0.base_registers_pci[i + 1] : NULL,
i < 5 ? &dev->info.u.h0.base_register_sizes[i + 1] : NULL);
}
WriteConfig(dev->domain, dev->bus, dev->device, dev->function,
PCI_command, 2, pcicmd);
dev->info.u.h0.rom_base = (uint32)pci_ram_address(
dev->info.u.h0.rom_base_pci);
dev->info.u.h0.cardbus_cis = ReadConfig(dev->domain, dev->bus,
dev->device, dev->function, PCI_cardbus_cis, 4);
dev->info.u.h0.subsystem_id = ReadConfig(dev->domain, dev->bus,
dev->device, dev->function, PCI_subsystem_id, 2);
dev->info.u.h0.subsystem_vendor_id = ReadConfig(dev->domain,
dev->bus, dev->device, dev->function, PCI_subsystem_vendor_id,
2);
dev->info.u.h0.interrupt_line = ReadConfig(dev->domain, dev->bus,
dev->device, dev->function, PCI_interrupt_line, 1);
dev->info.u.h0.interrupt_pin = ReadConfig(dev->domain, dev->bus,
dev->device, dev->function, PCI_interrupt_pin, 1);
dev->info.u.h0.min_grant = ReadConfig(dev->domain, dev->bus,
dev->device, dev->function, PCI_min_grant, 1);
dev->info.u.h0.max_latency = ReadConfig(dev->domain, dev->bus,
dev->device, dev->function, PCI_max_latency, 1);
break;
}
case PCI_header_type_PCI_to_PCI_bridge:
{
uint16 pcicmd = ReadConfig(dev->domain, dev->bus, dev->device,
dev->function, PCI_command, 2);
WriteConfig(dev->domain, dev->bus, dev->device, dev->function,
PCI_command, 2,
pcicmd & ~(PCI_command_io | PCI_command_memory));
_GetRomBarInfo(dev, PCI_bridge_rom_base,
dev->info.u.h1.rom_base_pci);
for (int i = 0; i < 2;) {
i += _GetBarInfo(dev, PCI_base_registers + 4 * i,
dev->info.u.h1.base_registers[i],
dev->info.u.h1.base_registers_pci[i],
dev->info.u.h1.base_register_sizes[i],
dev->info.u.h1.base_register_flags[i],
i < 1 ? &dev->info.u.h1.base_registers[i + 1] : NULL,
i < 1 ? &dev->info.u.h1.base_registers_pci[i + 1] : NULL,
i < 1 ? &dev->info.u.h1.base_register_sizes[i + 1] : NULL);
}
WriteConfig(dev->domain, dev->bus, dev->device, dev->function,
PCI_command, 2, pcicmd);
dev->info.u.h1.rom_base = (uint32)pci_ram_address(
dev->info.u.h1.rom_base_pci);
dev->info.u.h1.primary_bus = ReadConfig(dev->domain, dev->bus,
dev->device, dev->function, PCI_primary_bus, 1);
dev->info.u.h1.secondary_bus = ReadConfig(dev->domain, dev->bus,
dev->device, dev->function, PCI_secondary_bus, 1);
dev->info.u.h1.subordinate_bus = ReadConfig(dev->domain,
dev->bus, dev->device, dev->function, PCI_subordinate_bus, 1);
dev->info.u.h1.secondary_latency = ReadConfig(dev->domain,
dev->bus, dev->device, dev->function, PCI_secondary_latency, 1);
dev->info.u.h1.io_base = ReadConfig(dev->domain, dev->bus,
dev->device, dev->function, PCI_io_base, 1);
dev->info.u.h1.io_limit = ReadConfig(dev->domain, dev->bus,
dev->device, dev->function, PCI_io_limit, 1);
dev->info.u.h1.secondary_status = ReadConfig(dev->domain,
dev->bus, dev->device, dev->function, PCI_secondary_status, 2);
dev->info.u.h1.memory_base = ReadConfig(dev->domain, dev->bus,
dev->device, dev->function, PCI_memory_base, 2);
dev->info.u.h1.memory_limit = ReadConfig(dev->domain, dev->bus,
dev->device, dev->function, PCI_memory_limit, 2);
dev->info.u.h1.prefetchable_memory_base = ReadConfig(dev->domain,
dev->bus, dev->device, dev->function,
PCI_prefetchable_memory_base, 2);
dev->info.u.h1.prefetchable_memory_limit = ReadConfig(
dev->domain, dev->bus, dev->device, dev->function,
PCI_prefetchable_memory_limit, 2);
dev->info.u.h1.prefetchable_memory_base_upper32 = ReadConfig(
