* Copyright 2011-2021, Haiku, Inc. All rights reserved.
* Distributed under the terms of the MIT License.
*
* Authors:
* Augustin Cavalier <waddlesplash>
* Jian Chiang <j.jian.chiang@gmail.com>
* Jérôme Duval <jerome.duval@gmail.com>
* Akshay Jaggi <akshay1994.leo@gmail.com>
* Michael Lotz <mmlr@mlotz.ch>
* Alexander von Gluck <kallisti5@unixzen.com>
*/
#include <stdio.h>
#include <bus/PCI.h>
#include <USB3.h>
#include <KernelExport.h>
#include <ByteOrder.h>
#include <util/AutoLock.h>
#include "xhci.h"
#define CALLED(x...) TRACE_MODULE("CALLED %s\n", __PRETTY_FUNCTION__)
#define USB_MODULE_NAME "xhci"
device_manager_info* gDeviceManager;
static usb_for_controller_interface* gUSB;
#define XHCI_PCI_DEVICE_MODULE_NAME "busses/usb/xhci/pci/driver_v1"
#define XHCI_PCI_USB_BUS_MODULE_NAME "busses/usb/xhci/device_v1"
typedef struct {
XHCI* xhci;
pci_device_module_info* pci;
pci_device* device;
pci_info pciinfo;
device_node* node;
device_node* driver_node;
} xhci_pci_sim_info;
static status_t
init_bus(device_node* node, void** bus_cookie)
{
CALLED();
driver_module_info* driver;
xhci_pci_sim_info* bus;
device_node* parent = gDeviceManager->get_parent_node(node);
gDeviceManager->get_driver(parent, &driver, (void**)&bus);
gDeviceManager->put_node(parent);
Stack *stack;
if (gUSB->get_stack((void**)&stack) != B_OK)
return B_ERROR;
XHCI *xhci = new(std::nothrow) XHCI(&bus->pciinfo, bus->pci, bus->device, stack, node);
if (xhci == NULL) {
return B_NO_MEMORY;
}
if (xhci->InitCheck() < B_OK) {
TRACE_MODULE_ERROR("bus failed init check\n");
delete xhci;
return B_ERROR;
}
if (xhci->Start() != B_OK) {
delete xhci;
return B_ERROR;
}
*bus_cookie = xhci;
return B_OK;
}
static void
uninit_bus(void* bus_cookie)
{
CALLED();
XHCI* xhci = (XHCI*)bus_cookie;
delete xhci;
}
static status_t
register_child_devices(void* cookie)
{
CALLED();
xhci_pci_sim_info* bus = (xhci_pci_sim_info*)cookie;
device_node* node = bus->driver_node;
char prettyName[25];
sprintf(prettyName, "XHCI Controller %" B_PRIu16, 0);
device_attr attrs[] = {
{ B_DEVICE_PRETTY_NAME, B_STRING_TYPE,
{ .string = prettyName }},
{ B_DEVICE_FIXED_CHILD, B_STRING_TYPE,
{ .string = USB_FOR_CONTROLLER_MODULE_NAME }},
{ NULL }
};
return gDeviceManager->register_node(node, XHCI_PCI_USB_BUS_MODULE_NAME,
attrs, NULL, NULL);
}
static status_t
init_device(device_node* node, void** device_cookie)
{
CALLED();
xhci_pci_sim_info* bus = (xhci_pci_sim_info*)calloc(1,
sizeof(xhci_pci_sim_info));
if (bus == NULL)
return B_NO_MEMORY;
pci_device_module_info* pci;
pci_device* device;
{
device_node* pciParent = gDeviceManager->get_parent_node(node);
gDeviceManager->get_driver(pciParent, (driver_module_info**)&pci,
(void**)&device);
gDeviceManager->put_node(pciParent);
}
bus->pci = pci;
bus->device = device;
bus->driver_node = node;
