* Copyright 2009, Michael Lotz, mmlr@mlotz.ch.
* Copyright 2008, Marcus Overhagen.
* Copyright 2004-2008, Axel Dörfler, axeld@pinc-software.de.
* Copyright 2002-2003, Thomas Kurschel.
*
* Distributed under the terms of the MIT License.
*/
#include "ATAPrivate.h"
ATADevice::ATADevice(ATAChannel *channel, uint8 index)
:
fChannel(channel),
fRegisterMask(0),
fUseDMA(channel->UseDMA()),
fDMAMode(0),
fDMAFailures(0),
fTotalSectors(0),
fBlockSize(512),
fPhysicalBlockSize(512),
fBlockOffset(0),
fIndex(index),
fUse48Bits(false)
{
memset(&fInfoBlock, 0, sizeof(fInfoBlock));
memset(&fTaskFile, 0, sizeof(fTaskFile));
}
ATADevice::~ATADevice()
{
}
status_t
ATADevice::TestUnitReady(ATARequest *request)
{
TRACE_FUNCTION("%p\n", request);
fRegisterMask = 0;
fTaskFile.write.command = ATA_COMMAND_GET_MEDIA_STATUS;
request->SetTimeout(15 * 1000 * 1000);
status_t result = fChannel->SendRequest(request, ATA_DEVICE_READY_REQUIRED);
if (result != B_OK) {
TRACE_ERROR("failed to send test unit ready request\n");
return result;
}
return fChannel->FinishRequest(request, ATA_WAIT_FINISH
| ATA_DEVICE_READY_REQUIRED, ATA_ERROR_NO_MEDIA | ATA_ERROR_ABORTED
| ATA_ERROR_MEDIA_CHANGE_REQUESTED | ATA_ERROR_MEDIUM_CHANGED);
}
status_t
ATADevice::SynchronizeCache(ATARequest *request)
{
TRACE_FUNCTION("%p\n", request);
if (!fInfoBlock.write_cache_supported)
return B_OK;
fRegisterMask = 0;
fTaskFile.lba.command
= fUse48Bits ? ATA_COMMAND_FLUSH_CACHE_EXT : ATA_COMMAND_FLUSH_CACHE;
request->SetTimeout(60 * 1000 * 1000);
status_t result = fChannel->SendRequest(request, ATA_DEVICE_READY_REQUIRED);
if (result != B_OK) {
TRACE_ERROR("failed to send synchronize cache request\n");
return result;
}
return fChannel->FinishRequest(request, ATA_WAIT_FINISH
| ATA_DEVICE_READY_REQUIRED, ATA_ERROR_ABORTED);
}
status_t
ATADevice::Eject(ATARequest *request)
{
TRACE_FUNCTION("%p\n", request);
fRegisterMask = 0;
fTaskFile.lba.command = ATA_COMMAND_MEDIA_EJECT;
request->SetTimeout(15 * 1000 * 1000);
status_t result = fChannel->SendRequest(request, ATA_DEVICE_READY_REQUIRED);
if (result != B_OK) {
TRACE_ERROR("failed to send eject request\n");
return result;
}
return fChannel->FinishRequest(request, ATA_WAIT_FINISH
| ATA_DEVICE_READY_REQUIRED, ATA_ERROR_ABORTED | ATA_ERROR_NO_MEDIA);
}
status_t
ATADevice::Inquiry(ATARequest *request)
{
TRACE_FUNCTION("%p\n", request);
scsi_ccb *ccb = request->CCB();
scsi_cmd_inquiry *command = (scsi_cmd_inquiry *)ccb->cdb;
if (command->evpd || command->page_code) {
request->SetSense(SCSIS_KEY_ILLEGAL_REQUEST, SCSIS_ASC_INV_CDB_FIELD);
return B_ERROR;
}
scsi_res_inquiry data;
memset(&data, 0, sizeof(data));
data.device_type = IsATAPI()
? fInfoBlock.word_0.atapi.command_packet_set : scsi_dev_direct_access;
data.device_qualifier = scsi_periph_qual_connected;
data.device_type_modifier = 0;
data.removable_medium = fInfoBlock.word_0.ata.removable_media_device;
data.ansi_version = 2;
data.ecma_version = 0;
data.iso_version = 0;
data.response_data_format = 2;
data.term_iop = false;
data.additional_length = sizeof(scsi_res_inquiry) - 4;
