* Copyright 2019-2022 Haiku, Inc. All rights reserved.
* Distributed under the terms of the MIT License.
*
* Authors:
* Alexander von Gluck IV <kallisti5@unixzen.com>
*/
#include <arch_cpu_defs.h>
#include <arch_dtb.h>
#include <arch_smp.h>
#include <arch/generic/debug_uart_8250.h>
#if defined(__riscv)
# include <arch/riscv64/arch_uart_sifive.h>
#elif defined(__ARM__)
# include <arch/arm/arch_uart_pl011.h>
#elif defined(__aarch64__)
# include <arch/arm/arch_uart_pl011.h>
# include <arch/arm64/arch_uart_linflex.h>
#endif
#include <boot/addr_range.h>
#include <boot/platform.h>
#include <boot/stage2.h>
#include <boot/uart.h>
#include <string.h>
#include <kernel/kernel.h>
#include <ByteOrder.h>
extern "C" {
#include <libfdt.h>
}
#include "efi_platform.h"
#include "serial.h"
#define GIC_INTERRUPT_CELL_TYPE 0
#define GIC_INTERRUPT_CELL_ID 1
#define GIC_INTERRUPT_CELL_FLAGS 2
#define GIC_INTERRUPT_TYPE_SPI 0
#define GIC_INTERRUPT_TYPE_PPI 1
#define GIC_INTERRUPT_BASE_SPI 32
#define GIC_INTERRUPT_BASE_PPI 16
#define INFO(x...) dprintf("efi/fdt: " x)
#define ERROR(x...) dprintf("efi/fdt: " x)
static void* sDtbTable = NULL;
static uint32 sDtbSize = 0;
template <typename T> DebugUART*
get_uart(addr_t base, int64 clock) {
static char buffer[sizeof(T)];
return new(buffer) T(base, clock);
}
const struct supported_uarts {
const char* dtb_compat;
const char* kind;
DebugUART* (*uart_driver_init)(addr_t base, int64 clock);
} kSupportedUarts[] = {
{ "ns16550a", UART_KIND_8250, &get_uart<DebugUART8250> },
{ "ns16550", UART_KIND_8250, &get_uart<DebugUART8250> },
{ "snps,dw-apb-uart", UART_KIND_8250, &get_uart<DebugUART8250> },
#if defined(__riscv)
{ "sifive,uart0", UART_KIND_SIFIVE, &get_uart<ArchUARTSifive> },
#elif defined(__ARM__)
{ "arm,pl011", UART_KIND_PL011, &get_uart<ArchUARTPL011> },
{ "brcm,bcm2835-aux-uart", UART_KIND_8250, &get_uart<DebugUART8250> },
#elif defined(__aarch64__)
{ "arm,pl011", UART_KIND_PL011, &get_uart<ArchUARTPL011> },
{ "fsl,s32-linflexuart", UART_KIND_LINFLEX, &get_uart<ArchUARTlinflex> },
{ "brcm,bcm2835-aux-uart", UART_KIND_8250, &get_uart<DebugUART8250> },
#endif
};
#ifdef TRACE_DUMP_FDT
static void
write_string_list(const char* prop, size_t size)
{
bool first = true;
const char* propEnd = prop + size;
while (propEnd - prop > 0) {
if (first)
first = false;
else
dprintf(", ");
int curLen = strlen(prop);
dprintf("'%s'", prop);
prop += curLen + 1;
}
}
static void
dump_fdt(const void *fdt)
{
if (!fdt)
return;
int err = fdt_check_header(fdt);
if (err) {
dprintf("fdt error: %s\n", fdt_strerror(err));
return;
}
dprintf("fdt tree:\n");
int node = -1;
int depth = -1;
while ((node = fdt_next_node(fdt, node, &depth)) >= 0 && depth >= 0) {
for (int i = 0; i < depth; i++)
dprintf(" ");
dprintf("node('%s')\n", fdt_get_name(fdt, node, NULL));
depth++;
for (int prop = fdt_first_property_offset(fdt, node); prop >= 0; prop = fdt_next_property_offset(fdt, prop)) {
int len;
const struct fdt_property *property = fdt_get_property_by_offset(fdt, prop, &len);