pci_info *pciInfo = &bus->pciinfo;
pci->get_pci_info(device, pciInfo);
*device_cookie = bus;
return B_OK;
}
static void
uninit_device(void* device_cookie)
{
CALLED();
xhci_pci_sim_info* bus = (xhci_pci_sim_info*)device_cookie;
free(bus);
}
static status_t
register_device(device_node* parent)
{
CALLED();
device_attr attrs[] = {
{B_DEVICE_PRETTY_NAME, B_STRING_TYPE, {.string = "XHCI PCI"}},
{}
};
return gDeviceManager->register_node(parent,
XHCI_PCI_DEVICE_MODULE_NAME, attrs, NULL, NULL);
}
static float
supports_device(device_node* parent)
{
CALLED();
const char* bus;
uint16 type, subType, api;
if (gDeviceManager->get_attr_string(parent, B_DEVICE_BUS, &bus, false)
< B_OK) {
return -1;
}
if (strcmp(bus, "pci") != 0)
return 0.0f;
if (gDeviceManager->get_attr_uint16(parent, B_DEVICE_SUB_TYPE, &subType,
false) < B_OK
|| gDeviceManager->get_attr_uint16(parent, B_DEVICE_TYPE, &type,
false) < B_OK
|| gDeviceManager->get_attr_uint16(parent, B_DEVICE_INTERFACE, &api,
false) < B_OK) {
TRACE_MODULE("Could not find type/subtype/interface attributes\n");
return -1;
}
if (type == PCI_serial_bus && subType == PCI_usb && api == PCI_usb_xhci) {
pci_device_module_info* pci;
pci_device* device;
gDeviceManager->get_driver(parent, (driver_module_info**)&pci,
(void**)&device);
TRACE_MODULE("XHCI Device found!\n");
return 0.8f;
}
return 0.0f;
}
static const char*
xhci_error_string(uint32 error)
{
switch (error) {
case COMP_INVALID: return "Invalid";
case COMP_SUCCESS: return "Success";
case COMP_DATA_BUFFER: return "Data buffer";
case COMP_BABBLE: return "Babble detected";
case COMP_USB_TRANSACTION: return "USB transaction";
case COMP_TRB: return "TRB";
case COMP_STALL: return "Stall";
case COMP_RESOURCE: return "Resource";
case COMP_BANDWIDTH: return "Bandwidth";
case COMP_NO_SLOTS: return "No slots";
case COMP_INVALID_STREAM: return "Invalid stream";
case COMP_SLOT_NOT_ENABLED: return "Slot not enabled";
case COMP_ENDPOINT_NOT_ENABLED: return "Endpoint not enabled";
case COMP_SHORT_PACKET: return "Short packet";
case COMP_RING_UNDERRUN: return "Ring underrun";
case COMP_RING_OVERRUN: return "Ring overrun";
case COMP_VF_RING_FULL: return "VF Event Ring Full";
case COMP_PARAMETER: return "Parameter";
case COMP_BANDWIDTH_OVERRUN: return "Bandwidth overrun";
case COMP_CONTEXT_STATE: return "Context state";
case COMP_NO_PING_RESPONSE: return "No ping response";
case COMP_EVENT_RING_FULL: return "Event ring full";
case COMP_INCOMPATIBLE_DEVICE: return "Incompatible device";
case COMP_MISSED_SERVICE: return "Missed service";
case COMP_COMMAND_RING_STOPPED: return "Command ring stopped";
case COMP_COMMAND_ABORTED: return "Command aborted";
case COMP_STOPPED: return "Stopped";
case COMP_STOPPED_LENGTH_INVALID: return "Stopped (length invalid)";
case COMP_MAX_EXIT_LATENCY: return "Max exit latency too large";
