* Copyright 2019-2022, Haiku, Inc. All rights reserved.
* Distributed under the terms of the MIT License.
*
* Authors:
* Augustin Cavalier <waddlesplash>
*/
#include <stdio.h>
#include <stdlib.h>
#include <algorithm>
#include <condition_variable.h>
#include <AutoDeleter.h>
#include <kernel.h>
#include <smp.h>
#include <thread.h>
#include <util/AutoLock.h>
#include <fs/devfs.h>
#include <bus/PCI.h>
#include <vm/vm.h>
#include "IORequest.h"
#include "IOScheduler.h"
extern "C" {
#include <libnvme/nvme.h>
#include <libnvme/nvme_internal.h>
}
#ifdef TRACE_NVME_DISK
# define TRACE(x...) dprintf("nvme_disk: " x)
#else
# define TRACE(x...) ;
#endif
#define TRACE_ALWAYS(x...) dprintf("nvme_disk: " x)
#define TRACE_ERROR(x...) dprintf("\33[33mnvme_disk:\33[0m " x)
#define CALLED() TRACE("CALLED %s\n", __PRETTY_FUNCTION__)
static const uint8 kDriveIcon[] = {
0x6e, 0x63, 0x69, 0x66, 0x08, 0x03, 0x01, 0x00, 0x00, 0x02, 0x00, 0x16,
0x02, 0x3c, 0xc7, 0xee, 0x38, 0x9b, 0xc0, 0xba, 0x16, 0x57, 0x3e, 0x39,
0xb0, 0x49, 0x77, 0xc8, 0x42, 0xad, 0xc7, 0x00, 0xff, 0xff, 0xd3, 0x02,
0x00, 0x06, 0x02, 0x3c, 0x96, 0x32, 0x3a, 0x4d, 0x3f, 0xba, 0xfc, 0x01,
0x3d, 0x5a, 0x97, 0x4b, 0x57, 0xa5, 0x49, 0x84, 0x4d, 0x00, 0x47, 0x47,
0x47, 0xff, 0xa5, 0xa0, 0xa0, 0x02, 0x00, 0x16, 0x02, 0xbc, 0x59, 0x2f,
0xbb, 0x29, 0xa7, 0x3c, 0x0c, 0xe4, 0xbd, 0x0b, 0x7c, 0x48, 0x92, 0xc0,
0x4b, 0x79, 0x66, 0x00, 0x7d, 0xff, 0xd4, 0x02, 0x00, 0x06, 0x02, 0x38,
0xdb, 0xb4, 0x39, 0x97, 0x33, 0xbc, 0x4a, 0x33, 0x3b, 0xa5, 0x42, 0x48,
0x6e, 0x66, 0x49, 0xee, 0x7b, 0x00, 0x59, 0x67, 0x56, 0xff, 0xeb, 0xb2,
0xb2, 0x03, 0xa7, 0xff, 0x00, 0x03, 0xff, 0x00, 0x00, 0x04, 0x01, 0x80,
0x07, 0x0a, 0x06, 0x22, 0x3c, 0x22, 0x49, 0x44, 0x5b, 0x5a, 0x3e, 0x5a,
0x31, 0x39, 0x25, 0x0a, 0x04, 0x22, 0x3c, 0x44, 0x4b, 0x5a, 0x31, 0x39,
0x25, 0x0a, 0x04, 0x44, 0x4b, 0x44, 0x5b, 0x5a, 0x3e, 0x5a, 0x31, 0x0a,
0x04, 0x22, 0x3c, 0x22, 0x49, 0x44, 0x5b, 0x44, 0x4b, 0x08, 0x02, 0x27,
0x43, 0xb8, 0x14, 0xc1, 0xf1, 0x08, 0x02, 0x26, 0x43, 0x29, 0x44, 0x0a,
0x05, 0x44, 0x5d, 0x49, 0x5d, 0x60, 0x3e, 0x5a, 0x3b, 0x5b, 0x3f, 0x08,
0x0a, 0x07, 0x01, 0x06, 0x00, 0x0a, 0x00, 0x01, 0x00, 0x10, 0x01, 0x17,
0x84, 0x00, 0x04, 0x0a, 0x01, 0x01, 0x01, 0x00, 0x0a, 0x02, 0x01, 0x02,
0x00, 0x0a, 0x03, 0x01, 0x03, 0x00, 0x0a, 0x04, 0x01, 0x04, 0x10, 0x01,
0x17, 0x85, 0x20, 0x04, 0x0a, 0x06, 0x01, 0x05, 0x30, 0x24, 0xb3, 0x99,
0x01, 0x17, 0x82, 0x00, 0x04, 0x0a, 0x05, 0x01, 0x05, 0x30, 0x20, 0xb2,
0xe6, 0x01, 0x17, 0x82, 0x00, 0x04
};
#define NVME_DISK_DRIVER_MODULE_NAME "drivers/disk/nvme_disk/driver_v1"
#define NVME_DISK_DEVICE_MODULE_NAME "drivers/disk/nvme_disk/device_v1"
#define NVME_DISK_DEVICE_ID_GENERATOR "nvme_disk/device_id"
#define NVME_MAX_QPAIRS (16)
static device_manager_info* sDeviceManager;
struct NVMeRequestOwner : IORequestOwner {
IORequestList requests_queue;
NVMeRequestOwner* hash_link;
void Dump() const {}
};
struct RequestOwnerHashDefinition {
typedef thread_id KeyType;
typedef NVMeRequestOwner ValueType;
size_t HashKey(thread_id key) const { return key; }
size_t Hash(const ValueType* value) const { return value->thread; }
bool Compare(thread_id key, const ValueType* value) const
{ return value->thread == key; }
ValueType*& GetLink(ValueType* value) const
{ return value->hash_link; }
};
typedef BOpenHashTable<RequestOwnerHashDefinition, false> RequestOwnerHashTable;
typedef struct {
device_node* node;
pci_info info;
struct nvme_ctrlr* ctrlr;
struct nvme_ns* ns;
uint64 capacity;
uint32 block_size;
uint32 max_io_blocks;
status_t media_status;
DMAResource dma_resource;
sem_id dma_buffers_sem;
RequestOwnerHashTable request_owners;
mutex request_owners_lock;
rw_lock rounded_write_lock;
ConditionVariable interrupt;
int32 polling;
struct qpair_info {
struct nvme_qpair* qpair;
} qpairs[NVME_MAX_QPAIRS];
uint32 qpair_count;
} nvme_disk_driver_info;