if (property == NULL) {
for (int i = 0; i < depth; i++)
dprintf(" ");
dprintf("getting prop at %d: %s\n", prop, fdt_strerror(len));
break;
}
for (int i = 0; i < depth; i++)
dprintf(" ");
dprintf("prop('%s'): ", fdt_string(fdt, fdt32_to_cpu(property->nameoff)));
if (
strcmp(fdt_string(fdt, fdt32_to_cpu(property->nameoff)), "compatible") == 0 ||
strcmp(fdt_string(fdt, fdt32_to_cpu(property->nameoff)), "model") == 0 ||
strcmp(fdt_string(fdt, fdt32_to_cpu(property->nameoff)), "serial-number") == 0 ||
strcmp(fdt_string(fdt, fdt32_to_cpu(property->nameoff)), "status") == 0 ||
strcmp(fdt_string(fdt, fdt32_to_cpu(property->nameoff)), "device_type") == 0 ||
strcmp(fdt_string(fdt, fdt32_to_cpu(property->nameoff)), "riscv,isa") == 0 ||
strcmp(fdt_string(fdt, fdt32_to_cpu(property->nameoff)), "mmu-type") == 0 ||
strcmp(fdt_string(fdt, fdt32_to_cpu(property->nameoff)), "format") == 0 ||
strcmp(fdt_string(fdt, fdt32_to_cpu(property->nameoff)), "bootargs") == 0 ||
strcmp(fdt_string(fdt, fdt32_to_cpu(property->nameoff)), "stdout-path") == 0 ||
strcmp(fdt_string(fdt, fdt32_to_cpu(property->nameoff)), "reg-names") == 0 ||
strcmp(fdt_string(fdt, fdt32_to_cpu(property->nameoff)), "reset-names") == 0 ||
strcmp(fdt_string(fdt, fdt32_to_cpu(property->nameoff)), "clock-names") == 0 ||
strcmp(fdt_string(fdt, fdt32_to_cpu(property->nameoff)), "clock-output-names") == 0
) {
write_string_list((const char*)property->data, fdt32_to_cpu(property->len));
} else if (strcmp(fdt_string(fdt, fdt32_to_cpu(property->nameoff)), "reg") == 0) {
for (uint64_t *it = (uint64_t*)property->data; (uint8_t*)it - (uint8_t*)property->data < fdt32_to_cpu(property->len); it += 2) {
if (it != (uint64_t*)property->data)
dprintf(", ");
dprintf("(0x%08" B_PRIx64 ", 0x%08" B_PRIx64 ")",
fdt64_to_cpu(*it), fdt64_to_cpu(*(it + 1)));
}
} else if (
strcmp(fdt_string(fdt, fdt32_to_cpu(property->nameoff)), "phandle") == 0 ||
strcmp(fdt_string(fdt, fdt32_to_cpu(property->nameoff)), "clock-frequency") == 0 ||
strcmp(fdt_string(fdt, fdt32_to_cpu(property->nameoff)), "timebase-frequency") == 0 ||
strcmp(fdt_string(fdt, fdt32_to_cpu(property->nameoff)), "#address-cells") == 0 ||
strcmp(fdt_string(fdt, fdt32_to_cpu(property->nameoff)), "#size-cells") == 0 ||
strcmp(fdt_string(fdt, fdt32_to_cpu(property->nameoff)), "#interrupt-cells") == 0 ||
strcmp(fdt_string(fdt, fdt32_to_cpu(property->nameoff)), "interrupts") == 0 ||
strcmp(fdt_string(fdt, fdt32_to_cpu(property->nameoff)), "interrupt-parent") == 0 ||
strcmp(fdt_string(fdt, fdt32_to_cpu(property->nameoff)), "boot-hartid") == 0 ||
strcmp(fdt_string(fdt, fdt32_to_cpu(property->nameoff)), "riscv,ndev") == 0 ||
strcmp(fdt_string(fdt, fdt32_to_cpu(property->nameoff)), "value") == 0 ||
strcmp(fdt_string(fdt, fdt32_to_cpu(property->nameoff)), "offset") == 0 ||
strcmp(fdt_string(fdt, fdt32_to_cpu(property->nameoff)), "regmap") == 0 ||
strcmp(fdt_string(fdt, fdt32_to_cpu(property->nameoff)), "bank-width") == 0 ||