case COMP_ISOC_OVERRUN: return "Isoch buffer overrun";
case COMP_EVENT_LOST: return "Event lost";
case COMP_UNDEFINED: return "Undefined";
case COMP_INVALID_STREAM_ID: return "Invalid stream ID";
case COMP_SECONDARY_BANDWIDTH: return "Secondary bandwidth";
case COMP_SPLIT_TRANSACTION: return "Split transaction";
default: return "Undefined";
}
}
static status_t
xhci_error_status(uint32 error, bool directionIn)
{
switch (error) {
case COMP_SHORT_PACKET:
case COMP_SUCCESS:
return B_OK;
case COMP_DATA_BUFFER:
return directionIn ? B_DEV_WRITE_ERROR : B_DEV_READ_ERROR;
case COMP_BABBLE:
return directionIn ? B_DEV_DATA_OVERRUN : B_DEV_DATA_UNDERRUN;
case COMP_RING_UNDERRUN:
return B_DEV_FIFO_UNDERRUN;
case COMP_RING_OVERRUN:
return B_DEV_FIFO_OVERRUN;
case COMP_MISSED_SERVICE:
return B_DEV_TOO_LATE;
case COMP_USB_TRANSACTION:
return B_DEV_CRC_ERROR;
case COMP_STALL:
return B_DEV_STALLED;
default:
return B_DEV_STALLED;
}
}
module_dependency module_dependencies[] = {
{ USB_FOR_CONTROLLER_MODULE_NAME, (module_info**)&gUSB },
{ B_DEVICE_MANAGER_MODULE_NAME, (module_info**)&gDeviceManager },
{}
};
static usb_bus_interface gXHCIPCIDeviceModule = {
{
{
XHCI_PCI_USB_BUS_MODULE_NAME,
0,
NULL
},
NULL,
NULL,
init_bus,
uninit_bus,
NULL,
NULL,
NULL,
},
};
static driver_module_info sXHCIDevice = {
{
XHCI_PCI_DEVICE_MODULE_NAME,
0,
NULL
},
supports_device,
register_device,
init_device,
uninit_device,
register_child_devices,
NULL,
NULL,
};
module_info* modules[] = {
(module_info* )&sXHCIDevice,
(module_info* )&gXHCIPCIDeviceModule,
NULL
};
XHCI::XHCI(pci_info *info, pci_device_module_info* pci, pci_device* device, Stack *stack,
device_node* node)
: BusManager(stack, node),
fRegisterArea(-1),
fRegisters(NULL),
fPCIInfo(info),
fPci(pci),
fDevice(device),
fStack(stack),
fIRQ(0),
fUseMSI(false),
fErstArea(-1),
fDcbaArea(-1),
fCmdCompSem(-1),
fStopThreads(false),
fRootHub(NULL),
fPortCount(0),
fSlotCount(0),
fScratchpadCount(0),
fContextSizeShift(0),
fFinishedHead(NULL),
fFinishTransfersSem(-1),
fFinishThread(-1),
fEventSem(-1),
fEventThread(-1),
fEventIdx(0),
fCmdIdx(0),
fEventCcs(1),
fCmdCcs(1)
{
B_INITIALIZE_SPINLOCK(&fSpinlock);
mutex_init(&fFinishedLock, "XHCI finished transfers");
mutex_init(&fEventLock, "XHCI event handler");
if (BusManager::InitCheck() < B_OK) {
TRACE_ERROR("bus manager failed to init\n");
return;
}
TRACE("constructing new XHCI host controller driver\n");
fInitOK = false;
uint16 command = fPci->read_pci_config(fDevice, PCI_command, 2);
command &= ~(PCI_command_io | PCI_command_int_disable);
command |= PCI_command_master | PCI_command_memory;
fPci->write_pci_config(fDevice, PCI_command, 2, command);
phys_addr_t physicalAddress = fPCIInfo->u.h0.base_registers[0];
if ((fPCIInfo->u.h0.base_register_flags[0] & PCI_address_type)
== PCI_address_type_64) {