data.soft_reset = false;
data.cmd_queue = 0;
data.linked = false;
data.sync = false;
data.write_bus16 = true;
data.write_bus32 = false;
data.relative_address = false;
memcpy(data.vendor_ident, fInfoBlock.model_number,
sizeof(data.vendor_ident));
swap_words(data.vendor_ident, sizeof(data.vendor_ident));
memcpy(data.product_ident, fInfoBlock.model_number + 8,
sizeof(data.product_ident));
swap_words(data.product_ident, sizeof(data.product_ident));
memcpy(data.product_rev, " ", sizeof(data.product_rev));
uint32 allocationLength = command->allocation_length;
copy_sg_data(ccb, 0, allocationLength, &data, sizeof(data), false);
ccb->data_resid = ccb->data_length - MIN(MIN(sizeof(data),
allocationLength), ccb->data_length);
return B_OK;
}
status_t
ATADevice::ReadCapacity(ATARequest *request)
{
TRACE_FUNCTION("%p\n", request);
scsi_ccb *ccb = request->CCB();
scsi_cmd_read_capacity *command = (scsi_cmd_read_capacity *)ccb->cdb;
if (command->pmi || command->lba) {
request->SetSense(SCSIS_KEY_ILLEGAL_REQUEST, SCSIS_ASC_INV_CDB_FIELD);
return B_ERROR;
}
scsi_res_read_capacity data;
memset(&data, 0, sizeof(data));
data.block_size = B_HOST_TO_BENDIAN_INT32(fBlockSize);
if (fTotalSectors <= UINT_MAX) {
uint32 lastBlock = fTotalSectors - 1;
data.lba = B_HOST_TO_BENDIAN_INT32(lastBlock);
} else
data.lba = UINT_MAX;
TRACE("returning last block: %" B_PRIu32 "\n",
B_BENDIAN_TO_HOST_INT32(data.lba));
copy_sg_data(ccb, 0, ccb->data_length, &data, sizeof(data), false);
ccb->data_resid = MAX(ccb->data_length - sizeof(data), 0);
return B_OK;
}
status_t
ATADevice::ReadCapacity16(ATARequest *request)
{
TRACE_FUNCTION("%p\n", request);
scsi_ccb *ccb = request->CCB();
scsi_cmd_read_capacity_long *command
= (scsi_cmd_read_capacity_long *)ccb->cdb;
if (command->pmi || command->lba) {
request->SetSense(SCSIS_KEY_ILLEGAL_REQUEST, SCSIS_ASC_INV_CDB_FIELD);
return B_ERROR;
}
uint32 allocationLength = B_BENDIAN_TO_HOST_INT32(command->alloc_length);
scsi_res_read_capacity_long data;
memset(&data, 0, sizeof(data));
data.block_size = B_HOST_TO_BENDIAN_INT32(fBlockSize);
uint64 lastBlock = fTotalSectors - 1;
data.lba = B_HOST_TO_BENDIAN_INT64(lastBlock);
TRACE("returning last block: %" B_PRIu64 "\n",
B_BENDIAN_TO_HOST_INT64(data.lba));
size_t copySize = min_c(allocationLength, sizeof(data));
copy_sg_data(ccb, 0, ccb->data_length, &data, copySize, false);
ccb->data_resid = MAX(ccb->data_length - copySize, 0);
return B_OK;
}
status_t
ATADevice::ExecuteIO(ATARequest *request)
{
TRACE_FUNCTION("%p\n", request);
scsi_ccb *ccb = request->CCB();
request->SetDevice(this);
if (ccb->target_lun != 0) {
TRACE_ERROR("invalid target lun %d for ATA device\n", ccb->target_lun);
request->SetStatus(SCSI_SEL_TIMEOUT);
return B_BAD_INDEX;
}
TRACE("request: 0x%02x\n", ccb->cdb[0]);
switch (ccb->cdb[0]) {
case SCSI_OP_TEST_UNIT_READY:
return TestUnitReady(request);
case SCSI_OP_FORMAT:
request->SetSense(SCSIS_KEY_ILLEGAL_REQUEST, SCSIS_ASC_INV_OPCODE);
return B_ERROR;
case SCSI_OP_INQUIRY:
return Inquiry(request);