typedef nvme_disk_driver_info::qpair_info qpair_info;
typedef struct {
nvme_disk_driver_info* info;
} nvme_disk_handle;
static status_t
get_geometry(nvme_disk_handle* handle, device_geometry* geometry)
{
nvme_disk_driver_info* info = handle->info;
devfs_compute_geometry_size(geometry, info->capacity, info->block_size);
geometry->bytes_per_physical_sector = info->block_size;
geometry->device_type = B_DISK;
geometry->removable = false;
geometry->read_only = false;
geometry->write_once = false;
TRACE("get_geometry(): %" B_PRId32 ", %" B_PRId32 ", %" B_PRId32 ", %" B_PRId32 ", %d, %d, %d, %d\n",
geometry->bytes_per_sector, geometry->sectors_per_track,
geometry->cylinder_count, geometry->head_count, geometry->device_type,
geometry->removable, geometry->read_only, geometry->write_once);
return B_OK;
}
static void
nvme_disk_set_capacity(nvme_disk_driver_info* info, uint64 capacity,
uint32 blockSize)
{
TRACE("set_capacity(device = %p, capacity = %" B_PRIu64 ", blockSize = %" B_PRIu32 ")\n",
info, capacity, blockSize);
info->capacity = capacity;
info->block_size = blockSize;
}
static int32 nvme_interrupt_handler(void* _info);
static status_t
nvme_disk_init_device(void* _info, void** _cookie)
{
CALLED();
nvme_disk_driver_info* info = (nvme_disk_driver_info*)_info;
ASSERT(info->ctrlr == NULL);
pci_device_module_info* pci;
pci_device* pcidev;
device_node* parent = sDeviceManager->get_parent_node(info->node);
sDeviceManager->get_driver(parent, (driver_module_info**)&pci,
(void**)&pcidev);
pci->get_pci_info(pcidev, &info->info);
sDeviceManager->put_node(parent);
pci_device* device = new pci_device;
device->vendor_id = info->info.vendor_id;
device->device_id = info->info.device_id;
device->subvendor_id = 0;
device->subdevice_id = 0;
device->domain = 0;
device->bus = info->info.bus;
device->dev = info->info.device;
device->func = info->info.function;
device->pci_info = &info->info;
uint16 command = pci->read_pci_config(pcidev, PCI_command, 2);
command |= PCI_command_master | PCI_command_memory;
pci->write_pci_config(pcidev, PCI_command, 2, command);
info->ctrlr = nvme_ctrlr_open(device, NULL);
if (info->ctrlr == NULL) {
TRACE_ERROR("failed to open the controller!\n");
return B_ERROR;
}
struct nvme_ctrlr_stat* cstat = (struct nvme_ctrlr_stat*)malloc(sizeof(struct nvme_ctrlr_stat));
if (cstat == NULL)
return B_NO_MEMORY;
MemoryDeleter cstatDeleter(cstat);
int err = nvme_ctrlr_stat(info->ctrlr, cstat);
if (err != 0) {
TRACE_ERROR("failed to get controller information!\n");
nvme_ctrlr_close(info->ctrlr);
return err;
}
TRACE_ALWAYS("attached to NVMe device \"%s (%s)\"\n", cstat->mn, cstat->sn);
TRACE_ALWAYS("\tmaximum transfer size: %" B_PRIuSIZE "\n", cstat->max_xfer_size);
TRACE_ALWAYS("\tqpair count: %d\n", cstat->io_qpairs);
info->ns = nvme_ns_open(info->ctrlr, cstat->ns_ids[0]);
if (info->ns == NULL) {
TRACE_ERROR("failed to open namespace!\n");
nvme_ctrlr_close(info->ctrlr);
return B_ERROR;
}
TRACE_ALWAYS("namespace 0\n");
struct nvme_ns_stat nsstat;
err = nvme_ns_stat(info->ns, &nsstat);
if (err != 0) {
TRACE_ERROR("failed to get namespace information!\n");
nvme_ctrlr_close(info->ctrlr);
return err;
}
TRACE_ALWAYS("\tblock size: %" B_PRIuSIZE ", stripe size: %u\n",
nsstat.sector_size, info->ns->stripe_size);
nvme_disk_set_capacity(info, nsstat.sectors, nsstat.sector_size);
command = pci->read_pci_config(pcidev, PCI_command, 2);
command &= ~(PCI_command_int_disable);
pci->write_pci_config(pcidev, PCI_command, 2, command);
uint32 irq = info->info.u.h0.interrupt_line;
if (irq == 0xFF)
irq = 0;
if (pci->get_msix_count(pcidev)) {
uint32 msixVector = 0;
if (pci->configure_msix(pcidev, 1, &msixVector) == B_OK
&& pci->enable_msix(pcidev) == B_OK) {
TRACE_ALWAYS("using MSI-X\n");
irq = msixVector;
}
} else if (pci->get_msi_count(pcidev) >= 1) {
uint32 msiVector = 0;
if (pci->configure_msi(pcidev, 1, &msiVector) == B_OK