physicalAddress |= (uint64)fPCIInfo->u.h0.base_registers[1] << 32;
}
size_t mapSize = fPCIInfo->u.h0.base_register_sizes[0];
TRACE("map registers %08" B_PRIxPHYSADDR ", size: %" B_PRIuSIZE "\n",
physicalAddress, mapSize);
fRegisterArea = map_physical_memory("XHCI memory mapped registers",
physicalAddress, mapSize, B_ANY_KERNEL_BLOCK_ADDRESS,
B_KERNEL_READ_AREA | B_KERNEL_WRITE_AREA,
(void **)&fRegisters);
if (fRegisterArea < B_OK) {
TRACE_ERROR("failed to map register memory\n");
return;
}
fCapabilityRegisterOffset = 0;
fOperationalRegisterOffset = HCI_CAPLENGTH(ReadCapReg32(XHCI_HCI_CAPLENGTH));
fRuntimeRegisterOffset = ReadCapReg32(XHCI_RTSOFF) & ~0x1F;
fDoorbellRegisterOffset = ReadCapReg32(XHCI_DBOFF) & ~0x3;
TRACE("mapped registers: %p\n", fRegisters);
TRACE("operational register offset: %" B_PRId32 "\n", fOperationalRegisterOffset);
TRACE("runtime register offset: %" B_PRId32 "\n", fRuntimeRegisterOffset);
TRACE("doorbell register offset: %" B_PRId32 "\n", fDoorbellRegisterOffset);
int32 interfaceVersion = HCI_VERSION(ReadCapReg32(XHCI_HCI_VERSION));
if (interfaceVersion < 0x0090 || interfaceVersion > 0x0120) {
TRACE_ERROR("unsupported interface version: 0x%04" B_PRIx32 "\n",
interfaceVersion);
return;
}
TRACE_ALWAYS("interface version: 0x%04" B_PRIx32 "\n", interfaceVersion);
TRACE_ALWAYS("structural parameters: 1:0x%08" B_PRIx32 " 2:0x%08"
B_PRIx32 " 3:0x%08" B_PRIx32 "\n", ReadCapReg32(XHCI_HCSPARAMS1),
ReadCapReg32(XHCI_HCSPARAMS2), ReadCapReg32(XHCI_HCSPARAMS3));
uint32 cparams = ReadCapReg32(XHCI_HCCPARAMS);
if (cparams == 0xffffffff)
return;
TRACE_ALWAYS("capability parameters: 0x%08" B_PRIx32 "\n", cparams);
fContextSizeShift = HCC_CSZ(cparams);
uint32 eec = 0xffffffff;
uint32 eecp = HCS0_XECP(cparams) << 2;
for (; eecp != 0 && XECP_NEXT(eec) != 0; eecp += XECP_NEXT(eec) << 2) {
TRACE("eecp register: 0x%08" B_PRIx32 "\n", eecp);
eec = ReadCapReg32(eecp);
if (eec == 0xffffffff)
break;
if (XECP_ID(eec) != XHCI_LEGSUP_CAPID)
continue;
if (eec & XHCI_LEGSUP_BIOSOWNED) {
TRACE_ALWAYS("the host controller is bios owned, claiming"
" ownership\n");
WriteCapReg32(eecp, eec | XHCI_LEGSUP_OSOWNED);
for (int32 i = 0; i < 20; i++) {
eec = ReadCapReg32(eecp);
if ((eec & XHCI_LEGSUP_BIOSOWNED) == 0)
break;
TRACE_ALWAYS("controller is still bios owned, waiting\n");
snooze(50000);
}
if (eec & XHCI_LEGSUP_BIOSOWNED) {
TRACE_ERROR("bios won't give up control over the host "
"controller (ignoring)\n");
} else if (eec & XHCI_LEGSUP_OSOWNED) {
TRACE_ALWAYS("successfully took ownership of the host "
"controller\n");
}
WriteCapReg32(eecp, eec & ~XHCI_LEGSUP_BIOSOWNED);
}
uint32 legctlsts = ReadCapReg32(eecp + XHCI_LEGCTLSTS);
legctlsts &= (XHCI_LEGCTLSTS_RESERVED_BITS | XHCI_LEGCTLSTS_READONLY_BITS);
WriteCapReg32(eecp + XHCI_LEGCTLSTS, legctlsts);
break;
}
