* Copyright 2012, Alex Smith, alex@alex-smith.me.uk.
* Distributed under the terms of the MIT License.
*/
#include "long.h"
#include <algorithm>
#include <KernelExport.h>
#define __x86_64__
#include <arch/x86/descriptors.h>
#undef __x86_64__
#include <arch_system_info.h>
#include <boot/platform.h>
#include <boot/heap.h>
#include <boot/stage2.h>
#include <boot/stdio.h>
#include <kernel.h>
#include <safemode.h>
#include "debug.h"
#include "mmu.h"
#include "smp.h"
static const uint64 kTableMappingFlags = 0x7;
static const uint64 kLargePageMappingFlags = 0x183;
static const uint64 kPageMappingFlags = 0x103;
extern "C" void long_enter_kernel(int currentCPU, uint64 stackTop);
extern uint64 gLongGDT;
extern uint32 gLongPhysicalPMLTop;
extern bool gLongLA57;
extern uint64 gLongKernelEntry;
static inline uint64
fix_address(uint64 address)
{
if (address >= KERNEL_LOAD_BASE)
return address + KERNEL_FIXUP_FOR_LONG_MODE;
else
return address;
}
template<typename Type>
inline void
fix_address(FixedWidthPointer<Type>& p)
{
if (p != NULL)
p.SetTo(fix_address(p.Get()));
}
static void
long_gdt_init()
{
STATIC_ASSERT(BOOT_GDT_SEGMENT_COUNT > KERNEL_CODE_SEGMENT
&& BOOT_GDT_SEGMENT_COUNT > KERNEL_DATA_SEGMENT
&& BOOT_GDT_SEGMENT_COUNT > USER_CODE_SEGMENT
&& BOOT_GDT_SEGMENT_COUNT > USER_DATA_SEGMENT);
clear_segment_descriptor(&gBootGDT[0]);
set_segment_descriptor(&gBootGDT[KERNEL_CODE_SEGMENT], DT_CODE_EXECUTE_ONLY,
DPL_KERNEL);
set_segment_descriptor(&gBootGDT[KERNEL_DATA_SEGMENT], DT_DATA_WRITEABLE,
DPL_KERNEL);
set_segment_descriptor(&gBootGDT[USER_CODE_SEGMENT], DT_CODE_EXECUTE_ONLY,
DPL_USER);
set_segment_descriptor(&gBootGDT[USER_DATA_SEGMENT], DT_DATA_WRITEABLE,
DPL_USER);
gLongGDT = fix_address((addr_t)gBootGDT);
dprintf("GDT at 0x%llx\n", gLongGDT);
}
static void
long_mmu_init()
{
uint64* pmlTop;
pmlTop = (uint64*)mmu_allocate_page((addr_t*)&gKernelArgs.arch_args.phys_pgdir);
memset(pmlTop, 0, B_PAGE_SIZE);
gKernelArgs.arch_args.vir_pgdir = fix_address((uint64)(addr_t)pmlTop);
gKernelArgs.virtual_allocated_range[0].start = KERNEL_LOAD_BASE_64_BIT;
gKernelArgs.virtual_allocated_range[0].size = mmu_get_virtual_usage();
gKernelArgs.num_virtual_allocated_ranges = 1;
gKernelArgs.arch_args.virtual_end = ROUNDUP(KERNEL_LOAD_BASE_64_BIT
+ gKernelArgs.virtual_allocated_range[0].size, 0x200000);
uint64 maxAddress = 0;
for (uint32 i = 0; i < gKernelArgs.num_physical_memory_ranges; i++) {
maxAddress = std::max(maxAddress,
gKernelArgs.physical_memory_range[i].start
+ gKernelArgs.physical_memory_range[i].size);
}
maxAddress = std::max(maxAddress, (uint64)0x100000000ll);
maxAddress = ROUNDUP(maxAddress, 0x40000000);
if (maxAddress / 0x40000000 > 512)
panic("Can't currently support more than 512GB of RAM!");
uint64* pml4 = pmlTop;
addr_t physicalAddress;
cpuid_info info;
if (get_current_cpuid(&info, 7, 0) == B_OK
&& (info.regs.ecx & IA32_FEATURE_LA57) != 0) {
if (get_safemode_boolean(B_SAFEMODE_256_TB_MEMORY_LIMIT, false)) {