strcmp(fdt_string(fdt, fdt32_to_cpu(property->nameoff)), "width") == 0 ||
strcmp(fdt_string(fdt, fdt32_to_cpu(property->nameoff)), "height") == 0 ||
strcmp(fdt_string(fdt, fdt32_to_cpu(property->nameoff)), "stride") == 0
) {
dprintf("%" B_PRId32, fdt32_to_cpu(*(uint32_t*)property->data));
} else if (
strcmp(fdt_string(fdt, fdt32_to_cpu(property->nameoff)), "interrupts-extended") == 0
) {
for (uint32_t *it = (uint32_t*)property->data; (uint8_t*)it - (uint8_t*)property->data < fdt32_to_cpu(property->len); it += 2) {
if (it != (uint32_t*)property->data)
dprintf(", ");
dprintf("(%" B_PRId32 ", %" B_PRId32 ")",
fdt32_to_cpu(*it), fdt32_to_cpu(*(it + 1)));
}
} else if (
strcmp(fdt_string(fdt, fdt32_to_cpu(property->nameoff)), "ranges") == 0
) {
dprintf("\n");
depth++;
for (uint32_t *it = (uint32_t*)property->data; (uint8_t*)it - (uint8_t*)property->data < fdt32_to_cpu(property->len); it += 7) {
for (int i = 0; i < depth; i++)
dprintf(" ");
uint32_t kind = fdt32_to_cpu(*(it + 0));
switch (kind & 0x03000000) {
case 0x00000000: dprintf("CONFIG"); break;
case 0x01000000: dprintf("IOPORT"); break;
case 0x02000000: dprintf("MMIO"); break;
case 0x03000000: dprintf("MMIO_64BIT"); break;
}
dprintf(" (0x%08" PRIx32 "), child: 0x%08" PRIx64 ", parent: 0x%08" PRIx64 ", len: 0x%08" PRIx64 "\n",
kind, fdt64_to_cpu(*(uint64_t*)(it + 1)), fdt64_to_cpu(*(uint64_t*)(it + 3)), fdt64_to_cpu(*(uint64_t*)(it + 5)));
}
for (int i = 0; i < depth; i++)
dprintf(" ");
depth--;
} else if (strcmp(fdt_string(fdt, fdt32_to_cpu(property->nameoff)), "bus-range") == 0) {
uint32_t *it = (uint32_t*)property->data;
dprintf("%" PRId32 ", %" PRId32, fdt32_to_cpu(*it), fdt32_to_cpu(*(it + 1)));
} else if (strcmp(fdt_string(fdt, fdt32_to_cpu(property->nameoff)), "interrupt-map-mask") == 0) {
dprintf("\n");
depth++;
for (uint32_t *it = (uint32_t*)property->data; (uint8_t*)it - (uint8_t*)property->data < fdt32_to_cpu(property->len); it++) {
for (int i = 0; i < depth; i++)
dprintf(" ");
dprintf("0x%08" PRIx32 "\n", fdt32_to_cpu(*(uint32_t*)it));
}
for (int i = 0; i < depth; i++)
dprintf(" ");
depth--;
} else if (strcmp(fdt_string(fdt, fdt32_to_cpu(property->nameoff)), "interrupt-map") == 0) {
dprintf("\n");
depth++;
int addressCells = 3;
int interruptCells = 1;
int phandleCells = 1;
uint32 *prop;
prop = (uint32*)fdt_getprop(fdt, node, "#address-cells", NULL);
if (prop != NULL)
addressCells = fdt32_to_cpu(*prop);
prop = (uint32*)fdt_getprop(fdt, node, "#interrupt-cells", NULL);
if (prop != NULL)
interruptCells = fdt32_to_cpu(*prop);
uint32_t *it = (uint32_t*)property->data;
while ((uint8_t*)it - (uint8_t*)property->data < fdt32_to_cpu(property->len)) {
for (int i = 0; i < depth; i++)
dprintf(" ");
uint32 childAddr = fdt32_to_cpu(*it);
dprintf("childAddr: ");
for (int i = 0; i < addressCells; i++) {
dprintf("0x%08" PRIx32 " ", fdt32_to_cpu(*it));
it++;
}
uint8 bus = childAddr / (1 << 16) % (1 << 8);
uint8 dev = childAddr / (1 << 11) % (1 << 5);
uint8 func = childAddr % (1 << 3);