if (fPCIInfo->vendor_id == PCI_VENDOR_INTEL) {
switch (fPCIInfo->device_id) {
case PCI_DEVICE_INTEL_PANTHER_POINT_XHCI:
case PCI_DEVICE_INTEL_LYNX_POINT_XHCI:
case PCI_DEVICE_INTEL_LYNX_POINT_LP_XHCI:
case PCI_DEVICE_INTEL_BAYTRAIL_XHCI:
case PCI_DEVICE_INTEL_WILDCAT_POINT_XHCI:
case PCI_DEVICE_INTEL_WILDCAT_POINT_LP_XHCI:
_SwitchIntelPorts();
break;
}
}
if (ControllerHalt() < B_OK) {
return;
}
if (ControllerReset() < B_OK) {
TRACE_ERROR("host controller failed to reset\n");
return;
}
fCmdCompSem = create_sem(0, "XHCI Command Complete");
fFinishTransfersSem = create_sem(0, "XHCI Finish Transfers");
fEventSem = create_sem(0, "XHCI Event");
if (fFinishTransfersSem < B_OK || fCmdCompSem < B_OK || fEventSem < B_OK) {
TRACE_ERROR("failed to create semaphores\n");
return;
}
fEventThread = spawn_kernel_thread(EventThread, "xhci event thread",
B_URGENT_PRIORITY, (void *)this);
resume_thread(fEventThread);
fFinishThread = spawn_kernel_thread(FinishThread, "xhci finish thread",
B_URGENT_PRIORITY - 1, (void *)this);
resume_thread(fFinishThread);
fIRQ = fPCIInfo->u.h0.interrupt_line;
if (fIRQ == 0xFF)
fIRQ = 0;
#if 0
if (fPci->get_msix_count(fDevice) >= 1) {
uint8 msiVector = 0;
if (fPci->configure_msix(fDevice, 1, &msiVector) == B_OK
&& fPci->enable_msix(fDevice) == B_OK) {
TRACE_ALWAYS("using MSI-X\n");
fIRQ = msiVector;
fUseMSI = true;
}
} else
#endif
if (fPci->get_msi_count(fDevice) >= 1) {
uint32 msiVector = 0;
if (fPci->configure_msi(fDevice, 1, &msiVector) == B_OK
&& fPci->enable_msi(fDevice) == B_OK) {
TRACE_ALWAYS("using message signaled interrupts\n");
fIRQ = msiVector;
fUseMSI = true;
}
}
if (fIRQ == 0) {
TRACE_MODULE_ERROR("device PCI:%d:%d:%d was assigned an invalid IRQ\n",
fPCIInfo->bus, fPCIInfo->device, fPCIInfo->function);
return;
}
TRACE("installing interrupt handler\n");
install_io_interrupt_handler(fIRQ, InterruptHandler, (void *)this, 0);
memset(fPortSpeeds, 0, sizeof(fPortSpeeds));
memset(fDevices, 0, sizeof(fDevices));
fInitOK = true;
TRACE("driver construction successful\n");
}
XHCI::~XHCI()
{
TRACE("tear down XHCI host controller driver\n");
WriteOpReg(XHCI_CMD, 0);
int32 result = 0;
fStopThreads = true;
delete_sem(fCmdCompSem);
delete_sem(fFinishTransfersSem);
delete_sem(fEventSem);
wait_for_thread(fFinishThread, &result);
wait_for_thread(fEventThread, &result);
mutex_destroy(&fFinishedLock);
mutex_destroy(&fEventLock);
remove_io_interrupt_handler(fIRQ, InterruptHandler, (void *)this);
delete_area(fRegisterArea);
delete_area(fErstArea);
for (uint32 i = 0; i < fScratchpadCount; i++)
delete_area(fScratchpadArea[i]);
delete_area(fDcbaArea);
if (fUseMSI) {
fPci->disable_msi(fDevice);
fPci->unconfigure_msi(fDevice);
}
}
void
XHCI::_SwitchIntelPorts()
{
TRACE("Looking for EHCI owned ports\n");
uint32 ports = fPci->read_pci_config(fDevice, XHCI_INTEL_USB3PRM, 4);