&& pci->enable_msi(pcidev) == B_OK) {
TRACE_ALWAYS("using message signaled interrupts\n");
irq = msiVector;
}
}
if (irq == 0) {
TRACE_ERROR("device PCI:%d:%d:%d was assigned an invalid IRQ\n",
info->info.bus, info->info.device, info->info.function);
info->polling = 1;
} else {
info->polling = 0;
}
info->interrupt.Init(info, "nvme_disk interrupt");
install_io_interrupt_handler(irq, nvme_interrupt_handler, (void*)info, B_NO_HANDLED_INFO);
if (info->ctrlr->feature_supported[NVME_FEAT_INTERRUPT_COALESCING]) {
uint32 microseconds = 16, threshold = 32;
nvme_ctrlr_set_feature(info->ctrlr, false, NVME_FEAT_INTERRUPT_COALESCING,
((microseconds / 100) << 8) | threshold, 0, NULL, 0, NULL);
}
if (info->ctrlr->feature_supported[NVME_FEAT_AUTONOMOUS_POWER_STATE_TRANSITION]) {
struct nvme_ctrlr_data& cdata = info->ctrlr->cdata;
if (cdata.npss > 0 && cdata.npss < 31) {
TRACE_ALWAYS("\tpower states: %u\n", cdata.npss);
for (uint8 i = 0; i <= cdata.npss; i++) {
struct nvme_power_state psd;
memcpy(&psd, &cdata.psd[i], sizeof(struct nvme_power_state));
TRACE_ALWAYS("\tps %u: mp:%fW %soperational enlat:%u exlat:%u rrt:%u rrl:%u\n",
i, psd.mp / (psd.mxps == 0 ? 100.0 : 10000.0),
psd.nops ? "non-" : "", psd.enlat, psd.exlat, psd.rrt, psd.rrl);
TRACE_ALWAYS("\trwt:%u rwl:%u idlp:%fW actp:%fW apw:%u\n", psd.rwt, psd.rwl,
psd.idlp / (psd.ips == 2 ? 100.0 : (psd.ips == 1 ? 10000.0 : 1.0)),
psd.actp / (psd.aps == 2 ? 100.0 : (psd.aps == 1 ? 10000.0 : 1.0)),
psd.apw);
}
uint32_t tableSize = 32 * sizeof(uint64);
uint64* table = (uint64*)malloc(tableSize);
memset(table, 0, tableSize);
uint64 target = 0;
bool firstStateSet = false;
bool secondStateSet = false;
for (uint8 i = cdata.npss; i > 0; i--) {
struct nvme_power_state psd;
memcpy(&psd, &cdata.psd[i], sizeof(struct nvme_power_state));
if (psd.nops && psd.exlat <= 100000) {
uint32 totalLatency = psd.enlat + psd.exlat;
uint32 transitionTime = 0;
if (totalLatency < 100000 && !secondStateSet) {
secondStateSet = true;
transitionTime = 2000;
}
if (totalLatency < 15000 && secondStateSet && !firstStateSet) {
transitionTime = 100;
firstStateSet = true;
}
if (transitionTime > 0)
target = (i << 3) | (transitionTime << 8);
}
table[i - 1] = target;
}
TRACE_ALWAYS("\tautonomous power state transition table:\n");
for (int i = 0; i < 8; i++) {
if (table[i * 4] == 0 && table[i * 4 + 1] == 0 && table[i * 4 + 2] == 0
&& table[i * 4 + 3] == 0) {
break;
}
TRACE_ALWAYS("\t%" B_PRIx64 " %" B_PRIx64" %" B_PRIx64" %" B_PRIx64 "\n",
table[i * 4], table[i * 4 + 1], table[i * 4 + 2], table[i * 4 + 3]);
}
int err = nvme_ctrlr_set_feature(info->ctrlr, false,
NVME_FEAT_AUTONOMOUS_POWER_STATE_TRANSITION,
(firstStateSet || secondStateSet) ? 1 : 0, 0, table, tableSize, NULL);
if (err != 0)
TRACE_ERROR("failed to set apst table!\n");
else
TRACE_ALWAYS("\t=> feature apst table set\n");
free(table);
}
}
uint32 try_qpairs = cstat->io_qpairs;
try_qpairs = min_c(try_qpairs, NVME_MAX_QPAIRS);
if (try_qpairs >= (uint32)smp_get_num_cpus()) {
try_qpairs = smp_get_num_cpus();
} else {
while ((smp_get_num_cpus() % try_qpairs) != 0)
try_qpairs--;
}
info->qpair_count = 0;
for (uint32 i = 0; i < try_qpairs; i++) {
info->qpairs[i].qpair = nvme_ioqp_get(info->ctrlr,
(enum nvme_qprio)0, 0);
if (info->qpairs[i].qpair == NULL)
break;
info->qpair_count++;
}
if (info->qpair_count == 0) {
TRACE_ERROR("failed to allocate qpairs!\n");
nvme_ctrlr_close(info->ctrlr);
return B_NO_MEMORY;
}
if (info->qpair_count != try_qpairs) {
TRACE_ALWAYS("warning: did not get expected number of qpairs\n");
}
int buffers = info->qpair_count * 2;
dma_restrictions restrictions = {};
restrictions.alignment = B_PAGE_SIZE;
restrictions.max_segment_count = (NVME_MAX_SGL_DESCRIPTORS / 2);
restrictions.max_transfer_size = cstat->max_xfer_size;
info->max_io_blocks = cstat->max_xfer_size / nsstat.sector_size;
err = info->dma_resource.Init(restrictions, B_PAGE_SIZE, buffers, buffers);