case SCSI_OP_START_STOP:
{
scsi_cmd_ssu *command = (scsi_cmd_ssu *)ccb->cdb;
if (!command->start) {
SynchronizeCache(request);
}
if (command->load_eject) {
if (!command->start)
return Eject(request);
else {
request->SetSense(SCSIS_KEY_ILLEGAL_REQUEST,
SCSIS_ASC_PARAM_NOT_SUPPORTED);
return B_ERROR;
}
}
return B_OK;
}
case SCSI_OP_READ_CAPACITY:
return ReadCapacity(request);
case SCSI_OP_SERVICE_ACTION_IN:
if ((ccb->cdb[1] & 0x1f) == SCSI_SAI_READ_CAPACITY_16)
return ReadCapacity16(request);
break;
case SCSI_OP_SYNCHRONIZE_CACHE:
return SynchronizeCache(request);
case SCSI_OP_READ_6:
case SCSI_OP_WRITE_6:
{
scsi_cmd_rw_6 *command = (scsi_cmd_rw_6 *)ccb->cdb;
uint32 address = ((uint32)command->high_lba << 16)
| ((uint32)command->mid_lba << 8) | (uint32)command->low_lba;
request->SetIsWrite(command->opcode == SCSI_OP_WRITE_6);
return ExecuteReadWrite(request, address, command->length != 0
? command->length : 256);
}
case SCSI_OP_READ_10:
case SCSI_OP_WRITE_10:
{
scsi_cmd_rw_10 *command = (scsi_cmd_rw_10 *)ccb->cdb;
uint32 address = B_BENDIAN_TO_HOST_INT32(command->lba);
uint32 sectorCount = B_BENDIAN_TO_HOST_INT16(command->length);
request->SetIsWrite(command->opcode == SCSI_OP_WRITE_10);
if (sectorCount > 0)
return ExecuteReadWrite(request, address, sectorCount);
else {
request->SetStatus(SCSI_REQ_CMP);
return B_OK;
}
}
case SCSI_OP_READ_12:
case SCSI_OP_WRITE_12:
{
scsi_cmd_rw_12 *command = (scsi_cmd_rw_12 *)ccb->cdb;
uint32 address = B_BENDIAN_TO_HOST_INT32(command->lba);
uint32 sectorCount = B_BENDIAN_TO_HOST_INT32(command->length);
request->SetIsWrite(command->opcode == SCSI_OP_WRITE_12);
if (sectorCount > 0)
return ExecuteReadWrite(request, address, sectorCount);
else {
request->SetStatus(SCSI_REQ_CMP);
return B_OK;
}
}
case SCSI_OP_READ_16:
case SCSI_OP_WRITE_16:
{
scsi_cmd_rw_16 *command = (scsi_cmd_rw_16 *)ccb->cdb;
uint64 address = B_BENDIAN_TO_HOST_INT64(command->lba);
uint32 sectorCount = B_BENDIAN_TO_HOST_INT32(command->length);
request->SetIsWrite(command->opcode == SCSI_OP_WRITE_16);
if (sectorCount > 0)
return ExecuteReadWrite(request, address, sectorCount);
else {
request->SetStatus(SCSI_REQ_CMP);
return B_OK;
}
}
}
TRACE("command not implemented\n");
request->SetSense(SCSIS_KEY_ILLEGAL_REQUEST, SCSIS_ASC_INV_OPCODE);
return B_ERROR;
}
void
ATADevice::GetRestrictions(bool *noAutoSense, uint32 *maxBlocks)
{
if (IsATAPI())
*noAutoSense = true;
else {
if (fUse48Bits)
*maxBlocks = 0xffff;
else
*maxBlocks = 0x100;
}
}
status_t
ATADevice::Control(uint32 opcode, void *buffer, size_t length)
{
if (opcode == B_GET_DEVICE_NAME) {
char name[sizeof(fInfoBlock.model_number)];
memcpy(name, fInfoBlock.model_number, sizeof(name));
swap_words(name, sizeof(name));
int32 nameLength = sizeof(name) - 2;
while (nameLength > 0 && name[nameLength - 1] == ' ')
nameLength--;
return user_strlcpy((char*)buffer, name,
min_c((size_t)nameLength + 1, length)) >= 0 ? B_OK : B_BAD_ADDRESS;
}
return B_BAD_VALUE;
}
status_t
ATADevice::Select()
{
status_t err = fChannel->SelectDevice(fIndex);
#if 1