dev->domain, dev->bus, dev->device, dev->function,
PCI_prefetchable_memory_base_upper32, 4);
dev->info.u.h1.prefetchable_memory_limit_upper32 = ReadConfig(
dev->domain, dev->bus, dev->device, dev->function,
PCI_prefetchable_memory_limit_upper32, 4);
dev->info.u.h1.io_base_upper16 = ReadConfig(dev->domain,
dev->bus, dev->device, dev->function, PCI_io_base_upper16, 2);
dev->info.u.h1.io_limit_upper16 = ReadConfig(dev->domain,
dev->bus, dev->device, dev->function, PCI_io_limit_upper16, 2);
dev->info.u.h1.interrupt_line = ReadConfig(dev->domain, dev->bus,
dev->device, dev->function, PCI_interrupt_line, 1);
dev->info.u.h1.interrupt_pin = ReadConfig(dev->domain, dev->bus,
dev->device, dev->function, PCI_interrupt_pin, 1);
dev->info.u.h1.bridge_control = ReadConfig(dev->domain, dev->bus,
dev->device, dev->function, PCI_bridge_control, 2);
dev->info.u.h1.subsystem_id = ReadConfig(dev->domain, dev->bus,
dev->device, dev->function, PCI_sub_device_id_1, 2);
dev->info.u.h1.subsystem_vendor_id = ReadConfig(dev->domain,
dev->bus, dev->device, dev->function, PCI_sub_vendor_id_1, 2);
break;
}
case PCI_header_type_cardbus:
{
dev->info.u.h2.subsystem_id = ReadConfig(dev->domain, dev->bus,
dev->device, dev->function, PCI_sub_device_id_2, 2);
dev->info.u.h2.subsystem_vendor_id = ReadConfig(dev->domain,
dev->bus, dev->device, dev->function, PCI_sub_vendor_id_2, 2);
dev->info.u.h2.primary_bus = ReadConfig(dev->domain, dev->bus,
dev->device, dev->function, PCI_primary_bus_2, 1);
dev->info.u.h2.secondary_bus = ReadConfig(dev->domain, dev->bus,
dev->device, dev->function, PCI_secondary_bus_2, 1);
dev->info.u.h2.subordinate_bus = ReadConfig(dev->domain,
dev->bus, dev->device, dev->function, PCI_subordinate_bus_2, 1);
dev->info.u.h2.secondary_latency = ReadConfig(dev->domain,
dev->bus, dev->device, dev->function, PCI_secondary_latency_2, 1);
dev->info.u.h2.reserved = 0;
dev->info.u.h2.memory_base = ReadConfig(dev->domain, dev->bus,
dev->device, dev->function, PCI_memory_base0_2, 4);
dev->info.u.h2.memory_limit = ReadConfig(dev->domain, dev->bus,
dev->device, dev->function, PCI_memory_limit0_2, 4);
dev->info.u.h2.memory_base_upper32 = ReadConfig(dev->domain,
dev->bus, dev->device, dev->function, PCI_memory_base1_2, 4);
dev->info.u.h2.memory_limit_upper32 = ReadConfig(dev->domain,
dev->bus, dev->device, dev->function, PCI_memory_limit1_2, 4);
dev->info.u.h2.io_base = ReadConfig(dev->domain, dev->bus,
dev->device, dev->function, PCI_io_base0_2, 4);
dev->info.u.h2.io_limit = ReadConfig(dev->domain, dev->bus,
dev->device, dev->function, PCI_io_limit0_2, 4);
dev->info.u.h2.io_base_upper32 = ReadConfig(dev->domain,
dev->bus, dev->device, dev->function, PCI_io_base1_2, 4);
dev->info.u.h2.io_limit_upper32 = ReadConfig(dev->domain,
dev->bus, dev->device, dev->function, PCI_io_limit1_2, 4);
dev->info.u.h2.secondary_status = ReadConfig(dev->domain,
dev->bus, dev->device, dev->function, PCI_secondary_status_2, 2);
dev->info.u.h2.bridge_control = ReadConfig(dev->domain,
dev->bus, dev->device, dev->function, PCI_bridge_control_2, 2);
break;
}
default:
TRACE(("PCI: Header type unknown (0x%02x)\n", dev->info.header_type));
break;
}
}
void
PCI::RefreshDeviceInfo()
{
for (uint32 domain = 0; domain < fDomainCount; domain++)
_RefreshDeviceInfo(fDomainData[domain].bus);
}
void
PCI::_RefreshDeviceInfo(PCIBus *bus)