if (err != 0) {
TRACE_ERROR("failed to initialize DMA resource!\n");
nvme_ctrlr_close(info->ctrlr);
return err;
}
info->dma_buffers_sem = create_sem(buffers, "nvme buffers sem");
if (info->dma_buffers_sem < 0) {
TRACE_ERROR("failed to create DMA buffers semaphore!\n");
nvme_ctrlr_close(info->ctrlr);
return info->dma_buffers_sem;
}
if (info->request_owners.Init(buffers) != B_OK)
return B_ERROR;
mutex_init(&info->request_owners_lock, "nvme request owners");
rw_lock_init(&info->rounded_write_lock, "nvme rounded writes");
*_cookie = info;
return B_OK;
}
static void
nvme_disk_uninit_device(void* _cookie)
{
CALLED();
nvme_disk_driver_info* info = (nvme_disk_driver_info*)_cookie;
remove_io_interrupt_handler(info->info.u.h0.interrupt_line,
nvme_interrupt_handler, (void*)info);
rw_lock_destroy(&info->rounded_write_lock);
nvme_ns_close(info->ns);
nvme_ctrlr_close(info->ctrlr);
}
static status_t
nvme_disk_open(void* _info, const char* path, int openMode, void** _cookie)
{
CALLED();
nvme_disk_driver_info* info = (nvme_disk_driver_info*)_info;
nvme_disk_handle* handle = (nvme_disk_handle*)malloc(
sizeof(nvme_disk_handle));
if (handle == NULL)
return B_NO_MEMORY;
handle->info = info;
*_cookie = handle;
return B_OK;
}
static status_t
nvme_disk_close(void* cookie)
{
CALLED();
return B_OK;
}
static status_t
nvme_disk_free(void* cookie)
{
CALLED();
nvme_disk_handle* handle = (nvme_disk_handle*)cookie;
free(handle);
return B_OK;
}
static int32
nvme_interrupt_handler(void* _info)
{
nvme_disk_driver_info* info = (nvme_disk_driver_info*)_info;
info->interrupt.NotifyAll();
info->polling = -1;
return 0;
}
static qpair_info*
get_qpair(nvme_disk_driver_info* info)
{
return &info->qpairs[smp_get_current_cpu() % info->qpair_count];
}
static void
io_finished_callback(status_t* status, const struct nvme_cpl* cpl)
{
*status = nvme_cpl_is_error(cpl) ? B_IO_ERROR : B_OK;
}
static void
await_status(nvme_disk_driver_info* info, struct nvme_qpair* qpair, status_t& status)
{
CALLED();
ConditionVariableEntry entry;
int timeouts = 0;
while (status == EINPROGRESS) {
info->interrupt.Add(&entry);
nvme_qpair_poll(qpair, 0);
if (status != EINPROGRESS)
return;
if (info->polling > 0) {
entry.Wait(B_RELATIVE_TIMEOUT, min_c(5 * 1000 * 1000,
(1 << timeouts) * 1000));
timeouts++;
} else if (entry.Wait(B_RELATIVE_TIMEOUT, 5 * 1000 * 1000) != B_OK) {
TRACE_ERROR("timed out waiting for interrupt!\n");
if (timeouts++ >= 3) {
nvme_qpair_fail(qpair);
status = B_TIMED_OUT;
return;
}
info->polling++;
if (info->polling > 0) {
TRACE_ALWAYS("switching to polling mode, performance will be affected!\n");
}
}
nvme_qpair_poll(qpair, 0);
}
}
struct nvme_io_request {
status_t status;
bool write;
off_t lba_start;
size_t lba_count;
physical_entry* iovecs;
int32 iovec_count;
int32 iovec_i;
uint32 iovec_offset;
};
static void
ior_reset_sgl(nvme_io_request* request, uint32_t offset)
{
TRACE("IOR Reset: %" B_PRIu32 "\n", offset);
int32 i = 0;
while (offset > 0 && request->iovecs[i].size <= offset) {
offset -= request->iovecs[i].size;
i++;
}
request->iovec_i = i;
request->iovec_offset = offset;
}
static int
ior_next_sge(nvme_io_request* request, uint64_t* address, uint32_t* length)
{
int32 index = request->iovec_i;
if (index < 0 || index > request->iovec_count)
return -1;
*address = request->iovecs[index].address + request->iovec_offset;
*length = request->iovecs[index].size - request->iovec_offset;
TRACE("IOV %d (+ %" B_PRIu32 "): 0x%" B_PRIx64 ", %" B_PRIu32 "\n",
request->iovec_i, request->iovec_offset, *address, *length);
request->iovec_i++;
request->iovec_offset = 0;
return 0;
}
static status_t
do_nvme_io_request(nvme_disk_driver_info* info, nvme_io_request* request)
{
request->status = EINPROGRESS;
qpair_info* qpinfo = get_qpair(info);
int ret = -1;
if (request->write) {
ret = nvme_ns_writev(info->ns, qpinfo->qpair, request->lba_start,