TRACE("Superspeed Ports: 0x%" B_PRIx32 "\n", ports);
fPci->write_pci_config(fDevice, XHCI_INTEL_USB3_PSSEN, 4, ports);
ports = fPci->read_pci_config(fDevice, XHCI_INTEL_USB3_PSSEN, 4);
TRACE("Superspeed ports now under XHCI : 0x%" B_PRIx32 "\n", ports);
ports = fPci->read_pci_config(fDevice, XHCI_INTEL_USB2PRM, 4);
TRACE("USB 2.0 Ports : 0x%" B_PRIx32 "\n", ports);
fPci->write_pci_config(fDevice, XHCI_INTEL_XUSB2PR, 4, ports);
ports = fPci->read_pci_config(fDevice, XHCI_INTEL_XUSB2PR, 4);
TRACE("USB 2.0 ports now under XHCI: 0x%" B_PRIx32 "\n", ports);
}
status_t
XHCI::Start()
{
TRACE_ALWAYS("starting XHCI host controller\n");
TRACE("usbcmd: 0x%08" B_PRIx32 "; usbsts: 0x%08" B_PRIx32 "\n",
ReadOpReg(XHCI_CMD), ReadOpReg(XHCI_STS));
if (WaitOpBits(XHCI_STS, STS_CNR, 0) != B_OK) {
TRACE("Start() failed STS_CNR\n");
}
if ((ReadOpReg(XHCI_CMD) & CMD_RUN) != 0) {
TRACE_ERROR("Start() warning, starting running XHCI controller!\n");
}
if ((ReadOpReg(XHCI_PAGESIZE) & (1 << 0)) == 0) {
TRACE_ERROR("controller does not support 4K page size\n");
return B_ERROR;
}
uint32 capabilities = ReadCapReg32(XHCI_HCSPARAMS1);
fPortCount = HCS_MAX_PORTS(capabilities);
if (fPortCount == 0) {
TRACE_ERROR("invalid number of ports: %u\n", fPortCount);
return B_ERROR;
}
fSlotCount = HCS_MAX_SLOTS(capabilities);
if (fSlotCount > XHCI_MAX_DEVICES)
fSlotCount = XHCI_MAX_DEVICES;
WriteOpReg(XHCI_CONFIG, fSlotCount);
uint8 portFound = 0;
uint32 cparams = ReadCapReg32(XHCI_HCCPARAMS);
uint32 eec = 0xffffffff;
uint32 eecp = HCS0_XECP(cparams) << 2;
for (; eecp != 0 && XECP_NEXT(eec) && portFound < fPortCount;
eecp += XECP_NEXT(eec) << 2) {
eec = ReadCapReg32(eecp);
if (XECP_ID(eec) != XHCI_SUPPORTED_PROTOCOLS_CAPID)
continue;
if (XHCI_SUPPORTED_PROTOCOLS_0_MAJOR(eec) > 3)
continue;
uint32 temp = ReadCapReg32(eecp + 8);
uint32 offset = XHCI_SUPPORTED_PROTOCOLS_1_OFFSET(temp);
uint32 count = XHCI_SUPPORTED_PROTOCOLS_1_COUNT(temp);
if (offset == 0 || count == 0)
continue;
offset--;
for (uint32 i = offset; i < offset + count; i++) {
if (XHCI_SUPPORTED_PROTOCOLS_0_MAJOR(eec) == 0x3)
fPortSpeeds[i] = USB_SPEED_SUPERSPEED;
else
fPortSpeeds[i] = USB_SPEED_HIGHSPEED;
TRACE("speed for port %" B_PRId32 " is %s\n", i,
fPortSpeeds[i] == USB_SPEED_SUPERSPEED ? "super" : "high");
}
portFound += count;
}
uint32 params2 = ReadCapReg32(XHCI_HCSPARAMS2);
fScratchpadCount = HCS_MAX_SC_BUFFERS(params2);
if (fScratchpadCount > XHCI_MAX_SCRATCHPADS) {
TRACE_ERROR("invalid number of scratchpads: %" B_PRIu32 "\n",
fScratchpadCount);
return B_ERROR;
}
uint32 params3 = ReadCapReg32(XHCI_HCSPARAMS3);
fExitLatMax = HCS_U1_DEVICE_LATENCY(params3)
+ HCS_U2_DEVICE_LATENCY(params3);
WriteOpReg(XHCI_STS, ReadOpReg(XHCI_STS));
WriteOpReg(XHCI_DNCTRL, 0);
phys_addr_t dmaAddress;
fDcbaArea = fStack->AllocateArea((void **)&fDcba, &dmaAddress,