{
for (PCIDev *dev = bus->child; dev; dev = dev->next) {
_ReadBasicInfo(dev);
_ReadHeaderInfo(dev);
_ReadMSIInfo(dev);
_ReadMSIXInfo(dev);
_ReadHtMappingInfo(dev);
if (dev->child)
_RefreshDeviceInfo(dev->child);
}
}
status_t
PCI::ReadConfig(uint8 domain, uint8 bus, uint8 device, uint8 function,
uint16 offset, uint8 size, uint32 *value)
{
domain_data *info = _GetDomainData(domain);
if (!info)
return B_ERROR;
if (device > (info->max_bus_devices - 1)
|| function > 7
|| (size != 1 && size != 2 && size != 4)
|| (size == 2 && (offset & 3) == 3)
|| (size == 4 && (offset & 3) != 0)) {
dprintf("PCI: can't read config for domain %d, %u:%u:%u, offset %u, size %u\n",
domain, bus, device, function, offset, size);
return B_ERROR;
}
status_t status = (*info->controller->read_pci_config)(info->controller_cookie,
bus, device, function, offset, size, value);
if (status != B_OK) {
dprintf("PCI: failed to read config for domain %d, %u:%u:%u, offset %u, size %u\n",
domain, bus, device, function, offset, size);
}
return status;
}
uint32
PCI::ReadConfig(uint8 domain, uint8 bus, uint8 device, uint8 function,
uint16 offset, uint8 size)
{
uint32 value;
if (ReadConfig(domain, bus, device, function, offset, size, &value)
!= B_OK)
return 0xffffffff;
return value;
}
uint32
PCI::ReadConfig(PCIDev *device, uint16 offset, uint8 size)
{
uint32 value;
if (ReadConfig(device->domain, device->bus, device->device,
device->function, offset, size, &value) != B_OK)
return 0xffffffff;
return value;
}
status_t
PCI::WriteConfig(uint8 domain, uint8 bus, uint8 device, uint8 function,
uint16 offset, uint8 size, uint32 value)
{
domain_data *info = _GetDomainData(domain);
if (!info)
return B_ERROR;
if (device > (info->max_bus_devices - 1)
|| function > 7
|| (size != 1 && size != 2 && size != 4)
|| (size == 2 && (offset & 3) == 3)
|| (size == 4 && (offset & 3) != 0)) {
dprintf("PCI: can't write config for domain %d, bus %u, device %u, function %u, offset %u, size %u\n",
domain, bus, device, function, offset, size);
return B_ERROR;
}
return (*info->controller->write_pci_config)(info->controller_cookie, bus,
device, function, offset, size, value);
}
status_t
PCI::WriteConfig(PCIDev *device, uint16 offset, uint8 size, uint32 value)
{
return WriteConfig(device->domain, device->bus, device->device,
device->function, offset, size, value);
}
status_t
PCI::FindCapability(uint8 domain, uint8 bus, uint8 device, uint8 function,
uint8 capID, uint8 *offset)
{
uint16 status = ReadConfig(domain, bus, device, function, PCI_status, 2);
if (!(status & PCI_status_capabilities)) {
FLOW("PCI: find_pci_capability ERROR %u:%u:%u capability %#02x "
"not supported\n", bus, device, function, capID);
return B_ERROR;
}
uint8 headerType = ReadConfig(domain, bus, device, function,
PCI_header_type, 1);
uint8 capPointer;
switch (headerType & PCI_header_type_mask) {
case PCI_header_type_generic:
case PCI_header_type_PCI_to_PCI_bridge:
capPointer = PCI_capabilities_ptr;
break;
case PCI_header_type_cardbus:
capPointer = PCI_capabilities_ptr_2;
break;
default:
TRACE_CAP("PCI: find_pci_capability ERROR %u:%u:%u capability "
"%#02x unknown header type\n", bus, device, function, capID);
return B_ERROR;
}
capPointer = ReadConfig(domain, bus, device, function, capPointer, 1);
capPointer &= ~3;
if (capPointer == 0) {