request->lba_count, (nvme_cmd_cb)io_finished_callback, request,
0, (nvme_req_reset_sgl_cb)ior_reset_sgl,
(nvme_req_next_sge_cb)ior_next_sge);
} else {
ret = nvme_ns_readv(info->ns, qpinfo->qpair, request->lba_start,
request->lba_count, (nvme_cmd_cb)io_finished_callback, request,
0, (nvme_req_reset_sgl_cb)ior_reset_sgl,
(nvme_req_next_sge_cb)ior_next_sge);
}
if (ret != 0) {
TRACE_ERROR("attempt to queue %s I/O at LBA %" B_PRIdOFF " of %" B_PRIuSIZE
" blocks failed!\n", request->write ? "write" : "read",
request->lba_start, request->lba_count);
request->lba_count = 0;
return ret;
}
await_status(info, qpinfo->qpair, request->status);
if (request->status != B_OK) {
TRACE_ERROR("%s at LBA %" B_PRIdOFF " of %" B_PRIuSIZE
" blocks failed!\n", request->write ? "write" : "read",
request->lba_start, request->lba_count);
request->lba_count = 0;
}
return request->status;
}
static status_t
nvme_disk_bounced_io(nvme_disk_handle* handle, io_request* request)
{
CALLED();
WriteLocker writeLocker;
if (request->IsWrite())
writeLocker.SetTo(handle->info->rounded_write_lock, false);
status_t status = acquire_sem(handle->info->dma_buffers_sem);
if (status != B_OK) {
request->SetStatusAndNotify(status);
return status;
}
const size_t block_size = handle->info->block_size;
TRACE("%p: IOR Offset: %" B_PRIdOFF "; Length %" B_PRIuGENADDR
"; Write %s\n", request, request->Offset(), request->Length(),
request->IsWrite() ? "yes" : "no");
nvme_io_request nvme_request;
while (request->RemainingBytes() > 0) {
IOOperation operation;
status = handle->info->dma_resource.TranslateNext(request, &operation, 0);
if (status != B_OK)
break;
do {
TRACE("%p: IOO offset: %" B_PRIdOFF ", length: %" B_PRIuGENADDR
", write: %s\n", request, operation.Offset(),
operation.Length(), operation.IsWrite() ? "yes" : "no");
nvme_request.write = operation.IsWrite();
nvme_request.lba_start = operation.Offset() / block_size;
nvme_request.lba_count = operation.Length() / block_size;
nvme_request.iovecs = (physical_entry*)operation.Vecs();
nvme_request.iovec_count = operation.VecCount();
status = do_nvme_io_request(handle->info, &nvme_request);
operation.SetStatus(status,
status == B_OK ? operation.Length() : 0);
} while (status == B_OK && !operation.Finish());
if (status == B_OK && operation.Status() != B_OK) {
TRACE_ERROR("I/O succeeded but IOOperation failed!\n");
status = operation.Status();
}
request->OperationFinished(&operation);
handle->info->dma_resource.RecycleBuffer(operation.Buffer());
TRACE("%p: status %s, remaining bytes %" B_PRIuGENADDR "\n", request,
strerror(status), request->RemainingBytes());
if (status != B_OK)
break;
}
release_sem(handle->info->dma_buffers_sem);
if (status != B_OK && request->Status() == B_OK)
request->SetStatusAndNotify(status);
else
request->NotifyFinished();
return status;
}
static status_t
do_io(nvme_disk_handle* handle, io_request* request)
{
CALLED();
const off_t ns_end = (handle->info->capacity * handle->info->block_size);
if ((request->Offset() + (off_t)request->Length()) > ns_end)
return ERANGE;
nvme_io_request nvme_request;
memset(&nvme_request, 0, sizeof(nvme_io_request));
nvme_request.write = request->IsWrite();
physical_entry* vtophys = NULL;
MemoryDeleter vtophysDeleter;
IOBuffer* buffer = request->Buffer();
status_t status = B_OK;
if (!buffer->IsPhysical()) {
status = buffer->LockMemory(request->TeamID(), request->IsWrite());
if (status != B_OK) {
TRACE_ERROR("failed to lock memory: %s\n", strerror(status));
return status;
}
const int32 vtophysLength = (request->Length() / B_PAGE_SIZE) + 2;
if (vtophysLength <= 8) {
vtophys = (physical_entry*)alloca(sizeof(physical_entry) * vtophysLength);
} else {
vtophys = (physical_entry*)malloc(sizeof(physical_entry) * vtophysLength);
vtophysDeleter.SetTo(vtophys);
}
if (vtophys == NULL) {
TRACE_ERROR("failed to allocate memory for iovecs\n");