dprintf("la57 disabled per safemode setting\n");
} else {
dprintf("la57 enabled\n");
gLongLA57 = true;
pml4 = (uint64*)mmu_allocate_page(&physicalAddress);
memset(pml4, 0, B_PAGE_SIZE);
pmlTop[511] = physicalAddress | kTableMappingFlags;
pmlTop[0] = physicalAddress | kTableMappingFlags;
}
}
uint64* pdpt;
uint64* pageDir;
uint64* pageTable;
pdpt = (uint64*)mmu_allocate_page(&physicalAddress);
memset(pdpt, 0, B_PAGE_SIZE);
pml4[510] = physicalAddress | kTableMappingFlags;
pml4[0] = physicalAddress | kTableMappingFlags;
for (uint64 i = 0; i < maxAddress; i += 0x40000000) {
pageDir = (uint64*)mmu_allocate_page(&physicalAddress);
memset(pageDir, 0, B_PAGE_SIZE);
pdpt[i / 0x40000000] = physicalAddress | kTableMappingFlags;
for (uint64 j = 0; j < 0x40000000; j += 0x200000) {
pageDir[j / 0x200000] = (i + j) | kLargePageMappingFlags;
}
mmu_free(pageDir, B_PAGE_SIZE);
}
mmu_free(pdpt, B_PAGE_SIZE);
pdpt = (uint64*)mmu_allocate_page(&physicalAddress);
memset(pdpt, 0, B_PAGE_SIZE);
pml4[511] = physicalAddress | kTableMappingFlags;
pageDir = (uint64*)mmu_allocate_page(&physicalAddress);
memset(pageDir, 0, B_PAGE_SIZE);
pdpt[510] = physicalAddress | kTableMappingFlags;
pageTable = NULL;
for (uint32 i = 0; i < gKernelArgs.virtual_allocated_range[0].size
/ B_PAGE_SIZE; i++) {
if ((i % 512) == 0) {
if (pageTable)
mmu_free(pageTable, B_PAGE_SIZE);
pageTable = (uint64*)mmu_allocate_page(&physicalAddress);
memset(pageTable, 0, B_PAGE_SIZE);
pageDir[i / 512] = physicalAddress | kTableMappingFlags;
}
if (!mmu_get_virtual_mapping(KERNEL_LOAD_BASE + (i * B_PAGE_SIZE),
&physicalAddress))
continue;
pageTable[i % 512] = physicalAddress | kPageMappingFlags;
}
if (pageTable)
mmu_free(pageTable, B_PAGE_SIZE);
mmu_free(pageDir, B_PAGE_SIZE);
mmu_free(pdpt, B_PAGE_SIZE);
if (pml4 != pmlTop)
mmu_free(pml4, B_PAGE_SIZE);
sort_address_ranges(gKernelArgs.physical_memory_range,
gKernelArgs.num_physical_memory_ranges);
sort_address_ranges(gKernelArgs.physical_allocated_range,
gKernelArgs.num_physical_allocated_ranges);
sort_address_ranges(gKernelArgs.virtual_allocated_range,
gKernelArgs.num_virtual_allocated_ranges);
dprintf("phys memory ranges:\n");
for (uint32 i = 0; i < gKernelArgs.num_physical_memory_ranges; i++) {
dprintf(" base %#018" B_PRIx64 ", length %#018" B_PRIx64 "\n",
gKernelArgs.physical_memory_range[i].start,
gKernelArgs.physical_memory_range[i].size);
}
dprintf("allocated phys memory ranges:\n");
for (uint32 i = 0; i < gKernelArgs.num_physical_allocated_ranges; i++) {
dprintf(" base %#018" B_PRIx64 ", length %#018" B_PRIx64 "\n",
gKernelArgs.physical_allocated_range[i].start,
gKernelArgs.physical_allocated_range[i].size);
}
dprintf("allocated virt memory ranges:\n");
for (uint32 i = 0; i < gKernelArgs.num_virtual_allocated_ranges; i++) {
dprintf(" base %#018" B_PRIx64 ", length %#018" B_PRIx64 "\n",
gKernelArgs.virtual_allocated_range[i].start,
gKernelArgs.virtual_allocated_range[i].size);
}
gLongPhysicalPMLTop = gKernelArgs.arch_args.phys_pgdir;
}
static void