if (fChannel->SelectedDevice() != fIndex) {
TRACE_ERROR("device %d not selected!\n", fIndex);
return B_ERROR;
}
#endif
return err;
}
status_t
ATADevice::SetFeature(int feature)
{
TRACE("device_set_feature: feature %d\n", feature);
ATARequest request(false);
request.SetDevice(this);
request.SetTimeout(1 * 1000 * 1000);
fTaskFile.write.features = feature;
fTaskFile.write.command = ATA_COMMAND_SET_FEATURES;
fRegisterMask = ATA_MASK_FEATURES;
status_t result = fChannel->SendRequest(&request, ATA_DEVICE_READY_REQUIRED);
if (result != B_OK) {
TRACE_ERROR("sending set feature request failed\n");
return result;
}
result = fChannel->FinishRequest(&request,
ATA_WAIT_FINISH | ATA_DEVICE_READY_REQUIRED, ATA_ERROR_ABORTED);
if (result != B_OK) {
TRACE_ERROR("set feature request failed\n");
return result;
}
return B_OK;
}
status_t
ATADevice::DisableCommandQueueing()
{
if (!fInfoBlock.read_write_dma_queued_supported)
return B_OK;
if (fInfoBlock.release_interrupt_supported) {
status_t result = SetFeature(
ATA_COMMAND_SET_FEATURES_DISABLE_RELEASE_INT);
if (result != B_OK) {
TRACE_ERROR("failed to disable release interrupt\n");
return result;
}
}
if (fInfoBlock.service_interrupt_supported) {
status_t result = SetFeature(
ATA_COMMAND_SET_FEATURES_DISABLE_SERVICE_INT);
if (result != B_OK) {
TRACE_ERROR("failed to disable service interrupt\n");
return result;
}
}
return B_OK;
}
status_t
ATADevice::ConfigureDMA()
{
if (!fUseDMA)
return B_OK;
if (!fInfoBlock.dma_supported) {
TRACE_ALWAYS("DMA not supported by device\n");
fUseDMA = false;
return B_OK;
}
#define CHECK_DMA_MODE(element, mode) \
if (fInfoBlock.element) { \
fDMAMode = mode; \
modeCount++; \
}
uint32 modeCount = 0;
CHECK_DMA_MODE(multiword_dma_0_selected, 0x00);
CHECK_DMA_MODE(multiword_dma_1_selected, 0x01);
CHECK_DMA_MODE(multiword_dma_2_selected, 0x02);
if (fInfoBlock.word_88_valid) {
CHECK_DMA_MODE(ultra_dma_0_selected, 0x10);
CHECK_DMA_MODE(ultra_dma_1_selected, 0x11);
CHECK_DMA_MODE(ultra_dma_2_selected, 0x12);
CHECK_DMA_MODE(ultra_dma_3_selected, 0x13);
CHECK_DMA_MODE(ultra_dma_4_selected, 0x14);
CHECK_DMA_MODE(ultra_dma_5_selected, 0x15);
CHECK_DMA_MODE(ultra_dma_6_selected, 0x16);
}
#undef CHECK_DMA_MODE
if (modeCount != 1) {
TRACE_ERROR("more than one DMA mode selected, not using DMA\n");
fUseDMA = false;
return B_OK;
}
TRACE_ALWAYS("using DMA mode 0x%02x\n", fDMAMode);
return B_OK;
}
status_t
ATADevice::Configure()
{
if (fInfoBlock.word_0.ata.ata_device != ATA_WORD_0_ATA_DEVICE) {
if (fInfoBlock.word_0.raw == ATA_WORD_0_CFA_MAGIC)
fInfoBlock.compact_flash_assoc_supported = true;
else {
TRACE_ERROR("infoblock indicates non-ata device\n");
return B_ERROR;
}
}
if (!fInfoBlock.lba_supported || (fInfoBlock.lba_sector_count == 0
&& fInfoBlock.lba48_sector_count == 0)) {
TRACE_ERROR("non-lba devices not supported\n");
return B_ERROR;
}
fTotalSectors = fInfoBlock.SectorCount(fUse48Bits, false);
fBlockSize = fInfoBlock.SectorSize();
fPhysicalBlockSize = fInfoBlock.PhysicalSectorSize();
fBlockOffset = fInfoBlock.BlockOffset();