dprintf("(bus: %" PRId32 ", dev: %" PRId32 ", fn: %" PRId32 "), ",
bus, dev, func);
dprintf("childIrq: ");
for (int i = 0; i < interruptCells; i++) {
dprintf("%" PRIu32 " ", fdt32_to_cpu(*it));
it++;
}
uint32 parentPhandle = fdt32_to_cpu(*it);
it += phandleCells;
dprintf("parentPhandle: %" PRId32 ", ", parentPhandle);
int parentAddressCells = 0;
int parentInterruptCells = 1;
int parentNode = fdt_node_offset_by_phandle(fdt, parentPhandle);
if (parentNode >= 0) {
prop = (uint32*)fdt_getprop(fdt, parentNode, "#address-cells", NULL);
if (prop != NULL)
parentAddressCells = fdt32_to_cpu(*prop);
prop = (uint32*)fdt_getprop(fdt, parentNode, "#interrupt-cells", NULL);
if (prop != NULL)
parentInterruptCells = fdt32_to_cpu(*prop);
}
dprintf("parentAddress: ");
for (int i = 0; i < parentAddressCells; i++) {
dprintf("%" PRIu32 " ", fdt32_to_cpu(*it));
it++;
}
dprintf("parentIrq: ");
for (int i = 0; i < parentInterruptCells; i++) {
dprintf("%" PRIu32 " ", fdt32_to_cpu(*it));
it++;
}
dprintf("\n");
}
for (int i = 0; i < depth; i++)
dprintf(" ");
depth--;
} else {
dprintf("?");
}
dprintf(" (len %" PRId32 ")\n", fdt32_to_cpu(property->len));
dump_hex(property->data, fdt32_to_cpu(property->len), depth);
*/
}
depth--;
}
}
#endif
bool
dtb_has_fdt_string(const char* prop, int size, const char* pattern)
{
int patternLen = strlen(pattern);
const char* propEnd = prop + size;
while (propEnd - prop > 0) {
int curLen = strlen(prop);
if (curLen == patternLen && memcmp(prop, pattern, curLen + 1) == 0)
return true;
prop += curLen + 1;
}
return false;
}
uint32
dtb_get_address_cells(const void* fdt, int node)
{
uint32 res = 2;
int parent = fdt_parent_offset(fdt, node);
if (parent < 0)
return res;
uint32 *prop = (uint32*)fdt_getprop(fdt, parent, "#address-cells", NULL);
if (prop == NULL)
return res;
res = fdt32_to_cpu(*prop);
return res;
}
uint32
dtb_get_size_cells(const void* fdt, int node)
{
uint32 res = 1;
int parent = fdt_parent_offset(fdt, node);
if (parent < 0)
return res;
uint32 *prop = (uint32*)fdt_getprop(fdt, parent, "#size-cells", NULL);
if (prop == NULL)
return res;
res = fdt32_to_cpu(*prop);
return res;
}
bool
dtb_get_reg(const void* fdt, int node, size_t idx, addr_range& range)
{
uint32 addressCells = dtb_get_address_cells(fdt, node);
uint32 sizeCells = dtb_get_size_cells(fdt, node);
int propSize;
const uint8* prop = (const uint8*)fdt_getprop(fdt, node, "reg", &propSize);
if (prop == NULL)
return false;
size_t entrySize = 4 * (addressCells + sizeCells);
if ((idx + 1) * entrySize > (size_t)propSize)
return false;
prop += idx * entrySize;
switch (addressCells) {
case 1: range.start = fdt32_to_cpu(*(uint32*)prop); prop += 4; break;
case 2: range.start = fdt64_to_cpu(*(uint64*)prop); prop += 8; break;
default: panic("unsupported addressCells");
}
switch (sizeCells) {
case 1: range.size = fdt32_to_cpu(*(uint32*)prop); prop += 4; break;
case 2: range.size = fdt64_to_cpu(*(uint64*)prop); prop += 8; break;
default: panic("unsupported sizeCells");
}
int parent = fdt_parent_offset(fdt, node);
