* Copyright 2010-2013, Ingo Weinhold, ingo_weinhold@gmx.de.
* Distributed under the terms of the MIT License.
*/
#include <file_systems/ram_disk/ram_disk.h>
#include <ctype.h>
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <algorithm>
#include <device_manager.h>
#include <Drivers.h>
#include <AutoDeleter.h>
#include <StackOrHeapArray.h>
#include <util/AutoLock.h>
#include <util/DoublyLinkedList.h>
#include <fs/KPath.h>
#include <lock.h>
#include <util/fs_trim_support.h>
#include <vm/vm.h>
#include <vm/VMCache.h>
#include <vm/vm_page.h>
#include "cache_support.h"
#include "dma_resources.h"
#include "io_requests.h"
#include "IOSchedulerSimple.h"
#ifdef TRACE_RAM_DISK
# define TRACE(x...) dprintf(x)
#else
# define TRACE(x...) do {} while (false)
#endif
static const unsigned char kRamdiskIcon[] = {
0x6e, 0x63, 0x69, 0x66, 0x0e, 0x03, 0x01, 0x00, 0x00, 0x02, 0x00, 0x16,
0x02, 0x3c, 0xc7, 0xee, 0x38, 0x9b, 0xc0, 0xba, 0x16, 0x57, 0x3e, 0x39,
0xb0, 0x49, 0x77, 0xc8, 0x42, 0xad, 0xc7, 0x00, 0xff, 0xff, 0xd3, 0x02,
0x00, 0x06, 0x02, 0x3c, 0x96, 0x32, 0x3a, 0x4d, 0x3f, 0xba, 0xfc, 0x01,
0x3d, 0x5a, 0x97, 0x4b, 0x57, 0xa5, 0x49, 0x84, 0x4d, 0x00, 0x47, 0x47,
0x47, 0xff, 0xa5, 0xa0, 0xa0, 0x02, 0x00, 0x16, 0x02, 0xbc, 0x59, 0x2f,
0xbb, 0x29, 0xa7, 0x3c, 0x0c, 0xe4, 0xbd, 0x0b, 0x7c, 0x48, 0x92, 0xc0,
0x4b, 0x79, 0x66, 0x00, 0x7d, 0xff, 0xd4, 0x02, 0x00, 0x06, 0x02, 0x38,
0xdb, 0xb4, 0x39, 0x97, 0x33, 0xbc, 0x4a, 0x33, 0x3b, 0xa5, 0x42, 0x48,
0x6e, 0x66, 0x49, 0xee, 0x7b, 0x00, 0x59, 0x67, 0x56, 0xff, 0xeb, 0xb2,
0xb2, 0x03, 0xa7, 0xff, 0x00, 0x03, 0xff, 0x00, 0x00, 0x04, 0x01, 0x80,
0x03, 0x01, 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x6a, 0x05, 0x33, 0x02,
0x00, 0x06, 0x02, 0x3a, 0x5d, 0x2c, 0x39, 0xf8, 0xb1, 0xb9, 0xdb, 0xf1,
0x3a, 0x4c, 0x0f, 0x48, 0xae, 0xea, 0x4a, 0xc0, 0x91, 0x00, 0x74, 0x74,
0x74, 0xff, 0x3e, 0x3d, 0x3d, 0x02, 0x00, 0x16, 0x02, 0x38, 0x22, 0x1b,
0x3b, 0x11, 0x73, 0xbc, 0x5e, 0xb5, 0x39, 0x4b, 0xaa, 0x4a, 0x47, 0xf1,
0x49, 0xc2, 0x1d, 0x00, 0xb0, 0xff, 0x83, 0x02, 0x00, 0x16, 0x03, 0x36,
0xed, 0xe9, 0x36, 0xb9, 0x49, 0xba, 0x0a, 0xf6, 0x3a, 0x32, 0x6f, 0x4a,
0x79, 0xef, 0x4b, 0x03, 0xe7, 0x00, 0x5a, 0x38, 0xdc, 0xff, 0x7e, 0x0d,
0x0a, 0x06, 0x22, 0x3c, 0x22, 0x49, 0x44, 0x5b, 0x5a, 0x3e, 0x5a, 0x31,
0x39, 0x25, 0x0a, 0x04, 0x22, 0x3c, 0x44, 0x4b, 0x5a, 0x31, 0x39, 0x25,
0x0a, 0x04, 0x44, 0x4b, 0x44, 0x5b, 0x5a, 0x3e, 0x5a, 0x31, 0x0a, 0x04,
0x22, 0x3c, 0x22, 0x49, 0x44, 0x5b, 0x44, 0x4b, 0x08, 0x02, 0x27, 0x43,
0xb8, 0x14, 0xc1, 0xf1, 0x08, 0x02, 0x26, 0x43, 0x29, 0x44, 0x0a, 0x05,
0x44, 0x5d, 0x49, 0x5d, 0x60, 0x3e, 0x5a, 0x3b, 0x5b, 0x3f, 0x0a, 0x04,
0x3c, 0x5a, 0x5a, 0x3c, 0x5a, 0x36, 0x3c, 0x52, 0x0a, 0x04, 0x24, 0x4e,
0x3c, 0x5a, 0x3c, 0x52, 0x24, 0x48, 0x06, 0x07, 0xaa, 0x3f, 0x42, 0x2e,
0x24, 0x48, 0x3c, 0x52, 0x5a, 0x36, 0x51, 0x33, 0x51, 0x33, 0x50, 0x34,
0x4b, 0x33, 0x4d, 0x34, 0x49, 0x32, 0x49, 0x30, 0x48, 0x31, 0x49, 0x30,
0x06, 0x08, 0xfa, 0xfa, 0x42, 0x50, 0x3e, 0x54, 0x40, 0x55, 0x3f, 0xc7,
0xeb, 0x41, 0xc8, 0x51, 0x42, 0xc9, 0x4f, 0x42, 0xc8, 0xda, 0x42, 0xca,
0x41, 0xc0, 0xf1, 0x5d, 0x45, 0xca, 0x81, 0x46, 0xc7, 0xb7, 0x46, 0xc8,
0xa9, 0x46, 0xc7, 0x42, 0x44, 0x51, 0x45, 0xc6, 0xb9, 0x43, 0xc6, 0x53,
0x0a, 0x07, 0x3c, 0x5c, 0x40, 0x5c, 0x42, 0x5e, 0x48, 0x5e, 0x4a, 0x5c,
0x46, 0x5a, 0x45, 0x4b, 0x06, 0x09, 0x9a, 0xf6, 0x03, 0x42, 0x2e, 0x24,
0x48, 0x4e, 0x3c, 0x5a, 0x5a, 0x3c, 0x36, 0x51, 0x33, 0x51, 0x33, 0x50,
0x34, 0x4b, 0x33, 0x4d, 0x34, 0x49, 0x32, 0x49, 0x30, 0x48, 0x31, 0x49,
0x30, 0x18, 0x0a, 0x07, 0x01, 0x06, 0x00, 0x0a, 0x00, 0x01, 0x00, 0x10,
0x01, 0x17, 0x84, 0x00, 0x04, 0x0a, 0x01, 0x01, 0x01, 0x00, 0x0a, 0x02,
0x01, 0x02, 0x00, 0x0a, 0x03, 0x01, 0x03, 0x00, 0x0a, 0x04, 0x01, 0x04,
0x10, 0x01, 0x17, 0x85, 0x20, 0x04, 0x0a, 0x06, 0x01, 0x05, 0x30, 0x24,
0xb3, 0x99, 0x01, 0x17, 0x82, 0x00, 0x04, 0x0a, 0x05, 0x01, 0x05, 0x30,
0x20, 0xb2, 0xe6, 0x01, 0x17, 0x82, 0x00, 0x04, 0x0a, 0x09, 0x01, 0x0b,
0x02, 0x3e, 0x9b, 0x12, 0xb5, 0xf9, 0x99, 0x36, 0x19, 0x10, 0x3e, 0xc0,
0x21, 0x48, 0xed, 0x4d, 0xc8, 0x5a, 0x02, 0x0a, 0x09, 0x01, 0x0b, 0x02,
0x3e, 0x9b, 0x12, 0xb5, 0xf9, 0x99, 0x36, 0x19, 0x10, 0x3e, 0xc0, 0x21,
