Open Tracker License
Terms and Conditions
Copyright (c) 1991-2000, Be Incorporated. All rights reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:
The above copyright notice and this permission notice applies to all licensees
and shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF TITLE, MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
BE INCORPORATED BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of Be Incorporated shall not be
used in advertising or otherwise to promote the sale, use or other dealings in
this Software without prior written authorization from Be Incorporated.
Tracker(TM), Be(R), BeOS(R), and BeIA(TM) are trademarks or registered trademarks
of Be Incorporated in the United States and other countries. Other brand product
names are registered trademarks or trademarks of their respective holders.
All rights reserved.
*/
#include <Debug.h>
#include <InterfaceDefs.h>
#include "AutoLock.h"
#include "TaskLoop.h"
const float kIdleTreshold = 0.15f;
const bigtime_t kInfinity = B_INFINITE_TIMEOUT;
static bigtime_t
ActivityLevel()
{
bigtime_t time = 0;
system_info sinfo;
get_system_info(&sinfo);
cpu_info* cpuInfos = new cpu_info[sinfo.cpu_count];
get_cpu_info(0, sinfo.cpu_count, cpuInfos);
for (uint32 index = 0; index < sinfo.cpu_count; index++)
time += cpuInfos[index].active_time;
delete[] cpuInfos;
return time / ((bigtime_t) sinfo.cpu_count);
}
class AccumulatedOneShotDelayedTask : public OneShotDelayedTask {
public:
AccumulatedOneShotDelayedTask(AccumulatingFunctionObject* functor,
bigtime_t delay, bigtime_t maxAccumulatingTime = 0,
int32 maxAccumulateCount = 0)
:
OneShotDelayedTask(functor, delay),
maxAccumulateCount(maxAccumulateCount),
accumulateCount(1),
maxAccumulatingTime(maxAccumulatingTime),
initialTime(system_time())
{
}
bool CanAccumulate(const AccumulatingFunctionObject* accumulateThis) const
{
if (maxAccumulateCount && accumulateCount > maxAccumulateCount)
return false;
if (maxAccumulatingTime && system_time() > initialTime
+ maxAccumulatingTime) {
return false;
}
return static_cast<AccumulatingFunctionObject*>(fFunctor)->
CanAccumulate(accumulateThis);
}
virtual void Accumulate(AccumulatingFunctionObject* accumulateThis,
bigtime_t delay)
{
fRunAfter = system_time() + delay;
accumulateCount++;
static_cast<AccumulatingFunctionObject*>(fFunctor)->
Accumulate(accumulateThis);
}
private:
int32 maxAccumulateCount;
int32 accumulateCount;
bigtime_t maxAccumulatingTime;
bigtime_t initialTime;
};
DelayedTask::DelayedTask(bigtime_t delay)
:
fRunAfter(system_time() + delay)
{
}
DelayedTask::~DelayedTask()
{
}
OneShotDelayedTask::OneShotDelayedTask(FunctionObject* functor,
bigtime_t delay)
:
DelayedTask(delay),
fFunctor(functor)
{
}
OneShotDelayedTask::~OneShotDelayedTask()
{
delete fFunctor;
}
bool
OneShotDelayedTask::RunIfNeeded(bigtime_t currentTime)
{
if (currentTime < fRunAfter)
return false;
(*fFunctor)();
return true;
}
PeriodicDelayedTask::PeriodicDelayedTask(
FunctionObjectWithResult<bool>* functor, bigtime_t initialDelay,
bigtime_t period)
:
DelayedTask(initialDelay),
fPeriod(period),
fFunctor(functor)
{
}
PeriodicDelayedTask::~PeriodicDelayedTask()
{
delete fFunctor;
}
bool
PeriodicDelayedTask::RunIfNeeded(bigtime_t currentTime)
{
if (currentTime < fRunAfter)
return false;
fRunAfter = currentTime + fPeriod;
(*fFunctor)();
return fFunctor->Result();
}
PeriodicDelayedTaskWithTimeout::PeriodicDelayedTaskWithTimeout(
FunctionObjectWithResult<bool>* functor, bigtime_t initialDelay,
bigtime_t period, bigtime_t timeout)
:
PeriodicDelayedTask(functor, initialDelay, period),