if (parent >= 0) {
uint32 parentAddressCells = dtb_get_address_cells(fdt, parent);
uint32 rangesSize = 0;
uint32 *ranges = (uint32 *)fdt_getprop(fdt, parent, "ranges", (int *)&rangesSize);
if (ranges == NULL)
return true;
uint32 rangesPos = 0;
while (rangesSize >= (rangesPos + parentAddressCells + addressCells + sizeCells)) {
addr_t childAddress;
addr_t parentAddress;
size_t rangeSize;
if (addressCells == 1) {
childAddress = fdt32_to_cpu(*(uint32*)(ranges+rangesPos));
} else {
childAddress = fdt64_to_cpu(*(uint64*)(ranges+rangesPos));
}
rangesPos += addressCells;
if (parentAddressCells == 1) {
parentAddress = fdt32_to_cpu(*(uint32*)(ranges+rangesPos));
} else {
parentAddress = fdt64_to_cpu(*(uint64*)(ranges+rangesPos));
}
rangesPos += parentAddressCells;
if (sizeCells == 1) {
rangeSize = fdt32_to_cpu(*(uint32*)(ranges+rangesPos));
} else {
rangeSize = fdt64_to_cpu(*(uint64*)(ranges+rangesPos));
}
rangesPos += sizeCells;
if ((range.start >= childAddress) && (range.start <= childAddress + rangeSize)) {
range.start -= childAddress;
range.start += parentAddress;
break;
}
}
}
return true;
}
static int
dtb_get_interrupt_parent(const void* fdt, int node)
{
while (node >= 0) {
uint32* prop;
prop = (uint32*)fdt_getprop(fdt, node, "interrupt-parent", NULL);
if (prop != NULL) {
uint32_t phandle = fdt32_to_cpu(*prop);
return fdt_node_offset_by_phandle(fdt, phandle);
}
node = fdt_parent_offset(fdt, node);
}
return -1;
}
static uint32
dtb_get_interrupt_cells(const void* fdt, int node)
{
int intc_node = dtb_get_interrupt_parent(fdt, node);
if (intc_node >= 0) {
uint32* prop = (uint32*)fdt_getprop(fdt, intc_node, "#interrupt-cells", NULL);
if (prop != NULL) {
return fdt32_to_cpu(*prop);
}
}
return 1;
}
uint32
dtb_get_interrupt(const void* fdt, int node)
{
uint32 interruptCells = dtb_get_interrupt_cells(fdt, node);
if (uint32* prop = (uint32*)fdt_getprop(fdt, node, "interrupts-extended", NULL)) {
return fdt32_to_cpu(*(prop + 1));
}
if (uint32* prop = (uint32*)fdt_getprop(fdt, node, "interrupts", NULL)) {
if ((interruptCells == 1) || (interruptCells == 2)) {
return fdt32_to_cpu(*prop);
} else if (interruptCells == 3) {
uint32 interruptType = fdt32_to_cpu(prop[GIC_INTERRUPT_CELL_TYPE]);
uint32 interruptNumber = fdt32_to_cpu(prop[GIC_INTERRUPT_CELL_ID]);
if (interruptType == GIC_INTERRUPT_TYPE_SPI)
interruptNumber += GIC_INTERRUPT_BASE_SPI;
else if (interruptType == GIC_INTERRUPT_TYPE_PPI)
interruptNumber += GIC_INTERRUPT_BASE_PPI;
return interruptNumber;
} else {
panic("unsupported interruptCells");
}
}
dprintf("%s: no interrupt field on node %d\n", __func__, node);
return 0;
}
static int64
dtb_get_clock_frequency(const void* fdt, int node)
{
uint32* prop;
int len = 0;
prop = (uint32*)fdt_getprop(fdt, node, "clock-frequency", NULL);
if (prop != NULL) {
return fdt32_to_cpu(*prop);
}
prop = (uint32*)fdt_getprop(fdt, node, "clocks", &len);
if (prop != NULL) {
uint32_t phandle = fdt32_to_cpu(*prop);
int offset = fdt_node_offset_by_phandle(fdt, phandle);