0x48, 0x4c, 0xd4, 0xc7, 0x9c, 0x11, 0x0a, 0x09, 0x01, 0x0b, 0x02, 0x3e,
0x9b, 0x12, 0xb5, 0xf9, 0x99, 0x36, 0x19, 0x10, 0x3e, 0xc0, 0x21, 0x47,
0x5c, 0xe7, 0xc6, 0x2c, 0x1a, 0x0a, 0x09, 0x01, 0x0b, 0x02, 0x3e, 0x9b,
0x12, 0xb5, 0xf9, 0x99, 0x36, 0x19, 0x10, 0x3e, 0xc0, 0x21, 0x46, 0x1b,
0xf5, 0xc4, 0x28, 0x4e, 0x0a, 0x08, 0x01, 0x0c, 0x12, 0x3e, 0xc0, 0x21,
0xb6, 0x19, 0x10, 0x36, 0x19, 0x10, 0x3e, 0xc0, 0x21, 0x45, 0xb6, 0x34,
0xc4, 0x22, 0x1f, 0x01, 0x17, 0x84, 0x00, 0x04, 0x0a, 0x0a, 0x01, 0x07,
0x02, 0x3e, 0xc0, 0x21, 0xb6, 0x19, 0x10, 0x36, 0x19, 0x10, 0x3e, 0xc0,
0x21, 0x45, 0xb6, 0x34, 0xc4, 0x22, 0x1f, 0x0a, 0x0b, 0x01, 0x08, 0x02,
0x3e, 0xc0, 0x21, 0xb6, 0x19, 0x10, 0x36, 0x19, 0x10, 0x3e, 0xc0, 0x21,
0x45, 0xb6, 0x34, 0xc4, 0x22, 0x1f, 0x0a, 0x0c, 0x01, 0x09, 0x02, 0x3e,
0xc0, 0x21, 0xb6, 0x19, 0x10, 0x36, 0x19, 0x10, 0x3e, 0xc0, 0x21, 0x45,
0xb6, 0x34, 0xc4, 0x22, 0x1f, 0x0a, 0x08, 0x01, 0x0a, 0x12, 0x3e, 0x98,
0xfd, 0xb5, 0xf6, 0x6c, 0x35, 0xc9, 0x3d, 0x3e, 0x7b, 0x5e, 0x48, 0xf2,
0x4e, 0xc7, 0xee, 0x3f, 0x01, 0x17, 0x84, 0x22, 0x04, 0x0a, 0x0d, 0x01,
0x0a, 0x02, 0x3e, 0x98, 0xfd, 0xb5, 0xf6, 0x6c, 0x35, 0xc9, 0x3d, 0x3e,
0x7b, 0x5e, 0x48, 0xf2, 0x4e, 0xc7, 0xee, 0x3f, 0x0a, 0x08, 0x01, 0x0a,
0x12, 0x3e, 0x98, 0xfd, 0xb5, 0xf6, 0x6c, 0x35, 0xc9, 0x3d, 0x3e, 0x7b,
0x5e, 0x48, 0x53, 0xa1, 0xc6, 0xa0, 0xb6, 0x01, 0x17, 0x84, 0x22, 0x04,
0x0a, 0x0d, 0x01, 0x0a, 0x02, 0x3e, 0x98, 0xfd, 0xb5, 0xf6, 0x6c, 0x35,
0xc9, 0x3d, 0x3e, 0x7b, 0x5e, 0x48, 0x53, 0xa1, 0xc6, 0xa0, 0xb6, 0x0a,
0x08, 0x01, 0x0a, 0x12, 0x3e, 0x98, 0xfd, 0xb5, 0xf6, 0x6c, 0x35, 0xc9,
0x3d, 0x3e, 0x7b, 0x5e, 0x47, 0x69, 0xe9, 0xc4, 0xa6, 0x5a, 0x01, 0x17,
0x84, 0x22, 0x04, 0x0a, 0x0d, 0x01, 0x0a, 0x02, 0x3e, 0x98, 0xfd, 0xb5,
0xf6, 0x6c, 0x35, 0xc9, 0x3d, 0x3e, 0x7b, 0x5e, 0x47, 0x69, 0xe9, 0xc4,
0xa6, 0x5a, 0x0a, 0x08, 0x01, 0x0a, 0x12, 0x3e, 0x98, 0xfd, 0xb5, 0xf6,
0x6c, 0x35, 0xc9, 0x3d, 0x3e, 0x7b, 0x5e, 0x46, 0x2c, 0x90, 0xb8, 0xd1,
0xff, 0x01, 0x17, 0x84, 0x22, 0x04, 0x0a, 0x0d, 0x01, 0x0a, 0x02, 0x3e,
0x98, 0xfd, 0xb5, 0xf6, 0x6c, 0x35, 0xc9, 0x3d, 0x3e, 0x7b, 0x5e, 0x46,
0x2c, 0x90, 0xb8, 0xd1, 0xff
};
static const uint32 kDMAResourceBufferCount = 16;
static const uint32 kDMAResourceBounceBufferCount = 16;
static const char* const kDriverModuleName
= "drivers/disk/virtual/ram_disk/driver_v1";
static const char* const kControlDeviceModuleName
= "drivers/disk/virtual/ram_disk/control/device_v1";
static const char* const kRawDeviceModuleName
= "drivers/disk/virtual/ram_disk/raw/device_v1";
static const char* const kControlDeviceName = RAM_DISK_CONTROL_DEVICE_NAME;
static const char* const kRawDeviceBaseName = RAM_DISK_RAW_DEVICE_BASE_NAME;
static const char* const kFilePathItem = "ram_disk/file_path";
static const char* const kDeviceSizeItem = "ram_disk/device_size";
static const char* const kDeviceIDItem = "ram_disk/id";
struct RawDevice;
typedef DoublyLinkedList<RawDevice> RawDeviceList;
struct device_manager_info* sDeviceManager;
static RawDeviceList sDeviceList;
static mutex sDeviceListLock = MUTEX_INITIALIZER("ram disk device list");
static uint64 sUsedRawDeviceIDs = 0;
static int32 allocate_raw_device_id();
static void free_raw_device_id(int32 id);
struct Device {
Device(device_node* node)
:
fNode(node)
{
mutex_init(&fLock, "ram disk device");
}
virtual ~Device()
{
mutex_destroy(&fLock);
}
bool Lock() { mutex_lock(&fLock); return true; }
void Unlock() { mutex_unlock(&fLock); }
device_node* Node() const { return fNode; }
virtual status_t PublishDevice() = 0;
protected:
mutex fLock;
device_node* fNode;
};
struct ControlDevice : Device {
ControlDevice(device_node* node)
:
Device(node)
{
}
status_t Register(const char* filePath, uint64 deviceSize, int32& _id)
{
int32 id = allocate_raw_device_id();
if (id < 0)
return B_BUSY;
device_attr attrs[] = {
{B_DEVICE_PRETTY_NAME, B_STRING_TYPE,
{.string = "RAM Disk Raw Device"}},
{kDeviceSizeItem, B_UINT64_TYPE, {.ui64 = deviceSize}},
{kDeviceIDItem, B_UINT32_TYPE, {.ui32 = (uint32)id}},
{kFilePathItem, B_STRING_TYPE, {.string = filePath}},
{NULL}
};
if (filePath == NULL) {
size_t count = sizeof(attrs) / sizeof(attrs[0]);