convert_preloaded_image(preloaded_elf64_image* image)
{
fix_address(image->next);
fix_address(image->name);
fix_address(image->debug_string_table);
fix_address(image->syms);
fix_address(image->rel);
fix_address(image->rela);
fix_address(image->pltrel);
fix_address(image->debug_symbols);
}
static void
convert_kernel_args()
{
fix_address(gKernelArgs.boot_volume);
fix_address(gKernelArgs.vesa_modes);
fix_address(gKernelArgs.edid_info);
fix_address(gKernelArgs.debug_output);
fix_address(gKernelArgs.previous_debug_output);
fix_address(gKernelArgs.boot_splash);
fix_address(gKernelArgs.ucode_data);
fix_address(gKernelArgs.arch_args.apic);
fix_address(gKernelArgs.arch_args.hpet);
convert_preloaded_image(static_cast<preloaded_elf64_image*>(
gKernelArgs.kernel_image.Pointer()));
fix_address(gKernelArgs.kernel_image);
preloaded_image* image = gKernelArgs.preloaded_images;
fix_address(gKernelArgs.preloaded_images);
while (image != NULL) {
preloaded_image* next = image->next;
convert_preloaded_image(static_cast<preloaded_elf64_image*>(image));
image = next;
}
dprintf("kernel args ranges:\n");
for (uint32 i = 0; i < gKernelArgs.num_kernel_args_ranges; i++) {
gKernelArgs.kernel_args_range[i].start = fix_address(
gKernelArgs.kernel_args_range[i].start);
dprintf(" base %#018" B_PRIx64 ", length %#018" B_PRIx64 "\n",
gKernelArgs.kernel_args_range[i].start,
gKernelArgs.kernel_args_range[i].size);
}
driver_settings_file* file = gKernelArgs.driver_settings;
fix_address(gKernelArgs.driver_settings);
while (file != NULL) {
driver_settings_file* next = file->next;
fix_address(file->next);
fix_address(file->buffer);
file = next;
}
}
static void
enable_sse()
{
x86_write_cr4(x86_read_cr4() | CR4_OS_FXSR | CR4_OS_XMM_EXCEPTION);
x86_write_cr0(x86_read_cr0() & ~(CR0_FPU_EMULATION | CR0_MONITOR_FPU));
}
static void
long_smp_start_kernel(void)
{
uint32 cpu = smp_get_current_cpu();
asm("movl %%eax, %%cr0" : : "a" ((1 << 31) | (1 << 16) | (1 << 5) | 1));
asm("cld");
asm("fninit");
enable_sse();
gKernelArgs.cpu_kstack[cpu].start
= fix_address(gKernelArgs.cpu_kstack[cpu].start);
long_enter_kernel(cpu, gKernelArgs.cpu_kstack[cpu].start
+ gKernelArgs.cpu_kstack[cpu].size);
panic("Shouldn't get here");
}
void
long_start_kernel()
{
cpuid_info info;
get_current_cpuid(&info, 0x80000001, 0);
if ((info.regs.edx & (1 << 29)) == 0)
panic("64-bit kernel requires a 64-bit CPU");
enable_sse();
preloaded_elf64_image *image = static_cast<preloaded_elf64_image *>(
gKernelArgs.kernel_image.Pointer());
smp_init_other_cpus();
long_gdt_init();
debug_cleanup();
long_mmu_init();
heap_release();
convert_kernel_args();
gLongKernelEntry = image->elf_header.e_entry;
dprintf("kernel entry at %#llx\n", gLongKernelEntry);
gKernelArgs.cpu_kstack[0].start
= fix_address(gKernelArgs.cpu_kstack[0].start);
stdout = NULL;
smp_boot_other_cpus(long_smp_start_kernel);
long_enter_kernel(0, gKernelArgs.cpu_kstack[0].start
+ gKernelArgs.cpu_kstack[0].size);
panic("Shouldn't get here");
}