request->SetStatusAndNotify(B_NO_MEMORY);
return B_NO_MEMORY;
}
for (size_t i = 0; i < buffer->VecCount(); i++) {
generic_io_vec virt = buffer->VecAt(i);
uint32 entries = vtophysLength - nvme_request.iovec_count;
status = get_memory_map_etc(request->TeamID(), (void*)virt.base,
virt.length, vtophys + nvme_request.iovec_count, &entries);
if (status == B_BAD_VALUE && entries == 0)
status = B_BUFFER_OVERFLOW;
if (status == B_BUFFER_OVERFLOW) {
vtophysDeleter.Delete();
vtophys = NULL;
break;
}
if (status != B_OK) {
TRACE_ERROR("I/O get_memory_map failed: %s\n", strerror(status));
request->SetStatusAndNotify(status);
return status;
}
nvme_request.iovec_count += entries;
}
nvme_request.iovecs = vtophys;
} else {
nvme_request.iovecs = (physical_entry*)buffer->Vecs();
nvme_request.iovec_count = buffer->VecCount();
}
const size_t block_size = handle->info->block_size;
bool bounceAll = (nvme_request.iovecs == NULL);
for (int32 i = 1; !bounceAll && i < (nvme_request.iovec_count - 1); i++) {
if ((nvme_request.iovecs[i].address % B_PAGE_SIZE) != 0)
bounceAll = true;
if ((nvme_request.iovecs[i].size % B_PAGE_SIZE) != 0)
bounceAll = true;
}
if (nvme_request.iovec_count > 1) {
physical_entry* entry = &nvme_request.iovecs[0];
if (!bounceAll && (((entry->address + entry->size) % B_PAGE_SIZE) != 0
|| (entry->address & 0x3) != 0 || (entry->size % block_size) != 0))
bounceAll = true;
entry = &nvme_request.iovecs[nvme_request.iovec_count - 1];
if (!bounceAll && ((entry->address % B_PAGE_SIZE) != 0
|| (entry->size % block_size) != 0))
bounceAll = true;
} else {
physical_entry* entry = &nvme_request.iovecs[0];
if (!bounceAll && ((entry->address & 0x3) != 0 || (entry->size % block_size) != 0))
bounceAll = true;
}
const off_t rounded_pos = ROUNDDOWN(request->Offset(), block_size);
const phys_size_t rounded_len = ROUNDUP(request->Length() + (request->Offset()
- rounded_pos), block_size);
if (rounded_pos != request->Offset() || rounded_len != request->Length())
bounceAll = true;
if (bounceAll) {
return nvme_disk_bounced_io(handle, request);
}
ReadLocker readLocker;
if (nvme_request.write)
readLocker.SetTo(handle->info->rounded_write_lock, false);
if (status != B_OK) {
TRACE_ERROR("I/O failed early: %s\n", strerror(status));
request->SetStatusAndNotify(status);
return status;
}
const uint32 max_io_blocks = handle->info->max_io_blocks;
int32 remaining = nvme_request.iovec_count;
nvme_request.lba_start = rounded_pos / block_size;
while (remaining > 0) {
nvme_request.iovec_count = min_c(remaining,
NVME_MAX_SGL_DESCRIPTORS / 2);
nvme_request.lba_count = 0;
for (int i = 0; i < nvme_request.iovec_count; i++) {
uint32 new_lba_count = nvme_request.lba_count
+ (nvme_request.iovecs[i].size / block_size);
if (nvme_request.lba_count > 0 && new_lba_count > max_io_blocks) {
nvme_request.iovec_count = i;
break;
}
nvme_request.lba_count = new_lba_count;
}
status = do_nvme_io_request(handle->info, &nvme_request);
if (status != B_OK)
break;
nvme_request.iovecs += nvme_request.iovec_count;
remaining -= nvme_request.iovec_count;
nvme_request.lba_start += nvme_request.lba_count;
}
if (status != B_OK)
TRACE_ERROR("I/O failed: %s\n", strerror(status));
readLocker.Unlock();
request->SetTransferredBytes(status != B_OK,
(nvme_request.lba_start * block_size) - rounded_pos);
request->SetStatusAndNotify(status);
return status;
}
static status_t
nvme_disk_io(void* cookie, io_request* request)
{
CALLED();
nvme_disk_handle* handle = (nvme_disk_handle*)cookie;
MutexLocker requestOwnersLocker(handle->info->request_owners_lock);
NVMeRequestOwner* existingOwner = handle->info->request_owners.Lookup(
thread_get_current_thread_id());
if (existingOwner != NULL) {
existingOwner->requests_queue.Add(request);
return B_OK;
}
NVMeRequestOwner owner;
owner.team = thread_get_current_thread()->team->id;
owner.thread = thread_get_current_thread_id();