TRACE_CAP("PCI: find_pci_capability ERROR %u:%u:%u capability %#02x "
"empty list\n", bus, device, function, capID);
return B_NAME_NOT_FOUND;
}
for (int i = 0; i < 48; i++) {
if (ReadConfig(domain, bus, device, function, capPointer, 1) == capID) {
if (offset != NULL)
*offset = capPointer;
return B_OK;
}
capPointer = ReadConfig(domain, bus, device, function, capPointer + 1,
1);
capPointer &= ~3;
if (capPointer == 0)
return B_NAME_NOT_FOUND;
}
TRACE_CAP("PCI: find_pci_capability ERROR %u:%u:%u capability %#02x circular list\n", bus, device, function, capID);
return B_ERROR;
}
status_t
PCI::FindCapability(PCIDev *device, uint8 capID, uint8 *offset)
{
return FindCapability(device->domain, device->bus, device->device,
device->function, capID, offset);
}
status_t
PCI::FindExtendedCapability(uint8 domain, uint8 bus, uint8 device,
uint8 function, uint16 capID, uint16 *offset)
{
if (FindCapability(domain, bus, device, function, PCI_cap_id_pcie)
!= B_OK) {
FLOW("PCI:FindExtendedCapability ERROR %u:%u:%u capability %#02x "
"not supported\n", bus, device, function, capID);
return B_ERROR;
}
uint16 capPointer = PCI_extended_capability;
uint32 capability = ReadConfig(domain, bus, device, function,
capPointer, 4);
if (capability == 0 || capability == 0xffffffff)
return B_NAME_NOT_FOUND;
for (int i = 0; i < 48; i++) {
if (PCI_extcap_id(capability) == capID) {
if (offset != NULL)
*offset = capPointer;
return B_OK;
}
capPointer = PCI_extcap_next_ptr(capability) & ~3;
if (capPointer < PCI_extended_capability)
return B_NAME_NOT_FOUND;
capability = ReadConfig(domain, bus, device, function,
capPointer, 4);
}
TRACE_CAP("PCI:FindExtendedCapability ERROR %u:%u:%u capability %#04x "
"circular list\n", bus, device, function, capID);
return B_ERROR;
}
status_t
PCI::FindExtendedCapability(PCIDev *device, uint16 capID, uint16 *offset)
{
return FindExtendedCapability(device->domain, device->bus, device->device,
device->function, capID, offset);
}
status_t
PCI::FindHTCapability(uint8 domain, uint8 bus, uint8 device,
uint8 function, uint16 capID, uint8 *offset)
{
uint8 capPointer;
if (offset != NULL && *offset != 0) {
capPointer = ReadConfig(domain, bus, device, function, *offset + 1,
1);
} else if (FindCapability(domain, bus, device, function, PCI_cap_id_ht,
&capPointer) != B_OK) {
FLOW("PCI:FindHTCapability ERROR %u:%u:%u capability %#02x "
"not supported\n", bus, device, function, capID);
return B_NAME_NOT_FOUND;
}
uint16 mask = PCI_ht_command_cap_mask_5_bits;
if (capID == PCI_ht_command_cap_slave || capID == PCI_ht_command_cap_host)
mask = PCI_ht_command_cap_mask_3_bits;
for (int i = 0; i < 48; i++) {
capPointer &= ~3;
if (capPointer == 0)
return B_NAME_NOT_FOUND;
uint8 capability = ReadConfig(domain, bus, device, function,
capPointer, 1);
if (capability == PCI_cap_id_ht) {
if ((ReadConfig(domain, bus, device, function,
capPointer + PCI_ht_command, 2) & mask) == capID) {
if (offset != NULL)
*offset = capPointer;
return B_OK;
}
}
capPointer = ReadConfig(domain, bus, device, function, capPointer + 1,
1);
}
TRACE_CAP("PCI:FindHTCapability ERROR %u:%u:%u capability %#04x "
"circular list\n", bus, device, function, capID);
return B_ERROR;
}
status_t
PCI::FindHTCapability(PCIDev *device, uint16 capID, uint8 *offset)
{
return FindHTCapability(device->domain, device->bus, device->device,
device->function, capID, offset);
}
PCIDev *