fTimeoutAfter(system_time() + timeout)
{
}
bool
PeriodicDelayedTaskWithTimeout::RunIfNeeded(bigtime_t currentTime)
{
if (currentTime < fRunAfter)
return false;
fRunAfter = currentTime + fPeriod;
(*fFunctor)();
if (fFunctor->Result())
return true;
return currentTime > fTimeoutAfter;
}
RunWhenIdleTask::RunWhenIdleTask(FunctionObjectWithResult<bool>* functor,
bigtime_t initialDelay, bigtime_t idleFor, bigtime_t heartBeat)
:
PeriodicDelayedTask(functor, initialDelay, heartBeat),
fIdleFor(idleFor),
fState(kInitialDelay),
fActivityLevelStart(0),
fActivityLevel(0),
fLastCPUTooBusyTime(0)
{
}
RunWhenIdleTask::~RunWhenIdleTask()
{
}
bool
RunWhenIdleTask::RunIfNeeded(bigtime_t currentTime)
{
if (currentTime < fRunAfter)
return false;
fRunAfter = currentTime + fPeriod;
if (fState == kInitialDelay) {
ResetIdleTimer(currentTime);
} else if (fState == kInIdleState && !StillIdle(currentTime)) {
fState = kInitialIdleWait;
ResetIdleTimer(currentTime);
} else if (fState != kInitialIdleWait || IdleTimerExpired(currentTime)) {
fState = kInIdleState;
(*fFunctor)();
return fFunctor->Result();
}
return false;
}
void
RunWhenIdleTask::ResetIdleTimer(bigtime_t currentTime)
{
fActivityLevel = ActivityLevel();
fActivityLevelStart = currentTime;
fLastCPUTooBusyTime = currentTime;
fState = kInitialIdleWait;
}
bool
RunWhenIdleTask::IsIdle(bigtime_t currentTime, float taskOverhead)
{
bigtime_t currentActivityLevel = ActivityLevel();
float load = (float)(currentActivityLevel - fActivityLevel)
/ (float)(currentTime - fActivityLevelStart);
fActivityLevel = currentActivityLevel;
fActivityLevelStart = currentTime;
load -= taskOverhead;
bool idle = true;
if (load > kIdleTreshold) {
idle = false;
} else if ((currentTime - fLastCPUTooBusyTime) < fIdleFor
|| idle_time() < fIdleFor) {
idle = false;
}
#if xDEBUG
else
PRINT(("load %f, idle for %lld sec, go\n", load,
(currentTime - fLastCPUTooBusyTime) / 1000000));
#endif
return idle;
}
bool
RunWhenIdleTask::IdleTimerExpired(bigtime_t currentTime)
{
return IsIdle(currentTime, 0);
}
bool
RunWhenIdleTask::StillIdle(bigtime_t currentTime)
{
return IsIdle(currentTime, kIdleTreshold);
}
TaskLoop::TaskLoop(bigtime_t heartBeat)
:
fTaskList(10),
fHeartBeat(heartBeat)
{
}
TaskLoop::~TaskLoop()
{
}
void
TaskLoop::RunLater(DelayedTask* task)
{
AddTask(task);
}
void
TaskLoop::RunLater(FunctionObject* functor, bigtime_t delay)
{
RunLater(new OneShotDelayedTask(functor, delay));
}
void
TaskLoop::RunLater(FunctionObjectWithResult<bool>* functor,
bigtime_t delay, bigtime_t period)
{
RunLater(new PeriodicDelayedTask(functor, delay, period));
}
void
TaskLoop::RunLater(FunctionObjectWithResult<bool>* functor, bigtime_t delay,
bigtime_t period, bigtime_t timeout)
{
RunLater(new PeriodicDelayedTaskWithTimeout(functor, delay, period,
timeout));
}
void
TaskLoop::RunWhenIdle(FunctionObjectWithResult<bool>* functor,
bigtime_t initialDelay, bigtime_t idleTime, bigtime_t heartBeat)
{
RunLater(new RunWhenIdleTask(functor, initialDelay, idleTime, heartBeat));
}
void
TaskLoop::AccumulatedRunLater(AccumulatingFunctionObject* functor,
bigtime_t delay, bigtime_t maxAccumulatingTime, int32 maxAccumulateCount)
{
AutoLock<BLocker> autoLock(&fLock);
if (!autoLock.IsLocked())
return;
int32 count = fTaskList.CountItems();
for (int32 index = 0; index < count; index++) {
AccumulatedOneShotDelayedTask* task
= dynamic_cast<AccumulatedOneShotDelayedTask*>(
fTaskList.ItemAt(index));
if (task == NULL)
continue;
else if (task->CanAccumulate(functor)) {
task->Accumulate(functor, delay);
return;
}
}
RunLater(new AccumulatedOneShotDelayedTask(functor, delay,