owner.priority = thread_get_io_priority(owner.thread);
handle->info->request_owners.InsertUnchecked(&owner);
requestOwnersLocker.Unlock();
owner.requests_queue.Add(request);
while (!owner.requests_queue.IsEmpty()) {
request = owner.requests_queue.RemoveHead();
status_t status = do_io(handle, request);
if (status != B_OK && !request->IsFinished())
request->SetStatusAndNotify(status);
}
requestOwnersLocker.Lock();
handle->info->request_owners.Remove(&owner);
return B_OK;
}
static status_t
nvme_disk_read(void* cookie, off_t pos, void* buffer, size_t* length)
{
CALLED();
nvme_disk_handle* handle = (nvme_disk_handle*)cookie;
const off_t ns_end = (handle->info->capacity * handle->info->block_size);
if (pos >= ns_end)
return B_BAD_VALUE;
if ((pos + (off_t)*length) > ns_end)
*length = ns_end - pos;
IORequest request;
status_t status = request.Init(pos, (addr_t)buffer, *length, false, 0);
if (status != B_OK)
return status;
status = nvme_disk_io(handle, &request);
*length = request.TransferredBytes();
return status;
}
static status_t
nvme_disk_write(void* cookie, off_t pos, const void* buffer, size_t* length)
{
CALLED();
nvme_disk_handle* handle = (nvme_disk_handle*)cookie;
const off_t ns_end = (handle->info->capacity * handle->info->block_size);
if (pos >= ns_end)
return B_BAD_VALUE;
if ((pos + (off_t)*length) > ns_end)
*length = ns_end - pos;
IORequest request;
status_t status = request.Init(pos, (addr_t)buffer, *length, true, 0);
if (status != B_OK)
return status;
status = nvme_disk_io(handle, &request);
*length = request.TransferredBytes();
return status;
}
static status_t
nvme_disk_flush(nvme_disk_driver_info* info)
{
CALLED();
status_t status = EINPROGRESS;
qpair_info* qpinfo = get_qpair(info);
int ret = nvme_ns_flush(info->ns, qpinfo->qpair,
(nvme_cmd_cb)io_finished_callback, &status);
if (ret != 0)
return ret;
await_status(info, qpinfo->qpair, status);
return status;
}
static status_t
nvme_disk_trim(nvme_disk_driver_info* info, fs_trim_data* trimData)
{
CALLED();
trimData->trimmed_size = 0;
const off_t deviceSize = info->capacity * info->block_size;
if (deviceSize < 0)
return B_BAD_VALUE;
STATIC_ASSERT(sizeof(deviceSize) <= sizeof(uint64));
ASSERT(deviceSize >= 0);
for (uint32 i = 0; i < trimData->range_count; i++) {
uint64 offset = trimData->ranges[i].offset;
uint64& size = trimData->ranges[i].size;
if (offset >= (uint64)deviceSize)
return B_BAD_VALUE;
size = std::min(size, (uint64)deviceSize - offset);
}
nvme_dsm_range* dsmRanges = (nvme_dsm_range*)nvme_mem_alloc_node(
trimData->range_count * sizeof(nvme_dsm_range), 0, 0, NULL);
if (dsmRanges == NULL)
return B_NO_MEMORY;
CObjectDeleter<void, void, nvme_free> dsmRangesDeleter(dsmRanges);
uint64 trimmingSize = 0;
for (uint32 i = 0; i < trimData->range_count; i++) {
uint64 offset = trimData->ranges[i].offset;
uint64 length = trimData->ranges[i].size;
offset = ROUNDUP(offset, info->block_size);
length -= offset - trimData->ranges[i].offset;
length = ROUNDDOWN(length, info->block_size);
if (length == 0)
continue;
if ((length / info->block_size) > UINT32_MAX)
length = uint64(UINT32_MAX) * info->block_size;
TRACE("trim %" B_PRIu64 " bytes from %" B_PRIu64 "\n", length, offset);
dsmRanges[i].attributes = 0;
dsmRanges[i].length = length / info->block_size;
dsmRanges[i].starting_lba = offset / info->block_size;
trimmingSize += length;
}
status_t status = EINPROGRESS;
qpair_info* qpair = get_qpair(info);
if (nvme_ns_deallocate(info->ns, qpair->qpair, dsmRanges, trimData->range_count,
(nvme_cmd_cb)io_finished_callback, &status) != 0)
return B_IO_ERROR;
await_status(info, qpair->qpair, status);
if (status != B_OK)
return status;
trimData->trimmed_size = trimmingSize;
return B_OK;
}
static status_t
nvme_disk_ioctl(void* cookie, uint32 op, void* buffer, size_t length)
{
CALLED();
nvme_disk_handle* handle = (nvme_disk_handle*)cookie;
nvme_disk_driver_info* info = handle->info;