PCI::FindDevice(uint8 domain, uint8 bus, uint8 device, uint8 function)
{
if (domain >= fDomainCount)
return NULL;
return _FindDevice(fDomainData[domain].bus, domain, bus, device, function);
}
PCIDev *
PCI::_FindDevice(PCIBus *current, uint8 domain, uint8 bus, uint8 device,
uint8 function)
{
if (current->domain == domain) {
for (PCIDev *child = current->child; child != NULL;
child = child->next) {
if (child->bus == bus && child->device == device
&& child->function == function)
return child;
if (child->child != NULL) {
PCIDev *found = _FindDevice(child->child, domain, bus, device,
function);
if (found != NULL)
return found;
}
}
}
return NULL;
}
status_t
PCI::UpdateInterruptLine(uint8 domain, uint8 bus, uint8 _device, uint8 function,
uint8 newInterruptLineValue)
{
PCIDev *device = FindDevice(domain, bus, _device, function);
if (device == NULL)
return B_ERROR;
pci_info &info = device->info;
switch (info.header_type & PCI_header_type_mask) {
case PCI_header_type_generic:
info.u.h0.interrupt_line = newInterruptLineValue;
break;
case PCI_header_type_PCI_to_PCI_bridge:
info.u.h1.interrupt_line = newInterruptLineValue;
break;
default:
return B_ERROR;
}
return WriteConfig(device, PCI_interrupt_line, 1, newInterruptLineValue);
}
uint8
PCI::GetPowerstate(PCIDev *device)
{
uint8 capabilityOffset;
status_t res = FindCapability(device, PCI_cap_id_pm, &capabilityOffset);
if (res == B_OK) {
uint32 state = ReadConfig(device, capabilityOffset + PCI_pm_status, 2);
return (state & PCI_pm_mask);
}
return PCI_pm_state_d0;
}
void
PCI::SetPowerstate(PCIDev *device, uint8 newState)
{
uint8 capabilityOffset;
status_t res = FindCapability(device, PCI_cap_id_pm, &capabilityOffset);
if (res == B_OK) {
uint32 state = ReadConfig(device, capabilityOffset + PCI_pm_status, 2);
if ((state & PCI_pm_mask) != newState) {
WriteConfig(device, capabilityOffset + PCI_pm_status, 2,
(state & ~PCI_pm_mask) | newState);
if ((state & PCI_pm_mask) == PCI_pm_state_d3)
snooze(10);
}
}
}
status_t
PCI::GetPowerstate(uint8 domain, uint8 bus, uint8 _device, uint8 function,
uint8* state)
{
PCIDev *device = FindDevice(domain, bus, _device, function);
if (device == NULL)
return B_ERROR;
*state = GetPowerstate(device);
return B_OK;
}
status_t
PCI::SetPowerstate(uint8 domain, uint8 bus, uint8 _device, uint8 function,
uint8 newState)
{
PCIDev *device = FindDevice(domain, bus, _device, function);
if (device == NULL)
return B_ERROR;
SetPowerstate(device, newState);
return B_OK;
}
uint32
PCI::GetMSICount(PCIDev *device)
{
if (!msi_supported())
return 0;
msi_info *info = &device->msi;
if (!info->msi_capable)
return 0;
return info->message_count;
}
status_t
PCI::ConfigureMSI(PCIDev *device, uint32 count, uint32 *startVector)
{
if (!msi_supported())
return B_UNSUPPORTED;
if (count == 0 || startVector == NULL)
return B_BAD_VALUE;
msi_info *info = &device->msi;
if (!info->msi_capable)
return B_UNSUPPORTED;
if (count > 32 || count > info->message_count
|| ((count - 1) & count) != 0 ) {
return B_BAD_VALUE;
}
if (info->configured_count != 0)
return B_BUSY;
status_t result = msi_allocate_vectors(count, &info->start_vector,
&info->address_value, &info->data_value);
if (result != B_OK)
return result;
uint8 offset = info->capability_offset;
WriteConfig(device, offset + PCI_msi_address, 4,
info->address_value & 0xffffffff);
if (info->control_value & PCI_msi_control_64bit) {