memset(attrs + count - 2, 0, sizeof(attrs[0]));
}
status_t error = sDeviceManager->register_node(
sDeviceManager->get_parent_node(Node()), kDriverModuleName, attrs,
NULL, NULL);
if (error != B_OK) {
free_raw_device_id(id);
return error;
}
_id = id;
return B_OK;
}
virtual status_t PublishDevice()
{
return sDeviceManager->publish_device(Node(), kControlDeviceName,
kControlDeviceModuleName);
}
};
struct RawDevice : Device, DoublyLinkedListLinkImpl<RawDevice> {
RawDevice(device_node* node)
:
Device(node),
fID(-1),
fUnregistered(false),
fDeviceSize(0),
fDeviceName(NULL),
fFilePath(NULL),
fCache(NULL),
fDMAResource(NULL),
fIOScheduler(NULL)
{
}
virtual ~RawDevice()
{
if (fID >= 0) {
MutexLocker locker(sDeviceListLock);
sDeviceList.Remove(this);
}
free(fDeviceName);
free(fFilePath);
}
int32 ID() const { return fID; }
off_t DeviceSize() const { return fDeviceSize; }
const char* DeviceName() const { return fDeviceName; }
bool IsUnregistered() const { return fUnregistered; }
void SetUnregistered(bool unregistered)
{
fUnregistered = unregistered;
}
status_t Init(int32 id, const char* filePath, uint64 deviceSize)
{
fID = id;
fFilePath = filePath != NULL ? strdup(filePath) : NULL;
if (filePath != NULL && fFilePath == NULL)
return B_NO_MEMORY;
fDeviceSize = (deviceSize + B_PAGE_SIZE - 1) / B_PAGE_SIZE
* B_PAGE_SIZE;
if (fDeviceSize < B_PAGE_SIZE
|| (uint64)fDeviceSize / B_PAGE_SIZE
> vm_page_num_pages() * 2 / 3) {
return B_BAD_VALUE;
}
KPath path(kRawDeviceBaseName);
char buffer[32];
snprintf(buffer, sizeof(buffer), "%" B_PRId32 "/raw", fID);
status_t error = path.Append(buffer);
if (error != B_OK)
return error;
fDeviceName = path.DetachBuffer();
RawDevice* nextDevice = NULL;
MutexLocker locker(sDeviceListLock);
for (RawDeviceList::Iterator it = sDeviceList.GetIterator();
(nextDevice = it.Next()) != NULL;) {
if (nextDevice->ID() > fID)
break;
}
sDeviceList.InsertBefore(nextDevice, this);
return B_OK;
}
status_t Prepare()
{
status_t error = VMCacheFactory::CreateAnonymousCache(fCache, false, 0,
0, false, VM_PRIORITY_SYSTEM);
if (error != B_OK) {
Unprepare();
return error;
}
fCache->temporary = 1;
fCache->virtual_end = fDeviceSize;
fCache->Lock();
error = fCache->Commit(fDeviceSize, VM_PRIORITY_USER);
fCache->Unlock();
if (error != B_OK) {
Unprepare();
return error;
}
if (fFilePath != NULL) {
error = _LoadFile();
if (error != B_OK) {
Unprepare();
return error;
}
}
const dma_restrictions restrictions = {};
fDMAResource = new(std::nothrow) DMAResource;
if (fDMAResource == NULL) {
Unprepare();
return B_NO_MEMORY;
}
error = fDMAResource->Init(restrictions, B_PAGE_SIZE,
kDMAResourceBufferCount, kDMAResourceBounceBufferCount);
if (error != B_OK) {
Unprepare();
return error;
}
fIOScheduler = new(std::nothrow) IOSchedulerSimple(fDMAResource);
if (fIOScheduler == NULL) {
Unprepare();
return B_NO_MEMORY;
}
error = fIOScheduler->Init("ram disk device scheduler");
if (error != B_OK) {
Unprepare();
return error;
}
fIOScheduler->SetCallback(&_DoIOEntry, this);
return B_OK;
}
void Unprepare()
{
delete fIOScheduler;
fIOScheduler = NULL;
delete fDMAResource;
fDMAResource = NULL;
if (fCache != NULL) {
fCache->Lock();
fCache->ReleaseRefAndUnlock();
fCache = NULL;
}
}
void GetInfo(ram_disk_ioctl_info& _info) const
{
_info.id = fID;
_info.size = fDeviceSize;
memset(&_info.path, 0, sizeof(_info.path));
if (fFilePath != NULL)
strlcpy(_info.path, fFilePath, sizeof(_info.path));
}
status_t Flush()
{
static const size_t kPageCountPerIteration = 1024;
static const size_t kMaxGapSize = 15;
FileDescriptorCloser fd(open(fFilePath, O_WRONLY));
if (!fd.IsSet())
return errno;
vm_page** pages = new(std::nothrow) vm_page*[kPageCountPerIteration];
ArrayDeleter<vm_page*> pagesDeleter(pages);
uint8* buffer = (uint8*)malloc(kPageCountPerIteration * B_PAGE_SIZE);
MemoryDeleter bufferDeleter(buffer);
if (pages == NULL || buffer == NULL)
return B_NO_MEMORY;
AutoLocker<VMCache> locker(fCache);
status_t error = B_OK;
for (off_t offset = 0; offset < fDeviceSize;) {
VMCachePagesTree::Iterator it
= fCache->pages.GetIterator(offset / B_PAGE_SIZE, true, true);
vm_page* firstModified;
while ((firstModified = it.Next()) != NULL