fTaskFile.lba.mode = ATA_MODE_LBA;
fTaskFile.lba.device = fIndex;
status_t result = ConfigureDMA();
if (result != B_OK)
return result;
result = DisableCommandQueueing();
if (result != B_OK)
return result;
return B_OK;
}
status_t
ATADevice::Identify()
{
snprintf(fDebugContext, sizeof(fDebugContext), "%s %" B_PRIu32 "-%u",
IsATAPI() ? "pi" : "", fChannel->ChannelID(), fIndex);
ATARequest request(false);
request.SetDevice(this);
request.SetTimeout(20 * 1000 * 1000);
fRegisterMask = 0;
fTaskFile.write.command = IsATAPI() ? ATA_COMMAND_IDENTIFY_PACKET_DEVICE
: ATA_COMMAND_IDENTIFY_DEVICE;
if (fChannel->SendRequest(&request,
IsATAPI() ? 0 : ATA_DEVICE_READY_REQUIRED) != B_OK) {
TRACE_ERROR("sending identify request failed\n");
return B_ERROR;
}
if (fChannel->Wait(ATA_STATUS_BUSY | ATA_STATUS_DATA_REQUEST, 0,
ATA_WAIT_ANY_BIT, 100 * 1000) != B_OK) {
TRACE_ALWAYS("no data request and not busy within 100ms, assuming "
"no device present\n");
return B_TIMED_OUT;
}
if (fChannel->Wait(ATA_STATUS_DATA_REQUEST, ATA_STATUS_BUSY,
ATA_CHECK_ERROR_BIT | ATA_CHECK_DEVICE_FAULT,
IsATAPI() ? 20 * 1000 * 1000 : 500 * 1000) != B_OK) {
TRACE_ERROR("timeout waiting for identify request\n");
return B_TIMED_OUT;
}
fChannel->ReadPIO((uint8 *)&fInfoBlock, sizeof(fInfoBlock));
if (fChannel->WaitDataRequest(false) != B_OK) {
TRACE_ERROR("device disagrees on info block length\n");
return B_ERROR;
}
if (fChannel->FinishRequest(&request,
ATA_WAIT_FINISH | (IsATAPI() ? 0 : ATA_DEVICE_READY_REQUIRED),
ATA_ERROR_ABORTED) != B_OK) {
TRACE_ERROR("failed to finish identify request\n");
return B_ERROR;
}
if (1) {
char modelNumber[sizeof(fInfoBlock.model_number) + 1];
char serialNumber[sizeof(fInfoBlock.serial_number) + 1];
char firmwareRev[sizeof(fInfoBlock.firmware_revision) + 1];
strlcpy(modelNumber, fInfoBlock.model_number, sizeof(modelNumber));
strlcpy(serialNumber, fInfoBlock.serial_number, sizeof(serialNumber));
strlcpy(firmwareRev, fInfoBlock.firmware_revision, sizeof(firmwareRev));
swap_words(modelNumber, sizeof(modelNumber) - 1);
swap_words(serialNumber, sizeof(serialNumber) - 1);
swap_words(firmwareRev, sizeof(firmwareRev) - 1);
TRACE_ALWAYS("model number: %s\n", modelNumber);
TRACE_ALWAYS("serial number: %s\n", serialNumber);
TRACE_ALWAYS("firmware rev.: %s\n", firmwareRev);
}
return B_OK;
}
status_t
ATADevice::ExecuteReadWrite(ATARequest *request, uint64 address,
uint32 sectorCount)
{
request->SetUseDMA(fUseDMA && fChannel->PrepareDMA(request) == B_OK);
if (!request->UseDMA())
request->PrepareSGInfo();
request->SetBytesLeft(sectorCount * fBlockSize);
if (_FillTaskFile(request, address) != B_OK) {
TRACE_ERROR("failed to setup transfer request\n");
if (request->UseDMA())
fChannel->FinishDMA();
return B_ERROR;
}
status_t result = fChannel->SendRequest(request,
IsATAPI() ? 0 : ATA_DEVICE_READY_REQUIRED);
if (result != B_OK) {
TRACE_ERROR("failed to send transfer request\n");
if (request->UseDMA())
fChannel->FinishDMA();
return result;
}
if (request->UseDMA()) {
fChannel->PrepareWaitingForInterrupt();
fChannel->StartDMA();