WriteConfig(device, offset + PCI_msi_address_high, 4,
info->address_value >> 32);
WriteConfig(device, offset + PCI_msi_data_64bit, 2,
info->data_value);
} else
WriteConfig(device, offset + PCI_msi_data, 2, info->data_value);
info->control_value &= ~PCI_msi_control_mme_mask;
info->control_value |= (ffs(count) - 1) << 4;
WriteConfig(device, offset + PCI_msi_control, 2, info->control_value);
info->configured_count = count;
*startVector = info->start_vector;
return B_OK;
}
status_t
PCI::UnconfigureMSI(PCIDev *device)
{
if (!msi_supported())
return B_UNSUPPORTED;
status_t result = _UnconfigureMSIX(device);
if (result != B_UNSUPPORTED && result != B_NO_INIT)
return result;
msi_info *info = &device->msi;
if (!info->msi_capable)
return B_UNSUPPORTED;
if (info->configured_count == 0)
return B_NO_INIT;
msi_free_vectors(info->configured_count, info->start_vector);
info->control_value &= ~PCI_msi_control_mme_mask;
WriteConfig(device, info->capability_offset + PCI_msi_control, 2,
info->control_value);
info->configured_count = 0;
info->address_value = 0;
info->data_value = 0;
return B_OK;
}
status_t
PCI::EnableMSI(PCIDev *device)
{
if (!msi_supported())
return B_UNSUPPORTED;
msi_info *info = &device->msi;
if (!info->msi_capable)
return B_UNSUPPORTED;
if (info->configured_count == 0)
return B_NO_INIT;
WriteConfig(device, PCI_command, 2,
ReadConfig(device, PCI_command, 2) | PCI_command_int_disable);
info->control_value |= PCI_msi_control_enable;
WriteConfig(device, info->capability_offset + PCI_msi_control, 2,
info->control_value);
_HtMSIMap(device, info->address_value);
dprintf("msi enabled: 0x%04" B_PRIx32 "\n",
ReadConfig(device, info->capability_offset + PCI_msi_control, 2));
return B_OK;
}
status_t
PCI::DisableMSI(PCIDev *device)
{
if (!msi_supported())
return B_UNSUPPORTED;
status_t result = _DisableMSIX(device);
if (result != B_UNSUPPORTED && result != B_NO_INIT)
return result;
msi_info *info = &device->msi;
if (!info->msi_capable)
return B_UNSUPPORTED;
if (info->configured_count == 0)
return B_NO_INIT;
_HtMSIMap(device, 0);
info->control_value &= ~PCI_msi_control_enable;
WriteConfig(device, info->capability_offset + PCI_msi_control, 2,
info->control_value);
return B_OK;
}
uint32
PCI::GetMSIXCount(PCIDev *device)
{
if (!msi_supported())
return 0;
msix_info *info = &device->msix;
if (!info->msix_capable)
return 0;
return info->message_count;
}
status_t
PCI::ConfigureMSIX(PCIDev *device, uint32 count, uint32 *startVector)
{
if (!msi_supported())
return B_UNSUPPORTED;
if (count == 0 || startVector == NULL)
return B_BAD_VALUE;
msix_info *info = &device->msix;
if (!info->msix_capable)
return B_UNSUPPORTED;
if (count > 32 || count > info->message_count) {
return B_BAD_VALUE;
}
if (info->configured_count != 0)
return B_BUSY;
size_t tableSize = info->message_count * 16;
addr_t address;
phys_addr_t barAddr = device->info.u.h0.base_registers[info->table_bar];
uchar flags = device->info.u.h0.base_register_flags[info->table_bar];
if ((flags & PCI_address_type) == PCI_address_type_64) {
barAddr |= (uint64)device->info.u.h0.base_registers[
info->table_bar + 1] << 32;
}
area_id area = map_physical_memory("msi table map",
barAddr, tableSize + info->table_offset,
B_ANY_KERNEL_ADDRESS, B_KERNEL_READ_AREA | B_KERNEL_WRITE_AREA,
(void**)&address);
if (area < 0)
return area;