if (offset > 0) {
uint32* prop2 = (uint32*)fdt_getprop(fdt, offset, "clock-frequency", NULL);
if (prop2 != NULL) {
return fdt32_to_cpu(*prop2);
}
}
}
dprintf("%s: no clock-frequency field on node %d\n", __func__, node);
return -1;
}
static void
dtb_handle_fdt(const void* fdt, int node)
{
arch_handle_fdt(fdt, node);
int compatibleLen;
const char* compatible = (const char*)fdt_getprop(fdt, node,
"compatible", &compatibleLen);
if (compatible == NULL)
return;
uart_info &uart = gKernelArgs.arch_args.uart;
if (uart.kind[0] == 0) {
for (uint32 i = 0; i < B_COUNT_OF(kSupportedUarts); i++) {
if (dtb_has_fdt_string(compatible, compatibleLen,
kSupportedUarts[i].dtb_compat)) {
memcpy(uart.kind, kSupportedUarts[i].kind,
sizeof(uart.kind));
dtb_get_reg(fdt, node, 0, uart.regs);
uart.irq = dtb_get_interrupt(fdt, node);
uart.clock = dtb_get_clock_frequency(fdt, node);
gUART = kSupportedUarts[i].uart_driver_init(uart.regs.start,
uart.clock);
gUARTSkipInit = fdt_getprop(fdt, node, "skip-init", NULL) != NULL;
}
}
}
}
static void
dtb_handle_chosen_node(const void *fdt)
{
int chosen = fdt_path_offset(fdt, "/chosen");
if (chosen < 0)
return;
int len;
const char *stdoutPath = (const char *)fdt_getprop(fdt, chosen, "stdout-path", &len);
if (stdoutPath == NULL)
return;
char *separator = strchr(stdoutPath, ':');
int namelen = (separator == NULL) ? len - 1 : separator - stdoutPath;
int stdoutNode = fdt_path_offset_namelen(fdt, stdoutPath, namelen);
if (stdoutNode < 0)
return;
dtb_handle_fdt(fdt, stdoutNode);
}
void
dtb_init()
{
efi_configuration_table *table = kSystemTable->ConfigurationTable;
size_t entries = kSystemTable->NumberOfTableEntries;
INFO("Probing for device trees from UEFI...\n");
for (uint32 i = 0; i < entries; i++) {
if (!table[i].VendorGuid.equals(DEVICE_TREE_GUID))
continue;
void* dtbPtr = (void*)(table[i].VendorTable);
int res = fdt_check_header(dtbPtr);
if (res != 0) {
ERROR("Invalid FDT from UEFI table %d: %s\n", i, fdt_strerror(res));
continue;
}
sDtbTable = dtbPtr;
sDtbSize = fdt_totalsize(dtbPtr);
INFO("Valid FDT from UEFI table %d, size: %" B_PRIu32 "\n", i, sDtbSize);
#ifdef TRACE_DUMP_FDT
dump_fdt(sDtbTable);
#endif
dtb_handle_chosen_node(sDtbTable);
int node = -1;
int depth = -1;
while ((node = fdt_next_node(sDtbTable, node, &depth)) >= 0 && depth >= 0) {
dtb_handle_fdt(sDtbTable, node);
}
break;
}
}
void
dtb_set_kernel_args()
{
if (sDtbTable != NULL) {
gKernelArgs.arch_args.fdt = (void*)(addr_t)kernel_args_malloc(sDtbSize, 8);
if (gKernelArgs.arch_args.fdt != NULL)
memcpy(gKernelArgs.arch_args.fdt, sDtbTable, sDtbSize);
else
ERROR("unable to malloc for fdt!\n");
}
uart_info &uart = gKernelArgs.arch_args.uart;
dprintf("Chosen UART:\n");
if (uart.kind[0] == 0) {
dprintf("kind: None!\n");
} else {
dprintf(" kind: %s\n", uart.kind);
dprintf(" regs: %#" B_PRIx64 ", %#" B_PRIx64 "\n", uart.regs.start, uart.regs.size);
dprintf(" irq: %" B_PRIu32 "\n", uart.irq);
dprintf(" clock: %" B_PRId64 "\n", uart.clock);
}
arch_dtb_set_kernel_args();
}