&& !firstModified->modified) {
}
if (firstModified == NULL)
break;
if (firstModified->busy) {
fCache->WaitForPageEvents(firstModified, PAGE_EVENT_NOT_BUSY,
true);
continue;
}
pages[0] = firstModified;
page_num_t firstPageIndex = firstModified->cache_offset;
offset = firstPageIndex * B_PAGE_SIZE;
size_t previousModifiedIndex = 0;
size_t previousIndex = 0;
while (vm_page* page = it.Next()) {
page_num_t index = page->cache_offset - firstPageIndex;
if (page->busy
|| index >= kPageCountPerIteration
|| index - previousModifiedIndex > kMaxGapSize) {
break;
}
pages[index] = page;
if (previousIndex + 1 < index) {
memset(pages + previousIndex + 1, 0,
(index - previousIndex - 1) * sizeof(vm_page*));
}
previousIndex = index;
if (page->modified)
previousModifiedIndex = index;
}
size_t pagesToWrite = previousModifiedIndex + 1;
for (size_t i = 0; i < pagesToWrite; i++) {
if (vm_page* page = pages[i]) {
DEBUG_PAGE_ACCESS_START(page);
page->busy = true;
}
}
locker.Unlock();
for (size_t i = 0; i < pagesToWrite; i++) {
if (vm_page* page = pages[i]) {
error = vm_memcpy_from_physical(buffer + i * B_PAGE_SIZE,
page->physical_page_number * B_PAGE_SIZE, B_PAGE_SIZE,
false);
if (error != B_OK) {
dprintf("ramdisk: error copying page %" B_PRIu64
" data: %s\n", (uint64)page->physical_page_number,
strerror(error));
break;
}
} else
memset(buffer + i * B_PAGE_SIZE, 0, B_PAGE_SIZE);
}
if (error == B_OK) {
ssize_t bytesWritten = pwrite(fd.Get(), buffer,
pagesToWrite * B_PAGE_SIZE, offset);
if (bytesWritten < 0) {
dprintf("ramdisk: error writing pages to file: %s\n",
strerror(bytesWritten));
error = bytesWritten;
}
else if ((size_t)bytesWritten != pagesToWrite * B_PAGE_SIZE) {
dprintf("ramdisk: error writing pages to file: short "
"write (%zd/%zu)\n", bytesWritten,
pagesToWrite * B_PAGE_SIZE);
error = B_ERROR;
}
}
locker.Lock();
for (size_t i = 0; i < pagesToWrite; i++) {
if (vm_page* page = pages[i]) {
if (error == B_OK)
page->modified = false;
fCache->MarkPageUnbusy(page);
DEBUG_PAGE_ACCESS_END(page);
}
}
if (error != B_OK)
break;
offset += pagesToWrite * B_PAGE_SIZE;
}
return error;
}
status_t Trim(fs_trim_data* trimData)
{
TRACE("trim_device()\n");
trimData->trimmed_size = 0;
const off_t deviceSize = fDeviceSize;
if (deviceSize < 0)
return B_BAD_VALUE;
STATIC_ASSERT(sizeof(deviceSize) <= sizeof(uint64));
ASSERT(deviceSize >= 0);
for (uint32 i = 0; i < trimData->range_count; i++) {
uint64 offset = trimData->ranges[i].offset;
uint64& size = trimData->ranges[i].size;
if (offset >= (uint64)deviceSize)
return B_BAD_VALUE;
size = min_c(size, (uint64)deviceSize - offset);
}
status_t result = B_OK;
uint64 trimmedSize = 0;
for (uint32 i = 0; i < trimData->range_count; i++) {
uint64 offset = trimData->ranges[i].offset;
uint64 length = trimData->ranges[i].size;
offset = (offset + B_PAGE_SIZE - 1) & ~(B_PAGE_SIZE - 1);
length -= offset - trimData->ranges[i].offset;
length &= ~(B_PAGE_SIZE - 1);
if (length == 0)
continue;
TRACE("ramdisk: trim %" B_PRIu64 " bytes from %" B_PRIu64 "\n",
length, offset);
AutoLocker<VMCache> locker(fCache);
for (uint64 j = 0; j < length / B_PAGE_SIZE; j++) {
vm_page* page = fCache->LookupPage(offset + j * B_PAGE_SIZE);
if (page == NULL || page->busy)
continue;
TRACE("free range %" B_PRIu32 ", page %" B_PRIu64 ", offset %"
B_PRIu64 "\n", i, j, offset);
DEBUG_PAGE_ACCESS_START(page);
fCache->RemovePage(page);
vm_page_free(NULL, page);
trimmedSize += B_PAGE_SIZE;
}
}
trimData->trimmed_size = trimmedSize;
return result;
}
status_t DoIO(IORequest* request)
{
return fIOScheduler->ScheduleRequest(request);
}
virtual status_t PublishDevice()
{
return sDeviceManager->publish_device(Node(), fDeviceName,
kRawDeviceModuleName);
}
private:
static status_t _DoIOEntry(void* data, IOOperation* operation)
{
return ((RawDevice*)data)->_DoIO(operation);
}
status_t _DoIO(IOOperation* operation)
{
off_t offset = operation->Offset();
generic_size_t length = operation->Length();
ASSERT(offset % B_PAGE_SIZE == 0);
ASSERT(length % B_PAGE_SIZE == 0);
const generic_io_vec* vecs = operation->Vecs();
generic_size_t vecOffset = 0;
bool isWrite = operation->IsWrite();