info->table_area_id = area;
info->table_address = address + info->table_offset;
if (info->table_bar != info->pba_bar) {
barAddr = device->info.u.h0.base_registers[info->pba_bar];
flags = device->info.u.h0.base_register_flags[info->pba_bar];
if ((flags & PCI_address_type) == PCI_address_type_64) {
barAddr |= (uint64)device->info.u.h0.base_registers[
info->pba_bar + 1] << 32;
}
area = map_physical_memory("msi pba map",
barAddr, tableSize + info->pba_offset,
B_ANY_KERNEL_ADDRESS, B_KERNEL_READ_AREA | B_KERNEL_WRITE_AREA,
(void**)&address);
if (area < 0) {
delete_area(info->table_area_id);
info->table_area_id = -1;
return area;
}
info->pba_area_id = area;
} else
info->pba_area_id = -1;
info->pba_address = address + info->pba_offset;
status_t result = msi_allocate_vectors(count, &info->start_vector,
&info->address_value, &info->data_value);
if (result != B_OK) {
delete_area(info->pba_area_id);
delete_area(info->table_area_id);
info->pba_area_id = -1;
info->table_area_id = -1;
return result;
}
WriteConfig(device, PCI_command, 2,
ReadConfig(device, PCI_command, 2) | PCI_command_memory);
uint32 data_value = info->data_value;
for (uint32 index = 0; index < count; index++) {
volatile uint32 *entry = (uint32*)(info->table_address + 16 * index);
*(entry + 3) |= PCI_msix_vctrl_mask;
*entry++ = info->address_value & 0xffffffff;
*entry++ = info->address_value >> 32;
*entry++ = data_value++;
*entry &= ~PCI_msix_vctrl_mask;
}
info->configured_count = count;
*startVector = info->start_vector;
dprintf("msix configured for %" B_PRIu32 " vectors\n", count);
return B_OK;
}
status_t
PCI::EnableMSIX(PCIDev *device)
{
if (!msi_supported())
return B_UNSUPPORTED;
msix_info *info = &device->msix;
if (!info->msix_capable)
return B_UNSUPPORTED;
if (info->configured_count == 0)
return B_NO_INIT;
WriteConfig(device, PCI_command, 2,
ReadConfig(device, PCI_command, 2) | PCI_command_int_disable);
info->control_value |= PCI_msix_control_enable;
WriteConfig(device, info->capability_offset + PCI_msix_control, 2,
info->control_value);
_HtMSIMap(device, info->address_value);
dprintf("msi-x enabled: 0x%04" B_PRIx32 "\n",
ReadConfig(device, info->capability_offset + PCI_msix_control, 2));
return B_OK;
}
void
PCI::_HtMSIMap(PCIDev *device, uint64 address)
{
ht_mapping_info *info = &device->ht_mapping;
if (!info->ht_mapping_capable)
return;
bool enabled = (info->control_value & PCI_ht_command_msi_enable) != 0;
if ((address != 0) != enabled) {
if (enabled) {
info->control_value &= ~PCI_ht_command_msi_enable;
} else {
if ((address >> 20) != (info->address_value >> 20))
return;
dprintf("ht msi mapping enabled\n");
info->control_value |= PCI_ht_command_msi_enable;
}
WriteConfig(device, info->capability_offset + PCI_ht_command, 2,
info->control_value);
}
}
void
PCI::_ReadMSIInfo(PCIDev *device)
{
if (!msi_supported())
return;
msi_info *info = &device->msi;
info->msi_capable = false;
status_t result = FindCapability(device->domain, device->bus,
device->device, device->function, PCI_cap_id_msi,
&info->capability_offset);
if (result != B_OK)
return;
info->msi_capable = true;
info->control_value = ReadConfig(device->domain, device->bus,
device->device, device->function,
info->capability_offset + PCI_msi_control, 2);
info->message_count
= 1 << ((info->control_value & PCI_msi_control_mmc_mask) >> 1);
info->configured_count = 0;
info->data_value = 0;