sizeof(*fDcba), "DCBA Area");
if (fDcbaArea < B_OK) {
TRACE_ERROR("unable to create the DCBA area\n");
return B_ERROR;
}
memset(fDcba, 0, sizeof(*fDcba));
memset(fScratchpadArea, 0, sizeof(fScratchpadArea));
memset(fScratchpad, 0, sizeof(fScratchpad));
fDcba->baseAddress[0] = dmaAddress
+ offsetof(struct xhci_device_context_array, scratchpad);
for (uint32 i = 0; i < fScratchpadCount; i++) {
phys_addr_t scratchDmaAddress;
fScratchpadArea[i] = fStack->AllocateArea((void **)&fScratchpad[i],
&scratchDmaAddress, B_PAGE_SIZE, "Scratchpad Area");
if (fScratchpadArea[i] < B_OK) {
TRACE_ERROR("unable to create the scratchpad area\n");
return B_ERROR;
}
fDcba->scratchpad[i] = scratchDmaAddress;
}
TRACE("setting DCBAAP %" B_PRIxPHYSADDR "\n", dmaAddress);
WriteOpReg(XHCI_DCBAAP_LO, (uint32)dmaAddress);
WriteOpReg(XHCI_DCBAAP_HI, (uint32)(dmaAddress >> 32));
uint8 *addr;
fErstArea = fStack->AllocateArea((void **)&addr, &dmaAddress,
(XHCI_MAX_COMMANDS + XHCI_MAX_EVENTS) * sizeof(xhci_trb)
+ sizeof(xhci_erst_element),
"USB XHCI ERST CMD_RING and EVENT_RING Area");
if (fErstArea < B_OK) {
TRACE_ERROR("unable to create the ERST AND RING area\n");
delete_area(fDcbaArea);
return B_ERROR;
}
fErst = (xhci_erst_element *)addr;
memset(fErst, 0, (XHCI_MAX_COMMANDS + XHCI_MAX_EVENTS) * sizeof(xhci_trb)
+ sizeof(xhci_erst_element));
fErst->rs_addr = dmaAddress + sizeof(xhci_erst_element);
fErst->rs_size = XHCI_MAX_EVENTS;
fErst->rsvdz = 0;
addr += sizeof(xhci_erst_element);
fEventRing = (xhci_trb *)addr;
addr += XHCI_MAX_EVENTS * sizeof(xhci_trb);
fCmdRing = (xhci_trb *)addr;
TRACE("setting ERST size\n");
WriteRunReg32(XHCI_ERSTSZ(0), XHCI_ERSTS_SET(1));
TRACE("setting ERDP addr = 0x%" B_PRIx64 "\n", fErst->rs_addr);
WriteRunReg32(XHCI_ERDP_LO(0), (uint32)fErst->rs_addr);
WriteRunReg32(XHCI_ERDP_HI(0), (uint32)(fErst->rs_addr >> 32));
TRACE("setting ERST base addr = 0x%" B_PRIxPHYSADDR "\n", dmaAddress);
WriteRunReg32(XHCI_ERSTBA_LO(0), (uint32)dmaAddress);
WriteRunReg32(XHCI_ERSTBA_HI(0), (uint32)(dmaAddress >> 32));
dmaAddress += sizeof(xhci_erst_element) + XHCI_MAX_EVENTS
* sizeof(xhci_trb);
if ((ReadOpReg(XHCI_CRCR_LO) & CRCR_CRR) != 0) {
TRACE_ALWAYS("Command Ring is running, send stop/cancel\n");
WriteOpReg(XHCI_CRCR_LO, CRCR_CS);
WriteOpReg(XHCI_CRCR_HI, 0);
WriteOpReg(XHCI_CRCR_LO, CRCR_CA);
WriteOpReg(XHCI_CRCR_HI, 0);
snooze(1000);
if ((ReadOpReg(XHCI_CRCR_LO) & CRCR_CRR) != 0) {
TRACE_ERROR("Command Ring still running after stop/cancel\n");
}
}
TRACE("setting CRCR addr = 0x%" B_PRIxPHYSADDR "\n", dmaAddress);
WriteOpReg(XHCI_CRCR_LO, (uint32)dmaAddress | CRCR_RCS);
WriteOpReg(XHCI_CRCR_HI, (uint32)(dmaAddress >> 32));
fCmdRing[XHCI_MAX_COMMANDS - 1].address = dmaAddress;
TRACE("setting interrupt rate\n");
if (fPCIInfo->vendor_id == PCI_VENDOR_INTEL