result = fChannel->WaitForInterrupt(request->Timeout());
status_t dmaResult = fChannel->FinishDMA();
if (result == B_OK && dmaResult == B_OK) {
fDMAFailures = 0;
request->CCB()->data_resid = 0;
} else {
if (dmaResult != B_OK) {
request->SetSense(SCSIS_KEY_HARDWARE_ERROR,
SCSIS_ASC_LUN_COM_FAILURE);
fDMAFailures++;
if (fDMAFailures >= ATA_MAX_DMA_FAILURES) {
TRACE_ALWAYS("disabling DMA after %u failures\n",
fDMAFailures);
fUseDMA = false;
}
} else {
request->SetStatus(SCSI_CMD_TIMEOUT);
}
}
} else {
if (fChannel->Wait(ATA_STATUS_DATA_REQUEST, 0, ATA_CHECK_ERROR_BIT
| ATA_CHECK_DEVICE_FAULT, request->Timeout()) != B_OK) {
TRACE_ERROR("timeout waiting for device to request data\n");
request->SetStatus(SCSI_CMD_TIMEOUT);
return B_TIMED_OUT;
}
if (fChannel->ExecutePIOTransfer(request) != B_OK) {
TRACE_ERROR("executing pio transfer failed\n");
request->SetStatus(SCSI_SEQUENCE_FAIL);
}
}
return fChannel->FinishRequest(request, ATA_WAIT_FINISH
| ATA_DEVICE_READY_REQUIRED, ATA_ERROR_ALL);
}
status_t
ATADevice::_FillTaskFile(ATARequest *request, uint64 address)
{
static const uint8 s48BitCommands[2][2] = {
{ ATA_COMMAND_READ_SECTORS_EXT, ATA_COMMAND_WRITE_SECTORS_EXT },
{ ATA_COMMAND_READ_DMA_EXT, ATA_COMMAND_WRITE_DMA_EXT }
};
static const uint8 s28BitCommands[2][2] = {
{ ATA_COMMAND_READ_SECTORS, ATA_COMMAND_WRITE_SECTORS },
{ ATA_COMMAND_READ_DMA, ATA_COMMAND_WRITE_DMA }
};
uint32 sectorCount = *request->BytesLeft() / fBlockSize;
TRACE("about to transfer %lu sectors\n", sectorCount);
if (fUse48Bits
&& (address + sectorCount > 0xfffffff || sectorCount > 0x100)) {
if (sectorCount > 0xffff) {
TRACE_ERROR("invalid sector count %lu\n", sectorCount);
request->SetSense(SCSIS_KEY_ILLEGAL_REQUEST,
SCSIS_ASC_INV_CDB_FIELD);
return B_ERROR;
}
fRegisterMask = ATA_MASK_SECTOR_COUNT_48
| ATA_MASK_LBA_LOW_48
| ATA_MASK_LBA_MID_48
| ATA_MASK_LBA_HIGH_48;
fTaskFile.lba48.sector_count_0_7 = sectorCount & 0xff;
fTaskFile.lba48.sector_count_8_15 = (sectorCount >> 8) & 0xff;
fTaskFile.lba48.lba_0_7 = address & 0xff;
fTaskFile.lba48.lba_8_15 = (address >> 8) & 0xff;
fTaskFile.lba48.lba_16_23 = (address >> 16) & 0xff;
fTaskFile.lba48.lba_24_31 = (address >> 24) & 0xff;
fTaskFile.lba48.lba_32_39 = (address >> 32) & 0xff;
fTaskFile.lba48.lba_40_47 = (address >> 40) & 0xff;
fTaskFile.lba48.command = s48BitCommands[request->UseDMA()
? 1 : 0][request->IsWrite() ? 1 : 0];
} else {
if (sectorCount > 0x100) {
TRACE_ERROR("invalid sector count %lu\n", sectorCount);
request->SetSense(SCSIS_KEY_ILLEGAL_REQUEST,
SCSIS_ASC_INV_CDB_FIELD);
return B_ERROR;
}
fRegisterMask = ATA_MASK_SECTOR_COUNT
| ATA_MASK_LBA_LOW
| ATA_MASK_LBA_MID
| ATA_MASK_LBA_HIGH
| ATA_MASK_DEVICE_HEAD;
fTaskFile.lba.sector_count = sectorCount & 0xff;
fTaskFile.lba.lba_0_7 = address & 0xff;
fTaskFile.lba.lba_8_15 = (address >> 8) & 0xff;
fTaskFile.lba.lba_16_23 = (address >> 16) & 0xff;
fTaskFile.lba.lba_24_27 = (address >> 24) & 0xf;
fTaskFile.lba.command = s28BitCommands[request->UseDMA()
? 1 : 0][request->IsWrite() ? 1 : 0];
}
return B_OK;
}