info->address_value = 0;
}
void
PCI::_ReadMSIXInfo(PCIDev *device)
{
if (!msi_supported())
return;
msix_info *info = &device->msix;
info->msix_capable = false;
status_t result = FindCapability(device->domain, device->bus,
device->device, device->function, PCI_cap_id_msix,
&info->capability_offset);
if (result != B_OK)
return;
info->msix_capable = true;
info->control_value = ReadConfig(device->domain, device->bus,
device->device, device->function,
info->capability_offset + PCI_msix_control, 2);
info->message_count
= (info->control_value & PCI_msix_control_table_size) + 1;
info->configured_count = 0;
info->data_value = 0;
info->address_value = 0;
info->table_area_id = -1;
info->pba_area_id = -1;
uint32 table_value = ReadConfig(device->domain, device->bus,
device->device, device->function,
info->capability_offset + PCI_msix_table, 4);
uint32 pba_value = ReadConfig(device->domain, device->bus,
device->device, device->function,
info->capability_offset + PCI_msix_pba, 4);
info->table_bar = table_value & PCI_msix_bir_mask;
info->table_offset = table_value & PCI_msix_offset_mask;
info->pba_bar = pba_value & PCI_msix_bir_mask;
info->pba_offset = pba_value & PCI_msix_offset_mask;
}
void
PCI::_ReadHtMappingInfo(PCIDev *device)
{
if (!msi_supported())
return;
ht_mapping_info *info = &device->ht_mapping;
info->ht_mapping_capable = false;
uint8 offset = 0;
if (FindHTCapability(device, PCI_ht_command_cap_msi_mapping,
&offset) == B_OK) {
info->control_value = ReadConfig(device, offset + PCI_ht_command,
2);
info->capability_offset = offset;
info->ht_mapping_capable = true;
if ((info->control_value & PCI_ht_command_msi_fixed) != 0) {
#if defined(__i386__) || defined(__x86_64__)
info->address_value = MSI_ADDRESS_BASE;
#else
dprintf("PCI_ht_command_msi_fixed flag unimplemented\n");
info->address_value = 0;
#endif
} else {
info->address_value = ReadConfig(device, offset
+ PCI_ht_msi_address_high, 4);
info->address_value <<= 32;
info->address_value |= ReadConfig(device, offset
+ PCI_ht_msi_address_low, 4);
}
dprintf("found an ht msi mapping at %#" B_PRIx64 "\n",
info->address_value);
}
}
status_t
PCI::_UnconfigureMSIX(PCIDev *device)
{
msix_info *info = &device->msix;
if (!info->msix_capable)
return B_UNSUPPORTED;
if (info->configured_count == 0)
return B_NO_INIT;
info->control_value &= ~PCI_msix_control_enable;
WriteConfig(device, info->capability_offset + PCI_msix_control, 2,
info->control_value);
msi_free_vectors(info->configured_count, info->start_vector);
for (uint8 index = 0; index < info->configured_count; index++) {
volatile uint32 *entry = (uint32*)(info->table_address + 16 * index);
if ((*(entry + 3) & PCI_msix_vctrl_mask) == 0)
*(entry + 3) |= PCI_msix_vctrl_mask;
}
if (info->pba_area_id != -1)
delete_area(info->pba_area_id);
if (info->table_area_id != -1)
delete_area(info->table_area_id);
info->pba_area_id= -1;
info->table_area_id = -1;
info->configured_count = 0;
info->address_value = 0;
info->data_value = 0;
return B_OK;
}
status_t
PCI::_DisableMSIX(PCIDev *device)
{
msix_info *info = &device->msix;
if (!info->msix_capable)
return B_UNSUPPORTED;
if (info->configured_count == 0)
return B_NO_INIT;
_HtMSIMap(device, 0);
info->control_value &= ~PCI_msix_control_enable;
gPCI->WriteConfig(device, info->capability_offset + PCI_msix_control, 2,
info->control_value);
return B_OK;
}