TRACE("ioctl(op = %" B_PRId32 ")\n", op);
switch (op) {
case B_GET_MEDIA_STATUS:
{
return user_memcpy(buffer, &info->media_status, sizeof(status_t));
}
case B_GET_DEVICE_SIZE:
{
size_t size = info->capacity * info->block_size;
return user_memcpy(buffer, &size, sizeof(size_t));
}
case B_GET_GEOMETRY:
{
if (buffer == NULL || length > sizeof(device_geometry))
return B_BAD_VALUE;
device_geometry geometry;
status_t status = get_geometry(handle, &geometry);
if (status != B_OK)
return status;
return user_memcpy(buffer, &geometry, length);
}
case B_GET_ICON_NAME:
return user_strlcpy((char*)buffer, "devices/drive-harddisk",
B_FILE_NAME_LENGTH);
case B_GET_VECTOR_ICON:
{
device_icon iconData;
if (length != sizeof(device_icon))
return B_BAD_VALUE;
if (user_memcpy(&iconData, buffer, sizeof(device_icon)) != B_OK)
return B_BAD_ADDRESS;
if (iconData.icon_size >= (int32)sizeof(kDriveIcon)) {
if (user_memcpy(iconData.icon_data, kDriveIcon,
sizeof(kDriveIcon)) != B_OK)
return B_BAD_ADDRESS;
}
iconData.icon_size = sizeof(kDriveIcon);
return user_memcpy(buffer, &iconData, sizeof(device_icon));
}
case B_FLUSH_DRIVE_CACHE:
return nvme_disk_flush(info);
case B_TRIM_DEVICE:
ASSERT(IS_KERNEL_ADDRESS(buffer));
return nvme_disk_trim(info, (fs_trim_data*)buffer);
}
return B_DEV_INVALID_IOCTL;
}
static float
nvme_disk_supports_device(device_node *parent)
{
CALLED();
const char* bus;
uint16 baseClass, subClass;
if (sDeviceManager->get_attr_string(parent, B_DEVICE_BUS, &bus, false) != B_OK
|| sDeviceManager->get_attr_uint16(parent, B_DEVICE_TYPE, &baseClass, false) != B_OK
|| sDeviceManager->get_attr_uint16(parent, B_DEVICE_SUB_TYPE, &subClass, false) != B_OK)
return -1.0f;
if (strcmp(bus, "pci") != 0 || baseClass != PCI_mass_storage)
return 0.0f;
if (subClass != PCI_nvm)
return 0.0f;
TRACE("NVMe device found!\n");
return 1.0f;
}
static status_t
nvme_disk_register_device(device_node* parent)
{
CALLED();
device_attr attrs[] = {
{ B_DEVICE_PRETTY_NAME, B_STRING_TYPE, { .string = "NVMe Disk" } },
{ NULL }
};
return sDeviceManager->register_node(parent, NVME_DISK_DRIVER_MODULE_NAME,
attrs, NULL, NULL);
}
static status_t
nvme_disk_init_driver(device_node* node, void** cookie)
{
CALLED();
int ret = nvme_lib_init((enum nvme_log_level)0, (enum nvme_log_facility)0, NULL);
if (ret != 0) {
TRACE_ERROR("libnvme initialization failed!\n");
return ret;
}
nvme_disk_driver_info* info = new nvme_disk_driver_info;
if (info == NULL)
return B_NO_MEMORY;
info->media_status = B_OK;
info->node = node;
info->ctrlr = NULL;
*cookie = info;
return B_OK;
}
static void
nvme_disk_uninit_driver(void* _cookie)
{
CALLED();
nvme_disk_driver_info* info = (nvme_disk_driver_info*)_cookie;
free(info);
}
static status_t
nvme_disk_register_child_devices(void* _cookie)
{
CALLED();
nvme_disk_driver_info* info = (nvme_disk_driver_info*)_cookie;
status_t status;
int32 id = sDeviceManager->create_id(NVME_DISK_DEVICE_ID_GENERATOR);
if (id < 0)
return id;
char name[64];
snprintf(name, sizeof(name), "disk/nvme/%" B_PRId32 "/raw",
id);
status = sDeviceManager->publish_device(info->node, name,
NVME_DISK_DEVICE_MODULE_NAME);
return status;
}
module_dependency module_dependencies[] = {
{ B_DEVICE_MANAGER_MODULE_NAME, (module_info**)&sDeviceManager },
{ NULL }
};
struct device_module_info sNvmeDiskDevice = {
{
NVME_DISK_DEVICE_MODULE_NAME,
0,
NULL
},
nvme_disk_init_device,
nvme_disk_uninit_device,
NULL,
nvme_disk_open,
nvme_disk_close,
nvme_disk_free,
nvme_disk_read,
nvme_disk_write,
nvme_disk_io,
nvme_disk_ioctl,
NULL,
NULL,
};
struct driver_module_info sNvmeDiskDriver = {
{
NVME_DISK_DRIVER_MODULE_NAME,
0,
NULL
},
nvme_disk_supports_device,
nvme_disk_register_device,
nvme_disk_init_driver,
nvme_disk_uninit_driver,
nvme_disk_register_child_devices,
NULL,
NULL,
};
module_info* modules[] = {
(module_info*)&sNvmeDiskDriver,
(module_info*)&sNvmeDiskDevice,
NULL
};