maxAccumulatingTime, maxAccumulateCount));
}
bool
TaskLoop::Pulse()
{
ASSERT(fLock.IsLocked());
int32 count = fTaskList.CountItems();
if (count > 0) {
bigtime_t currentTime = system_time();
for (int32 index = 0; index < count; ) {
DelayedTask* task = fTaskList.ItemAt(index);
if (task->RunIfNeeded(currentTime)) {
RemoveTask(task);
count--;
} else
index++;
}
}
return count == 0 && !KeepPulsingWhenEmpty();
}
bigtime_t
TaskLoop::LatestRunTime() const
{
ASSERT(fLock.IsLocked());
bigtime_t result = kInfinity;
#if xDEBUG
DelayedTask* nextTask = 0;
#endif
int32 count = fTaskList.CountItems();
for (int32 index = 0; index < count; index++) {
bigtime_t runAfter = fTaskList.ItemAt(index)->RunAfterTime();
if (runAfter < result) {
result = runAfter;
#if xDEBUG
nextTask = fTaskList.ItemAt(index);
#endif
}
}
#if xDEBUG
if (nextTask)
PRINT(("latestRunTime : next task %s\n", typeid(*nextTask).name));
else
PRINT(("latestRunTime : no next task\n"));
#endif
return result;
}
void
TaskLoop::RemoveTask(DelayedTask* task)
{
ASSERT(fLock.IsLocked());
fTaskList.RemoveItem(task);
}
void
TaskLoop::AddTask(DelayedTask* task)
{
AutoLock<BLocker> autoLock(&fLock);
if (!autoLock.IsLocked()) {
delete task;
return;
}
fTaskList.AddItem(task);
StartPulsingIfNeeded();
}
StandAloneTaskLoop::StandAloneTaskLoop(bool keepThread, bigtime_t heartBeat)
:
TaskLoop(heartBeat),
fNeedToQuit(false),
fScanThread(-1),
fKeepThread(keepThread)
{
}
StandAloneTaskLoop::~StandAloneTaskLoop()
{
fLock.Lock();
fNeedToQuit = true;
bool easyOut = (fScanThread == -1);
fLock.Unlock();
if (!easyOut)
for (int32 timeout = 10000; ; timeout--) {
if (!timeout) {
PRINT(("StandAloneTaskLoop timed out, quitting abruptly"));
break;
}
bool done;
fLock.Lock();
done = (fScanThread == -1);
fLock.Unlock();
if (done)
break;
snooze(1000);
}
}
void
StandAloneTaskLoop::StartPulsingIfNeeded()
{
ASSERT(fLock.IsLocked());
if (fScanThread < 0) {
fScanThread = spawn_thread(StandAloneTaskLoop::RunBinder,
"TrackerTaskLoop", B_LOW_PRIORITY, this);
resume_thread(fScanThread);
}
}
bool
StandAloneTaskLoop::KeepPulsingWhenEmpty() const
{
return fKeepThread;
}
status_t
StandAloneTaskLoop::RunBinder(void* castToThis)
{
StandAloneTaskLoop* self = (StandAloneTaskLoop*)castToThis;
self->Run();
return B_OK;
}
void
StandAloneTaskLoop::Run()
{
for(;;) {
AutoLock<BLocker> autoLock(&fLock);
if (!autoLock)
return;
if (fNeedToQuit) {
fScanThread = -1;
return;
}
if (Pulse()) {
fScanThread = -1;
return;
}
bigtime_t now = system_time();
bigtime_t latestRunTime = LatestRunTime() - 1000;
bigtime_t afterHeartBeatTime = now + fHeartBeat;
bigtime_t snoozeTill = latestRunTime < afterHeartBeatTime ?
latestRunTime : afterHeartBeatTime;
autoLock.Unlock();
if (snoozeTill > now)
snooze_until(snoozeTill, B_SYSTEM_TIMEBASE);
else
snooze(1000);
}
}
void
StandAloneTaskLoop::AddTask(DelayedTask* delayedTask)
{
_inherited::AddTask(delayedTask);
if (fScanThread < 0)
return;
thread_info info;
get_thread_info(fScanThread, &info);
if (info.state == B_THREAD_ASLEEP) {
suspend_thread(fScanThread);
snooze(1000);
resume_thread(fScanThread);
}
}
PiggybackTaskLoop::PiggybackTaskLoop(bigtime_t heartBeat)
:
TaskLoop(heartBeat),
fNextHeartBeatTime(0),
fPulseMe(false)
{
}
PiggybackTaskLoop::~PiggybackTaskLoop()
{
}
void
PiggybackTaskLoop::PulseMe()
{
if (!fPulseMe)
return;
bigtime_t time = system_time();
if (fNextHeartBeatTime < time) {
AutoLock<BLocker> autoLock(&fLock);
if (Pulse())
fPulseMe = false;
fNextHeartBeatTime = time + fHeartBeat;
}
}
bool
PiggybackTaskLoop::KeepPulsingWhenEmpty() const
{
return false;
}
void
PiggybackTaskLoop::StartPulsingIfNeeded()
{
fPulseMe = true;
}