BStackOrHeapArray<vm_page*, 16> pages(length / B_PAGE_SIZE);
if (!pages.IsValid())
return B_NO_MEMORY;
cache_get_pages(fCache, offset, length, isWrite, pages);
status_t error = B_OK;
size_t index = 0;
while (length > 0) {
vm_page* page = pages[index];
if (isWrite)
page->modified = true;
error = _CopyData(page, vecs, vecOffset, isWrite);
if (error != B_OK)
break;
offset += B_PAGE_SIZE;
length -= B_PAGE_SIZE;
index++;
}
cache_put_pages(fCache, operation->Offset(), operation->Length(), pages,
error == B_OK);
if (error != B_OK) {
fIOScheduler->OperationCompleted(operation, error, 0);
return error;
}
fIOScheduler->OperationCompleted(operation, B_OK, operation->Length());
return B_OK;
}
status_t _CopyData(vm_page* page, const generic_io_vec*& vecs,
generic_size_t& vecOffset, bool toPage)
{
Thread* thread = thread_get_current_thread();
uint8* pageData = NULL;
void* handle;
if (page != NULL) {
thread_pin_to_current_cpu(thread);
addr_t virtualAddress;
status_t error = vm_get_physical_page_current_cpu(
page->physical_page_number * B_PAGE_SIZE, &virtualAddress,
&handle);
if (error != B_OK) {
thread_unpin_from_current_cpu(thread);
return error;
}
pageData = (uint8*)virtualAddress;
}
status_t error = B_OK;
size_t length = B_PAGE_SIZE;
while (length > 0) {
size_t toCopy = std::min((generic_size_t)length,
vecs->length - vecOffset);
if (toCopy == 0) {
vecs++;
vecOffset = 0;
continue;
}
phys_addr_t vecAddress = vecs->base + vecOffset;
error = toPage
? vm_memcpy_from_physical(pageData, vecAddress, toCopy, false)
: (page != NULL
? vm_memcpy_to_physical(vecAddress, pageData, toCopy, false)
: vm_memset_physical(vecAddress, 0, toCopy));
if (error != B_OK)
break;
pageData += toCopy;
length -= toCopy;
vecOffset += toCopy;
}
if (page != NULL) {
vm_put_physical_page_current_cpu((addr_t)pageData, handle);
thread_unpin_from_current_cpu(thread);
}
return error;
}
status_t _LoadFile()
{
static const size_t kPageCountPerIteration = 1024;
FileDescriptorCloser fd(open(fFilePath, O_RDONLY));
if (!fd.IsSet())
return errno;
ArrayDeleter<vm_page*> pages(
new(std::nothrow) vm_page*[kPageCountPerIteration]);
ArrayDeleter<uint8> buffer(
new(std::nothrow) uint8[kPageCountPerIteration * B_PAGE_SIZE]);
if (!pages.IsSet() || !buffer.IsSet())
return B_NO_MEMORY;
status_t error = B_OK;
page_num_t allocatedPages = 0;
off_t offset = 0;
off_t sizeRemaining = fDeviceSize;
while (sizeRemaining > 0) {
size_t pagesToRead = std::min(kPageCountPerIteration,
size_t(sizeRemaining / B_PAGE_SIZE));
if (allocatedPages < pagesToRead) {
vm_page_reservation reservation;
vm_page_reserve_pages(&reservation,
pagesToRead - allocatedPages, VM_PRIORITY_SYSTEM);
while (allocatedPages < pagesToRead) {
pages[allocatedPages++]
= vm_page_allocate_page(&reservation, PAGE_STATE_WIRED);
}
vm_page_unreserve_pages(&reservation);
}
size_t bytesToRead = pagesToRead * B_PAGE_SIZE;
ssize_t bytesRead = pread(fd.Get(), buffer.Get(), bytesToRead,
offset);
if (bytesRead < 0) {
error = bytesRead;
break;
}
size_t pagesRead = (bytesRead + B_PAGE_SIZE - 1) / B_PAGE_SIZE;
if (pagesRead < pagesToRead) {
error = B_ERROR;
break;
}
if ((size_t)bytesRead < pagesRead * B_PAGE_SIZE) {
memset(buffer.Get() + bytesRead, 0,
pagesRead * B_PAGE_SIZE - bytesRead);
}
for (size_t i = 0; i < pagesRead; i++) {
vm_page* page = pages[i];
error = vm_memcpy_to_physical(
page->physical_page_number * B_PAGE_SIZE,
buffer.Get() + i * B_PAGE_SIZE, B_PAGE_SIZE, false);
if (error != B_OK)
break;
}
if (error != B_OK)
break;
AutoLocker<VMCache> locker(fCache);
size_t clearPages = 0;
for (size_t i = 0; i < pagesRead; i++) {
uint64* pageData = (uint64*)(buffer.Get() + i * B_PAGE_SIZE);
bool isClear = true;
for (size_t k = 0; isClear && k < B_PAGE_SIZE / 8; k++)
isClear = pageData[k] == 0;
if (isClear) {
pages[clearPages++] = pages[i];
} else {
fCache->InsertPage(pages[i], offset + i * B_PAGE_SIZE);
DEBUG_PAGE_ACCESS_END(pages[i]);
}
}
locker.Unlock();
if (pagesRead < allocatedPages) {
size_t count = allocatedPages - pagesRead;
memcpy(pages.Get() + clearPages, pages.Get() + pagesRead,
count * sizeof(vm_page*));
clearPages += count;
}
allocatedPages = clearPages;
offset += pagesRead * B_PAGE_SIZE;
sizeRemaining -= pagesRead * B_PAGE_SIZE;
}
for (size_t i = 0; i < allocatedPages; i++)
vm_page_free(NULL, pages[i]);
return error;
}
private:
int32 fID;
bool fUnregistered;
off_t fDeviceSize;
char* fDeviceName;
char* fFilePath;
VMCache* fCache;
DMAResource* fDMAResource;
IOScheduler* fIOScheduler;
};
struct RawDeviceCookie {
RawDeviceCookie(RawDevice* device, int openMode)
:
fDevice(device),
fOpenMode(openMode)
{
}
RawDevice* Device() const { return fDevice; }
int OpenMode() const { return fOpenMode; }
private:
RawDevice* fDevice;
int fOpenMode;
};
static int32
allocate_raw_device_id()
{
MutexLocker deviceListLocker(sDeviceListLock);
for (size_t i = 0; i < sizeof(sUsedRawDeviceIDs) * 8; i++) {
if ((sUsedRawDeviceIDs & ((uint64)1 << i)) == 0) {
sUsedRawDeviceIDs |= (uint64)1 << i;
return (int32)i;
}
}
return -1;
}
static void
free_raw_device_id(int32 id)
{
MutexLocker deviceListLocker(sDeviceListLock);
sUsedRawDeviceIDs &= ~((uint64)1 << id);
}
static RawDevice*
find_raw_device(int32 id)
{
for (RawDeviceList::Iterator it = sDeviceList.GetIterator();
RawDevice* device = it.Next();) {
if (device->ID() == id)
return device;
}
return NULL;
}
static status_t
ioctl_register(ControlDevice* controlDevice, ram_disk_ioctl_register* request)
{
KPath path;
uint64 deviceSize = 0;
if (request->path[0] != '\0') {
if (strnlen(request->path, sizeof(request->path))
== sizeof(request->path)) {
return B_BAD_VALUE;
}
status_t error = path.SetTo(request->path, true);
if (error != B_OK) {
dprintf("ramdisk: register: Invalid path \"%s\": %s\n",
request->path, strerror(error));
return B_BAD_VALUE;
}
struct stat st;
if (lstat(path.Path(), &st) != 0) {
dprintf("ramdisk: register: Failed to stat \"%s\": %s\n",
path.Path(), strerror(errno));
return errno;
}
if (!S_ISREG(st.st_mode)) {
dprintf("ramdisk: register: \"%s\" is not a file!\n", path.Path());
return B_BAD_VALUE;
}
deviceSize = st.st_size;
} else {
deviceSize = request->size;
}
return controlDevice->Register(path.Length() > 0 ? path.Path() : NULL,
deviceSize, request->id);
}
static status_t
ioctl_unregister(ControlDevice* controlDevice,
ram_disk_ioctl_unregister* request)
{
MutexLocker locker(sDeviceListLock);
RawDevice* device = find_raw_device(request->id);
if (device == NULL)
return B_ENTRY_NOT_FOUND;
if (device->IsUnregistered())
return B_BUSY;
device->SetUnregistered(true);
locker.Unlock();
device_node* node = device->Node();
status_t error = sDeviceManager->unpublish_device(node,
device->DeviceName());
if (error != B_OK) {
dprintf("ramdisk: unregister: Failed to unpublish device \"%s\": %s\n",
device->DeviceName(), strerror(error));
return error;
}
error = sDeviceManager->unregister_node(node);
if (error != B_OK && error != B_BUSY) {
dprintf("ramdisk: unregister: Failed to unregister node for device %"
B_PRId32 ": %s\n", request->id, strerror(error));
return error;
}
return B_OK;
}
static status_t
ioctl_info(RawDevice* device, ram_disk_ioctl_info* request)
{
device->GetInfo(*request);
return B_OK;
}
template<typename DeviceType, typename Request>
static status_t
handle_ioctl(DeviceType* device,
status_t (*handler)(DeviceType*, Request*), void* buffer)
{
if (buffer == NULL || !IS_USER_ADDRESS(buffer))
return B_BAD_ADDRESS;
Request* request = new(std::nothrow) Request;
if (request == NULL)
return B_NO_MEMORY;
ObjectDeleter<Request> requestDeleter(request);
if (user_memcpy(request, buffer, sizeof(Request)) != B_OK)
return B_BAD_ADDRESS;
status_t error = handler(device, request);
if (error != B_OK)
return error;
if (user_memcpy(buffer, request, sizeof(Request)) != B_OK)
return B_BAD_ADDRESS;
return B_OK;
}
static float
ram_disk_driver_supports_device(device_node* parent)
{
const char* bus = NULL;
if (sDeviceManager->get_attr_string(parent, B_DEVICE_BUS, &bus, false)
== B_OK
&& strcmp(bus, "generic") == 0) {
return 0.8;
}
return -1;
}
static status_t
ram_disk_driver_register_device(device_node* parent)
{
device_attr attrs[] = {
{B_DEVICE_PRETTY_NAME, B_STRING_TYPE,
{.string = "RAM Disk Control Device"}},
{NULL}
};
return sDeviceManager->register_node(parent, kDriverModuleName, attrs, NULL,
NULL);
}
static status_t
ram_disk_driver_init_driver(device_node* node, void** _driverCookie)
{
uint64 deviceSize;
if (sDeviceManager->get_attr_uint64(node, kDeviceSizeItem, &deviceSize,
false) == B_OK) {
int32 id = -1;
sDeviceManager->get_attr_uint32(node, kDeviceIDItem, (uint32*)&id,
false);
if (id < 0)
return B_ERROR;
const char* filePath = NULL;
sDeviceManager->get_attr_string(node, kFilePathItem, &filePath, false);
RawDevice* device = new(std::nothrow) RawDevice(node);
if (device == NULL)
return B_NO_MEMORY;
status_t error = device->Init(id, filePath, deviceSize);
if (error != B_OK) {
delete device;
return error;
}
*_driverCookie = (Device*)device;
} else {
ControlDevice* device = new(std::nothrow) ControlDevice(node);
if (device == NULL)
return B_NO_MEMORY;
*_driverCookie = (Device*)device;
}
return B_OK;
}
static void
ram_disk_driver_uninit_driver(void* driverCookie)
{
Device* device = (Device*)driverCookie;
if (RawDevice* rawDevice = dynamic_cast<RawDevice*>(device))
free_raw_device_id(rawDevice->ID());
delete device;
}
static status_t
ram_disk_driver_register_child_devices(void* driverCookie)
{
Device* device = (Device*)driverCookie;
return device->PublishDevice();
}
static status_t
ram_disk_control_device_init_device(void* driverCookie, void** _deviceCookie)
{
*_deviceCookie = driverCookie;
return B_OK;
}
static void
ram_disk_control_device_uninit_device(void* deviceCookie)
{
}
static status_t
ram_disk_control_device_open(void* deviceCookie, const char* path, int openMode,
void** _cookie)
{
*_cookie = deviceCookie;
return B_OK;
}
static status_t
ram_disk_control_device_close(void* cookie)
{
return B_OK;
}
static status_t
ram_disk_control_device_free(void* cookie)
{
return B_OK;
}
static status_t
ram_disk_control_device_read(void* cookie, off_t position, void* buffer,
size_t* _length)
{
return B_BAD_VALUE;
}
static status_t
ram_disk_control_device_write(void* cookie, off_t position, const void* data,
size_t* _length)
{
return B_BAD_VALUE;
}
static status_t
ram_disk_control_device_control(void* cookie, uint32 op, void* buffer,
size_t length)
{
ControlDevice* device = (ControlDevice*)cookie;
switch (op) {
case RAM_DISK_IOCTL_REGISTER:
return handle_ioctl(device, &ioctl_register, buffer);
case RAM_DISK_IOCTL_UNREGISTER:
return handle_ioctl(device, &ioctl_unregister, buffer);
}
return B_BAD_VALUE;
}
static status_t
ram_disk_raw_device_init_device(void* driverCookie, void** _deviceCookie)
{
RawDevice* device = static_cast<RawDevice*>((Device*)driverCookie);
status_t error = device->Prepare();
if (error != B_OK)
return error;
*_deviceCookie = device;
return B_OK;
}
static void
ram_disk_raw_device_uninit_device(void* deviceCookie)
{
RawDevice* device = (RawDevice*)deviceCookie;
device->Unprepare();
}
static status_t
ram_disk_raw_device_open(void* deviceCookie, const char* path, int openMode,
void** _cookie)
{
RawDevice* device = (RawDevice*)deviceCookie;
RawDeviceCookie* cookie = new(std::nothrow) RawDeviceCookie(device,
openMode);
if (cookie == NULL)
return B_NO_MEMORY;
*_cookie = cookie;
return B_OK;
}
static status_t
ram_disk_raw_device_close(void* cookie)
{
return B_OK;
}
static status_t
ram_disk_raw_device_free(void* _cookie)
{
RawDeviceCookie* cookie = (RawDeviceCookie*)_cookie;
delete cookie;
return B_OK;
}
static status_t
ram_disk_raw_device_read(void* _cookie, off_t pos, void* buffer,
size_t* _length)
{
RawDeviceCookie* cookie = (RawDeviceCookie*)_cookie;
RawDevice* device = cookie->Device();
size_t length = *_length;
if (pos >= device->DeviceSize())
return B_BAD_VALUE;
if (pos + (off_t)length > device->DeviceSize())
length = device->DeviceSize() - pos;
IORequest request;
status_t status = request.Init(pos, (addr_t)buffer, length, false, 0);
if (status != B_OK)
return status;
status = device->DoIO(&request);
if (status != B_OK)
return status;
status = request.Wait(0, 0);
if (status == B_OK)
*_length = length;
return status;
}
static status_t
ram_disk_raw_device_write(void* _cookie, off_t pos, const void* buffer,
size_t* _length)
{
RawDeviceCookie* cookie = (RawDeviceCookie*)_cookie;
RawDevice* device = cookie->Device();
size_t length = *_length;
if (pos >= device->DeviceSize())
return B_BAD_VALUE;
if (pos + (off_t)length > device->DeviceSize())
length = device->DeviceSize() - pos;
IORequest request;
status_t status = request.Init(pos, (addr_t)buffer, length, true, 0);
if (status != B_OK)
return status;
status = device->DoIO(&request);
if (status != B_OK)
return status;
status = request.Wait(0, 0);
if (status == B_OK)
*_length = length;
return status;
}
static status_t
ram_disk_raw_device_io(void* _cookie, io_request* request)
{
RawDeviceCookie* cookie = (RawDeviceCookie*)_cookie;
RawDevice* device = cookie->Device();
return device->DoIO(request);
}
static status_t
ram_disk_raw_device_control(void* _cookie, uint32 op, void* buffer,
size_t length)
{
RawDeviceCookie* cookie = (RawDeviceCookie*)_cookie;
RawDevice* device = cookie->Device();
switch (op) {
case B_GET_DEVICE_SIZE:
{
size_t size = device->DeviceSize();
return user_memcpy(buffer, &size, sizeof(size_t));
}
case B_SET_NONBLOCKING_IO:
case B_SET_BLOCKING_IO:
return B_OK;
case B_GET_READ_STATUS:
case B_GET_WRITE_STATUS:
{
bool value = true;
return user_memcpy(buffer, &value, sizeof(bool));
}
case B_GET_GEOMETRY:
case B_GET_BIOS_GEOMETRY:
{
if (buffer == NULL || length > sizeof(device_geometry))
return B_BAD_VALUE;
device_geometry geometry;
geometry.bytes_per_sector = B_PAGE_SIZE;
geometry.sectors_per_track = 1;
geometry.cylinder_count = device->DeviceSize() / B_PAGE_SIZE;
geometry.head_count = 1;
geometry.device_type = B_DISK;
geometry.removable = true;
geometry.read_only = false;
geometry.write_once = false;
geometry.bytes_per_physical_sector = B_PAGE_SIZE;
return user_memcpy(buffer, &geometry, length);
}
case B_GET_MEDIA_STATUS:
{
status_t status = B_OK;
return user_memcpy(buffer, &status, sizeof(status_t));
}
case B_GET_ICON_NAME:
return user_strlcpy((char*)buffer, "devices/drive-ramdisk",
B_FILE_NAME_LENGTH);
case B_GET_VECTOR_ICON:
{
device_icon iconData;
if (length != sizeof(device_icon))
return B_BAD_VALUE;
if (user_memcpy(&iconData, buffer, sizeof(device_icon)) != B_OK)
return B_BAD_ADDRESS;
if (iconData.icon_size >= (int32)sizeof(kRamdiskIcon)) {
if (user_memcpy(iconData.icon_data, kRamdiskIcon,
sizeof(kRamdiskIcon)) != B_OK)
return B_BAD_ADDRESS;
}
iconData.icon_size = sizeof(kRamdiskIcon);
return user_memcpy(buffer, &iconData, sizeof(device_icon));
}
case B_SET_UNINTERRUPTABLE_IO:
case B_SET_INTERRUPTABLE_IO:
case B_FLUSH_DRIVE_CACHE:
return B_OK;
case RAM_DISK_IOCTL_FLUSH:
{
status_t error = device->Flush();
if (error != B_OK) {
dprintf("ramdisk: flush: Failed to flush device: %s\n",
strerror(error));
return error;
}
return B_OK;
}
case B_TRIM_DEVICE:
{
ASSERT(IS_KERNEL_ADDRESS(buffer));
return device->Trim((fs_trim_data*)buffer);
}
case RAM_DISK_IOCTL_INFO:
return handle_ioctl(device, &ioctl_info, buffer);
}
return B_BAD_VALUE;
}
module_dependency module_dependencies[] = {
{B_DEVICE_MANAGER_MODULE_NAME, (module_info**)&sDeviceManager},
{}
};
static const struct driver_module_info sChecksumDeviceDriverModule = {
{
kDriverModuleName,
0,
NULL
},
ram_disk_driver_supports_device,
ram_disk_driver_register_device,
ram_disk_driver_init_driver,
ram_disk_driver_uninit_driver,
ram_disk_driver_register_child_devices
};
static const struct device_module_info sChecksumControlDeviceModule = {
{
kControlDeviceModuleName,
0,
NULL
},
ram_disk_control_device_init_device,
ram_disk_control_device_uninit_device,
NULL,
ram_disk_control_device_open,
ram_disk_control_device_close,
ram_disk_control_device_free,
ram_disk_control_device_read,
ram_disk_control_device_write,
NULL,
ram_disk_control_device_control,
NULL,
NULL
};
static const struct device_module_info sChecksumRawDeviceModule = {
{
kRawDeviceModuleName,
0,
NULL
},
ram_disk_raw_device_init_device,
ram_disk_raw_device_uninit_device,
NULL,
ram_disk_raw_device_open,
ram_disk_raw_device_close,
ram_disk_raw_device_free,
ram_disk_raw_device_read,
ram_disk_raw_device_write,
ram_disk_raw_device_io,
ram_disk_raw_device_control,
NULL,
NULL
};
const module_info* modules[] = {
(module_info*)&sChecksumDeviceDriverModule,
(module_info*)&sChecksumControlDeviceModule,
(module_info*)&sChecksumRawDeviceModule,
NULL
};