&& (fPCIInfo->device_id == PCI_DEVICE_INTEL_PANTHER_POINT_XHCI
|| fPCIInfo->device_id == PCI_DEVICE_INTEL_LYNX_POINT_XHCI
|| fPCIInfo->device_id == PCI_DEVICE_INTEL_LYNX_POINT_LP_XHCI
|| fPCIInfo->device_id == PCI_DEVICE_INTEL_BAYTRAIL_XHCI
|| fPCIInfo->device_id == PCI_DEVICE_INTEL_WILDCAT_POINT_XHCI)) {
WriteRunReg32(XHCI_IMOD(0), 0x000003f8);
} else {
WriteRunReg32(XHCI_IMOD(0), 0x000001f4);
}
TRACE("enabling interrupt\n");
WriteRunReg32(XHCI_IMAN(0), ReadRunReg32(XHCI_IMAN(0)) | IMAN_INTR_ENA);
WriteOpReg(XHCI_CMD, CMD_RUN | CMD_INTE | CMD_HSEE);
if (WaitOpBits(XHCI_STS, STS_HCH, 0) != B_OK) {
TRACE_ERROR("HCH start up timeout\n");
}
fRootHub = new(std::nothrow) XHCIRootHub(RootObject(), 1);
if (!fRootHub) {
TRACE_ERROR("no memory to allocate root hub\n");
return B_NO_MEMORY;
}
if (fRootHub->InitCheck() < B_OK) {
TRACE_ERROR("root hub failed init check\n");
return fRootHub->InitCheck();
}
SetRootHub(fRootHub);
fRootHub->RegisterNode(Node());
TRACE_ALWAYS("successfully started the controller\n");
#ifdef TRACE_USB
TRACE("No-Op test...\n");
Noop();
#endif
return BusManager::Start();
}
status_t
XHCI::SubmitTransfer(Transfer *transfer)
{
if (transfer->TransferPipe()->DeviceAddress() == 1)
return fRootHub->ProcessTransfer(this, transfer);
TRACE("SubmitTransfer(%p)\n", transfer);
Pipe *pipe = transfer->TransferPipe();
if ((pipe->Type() & USB_OBJECT_CONTROL_PIPE) != 0)
return SubmitControlRequest(transfer);
return SubmitNormalRequest(transfer);
}
status_t
XHCI::SubmitControlRequest(Transfer *transfer)
{
Pipe *pipe = transfer->TransferPipe();
usb_request_data *requestData = transfer->RequestData();
bool directionIn = (requestData->RequestType & USB_REQTYPE_DEVICE_IN) != 0;
TRACE("SubmitControlRequest() length %d\n", requestData->Length);
xhci_endpoint *endpoint = (xhci_endpoint *)pipe->ControllerCookie();
if (endpoint == NULL) {
TRACE_ERROR("control pipe has no endpoint!\n");
return B_BAD_VALUE;
}
if (endpoint->device == NULL) {
panic("endpoint is not initialized!");
return B_NO_INIT;
}
if (transfer->IsPhysical()) {
return B_NOT_SUPPORTED;
}
status_t status = transfer->InitKernelAccess();
if (status != B_OK)
return status;
xhci_td *descriptor = CreateDescriptor(3, 1, requestData->Length);
if (descriptor == NULL)
return B_NO_MEMORY;
descriptor->transfer = transfer;
uint8 index = 0;
memcpy(&descriptor->trbs[index].address, requestData,
sizeof(usb_request_data));
descriptor->trbs[index].status = TRB_2_IRQ(0) | TRB_2_BYTES(8);
descriptor->trbs[index].flags
= TRB_3_TYPE(TRB_TYPE_SETUP_STAGE) | TRB_3_IDT_BIT | TRB_3_CYCLE_BIT;
if (requestData->Length > 0) {
descriptor->trbs[index].flags |=
directionIn ? TRB_3_TRT_IN : TRB_3_TRT_OUT;
}
index++;
if (requestData->Length > 0) {
descriptor->trbs[index].address = descriptor->buffer_addrs[0];
descriptor->trbs[index].status = TRB_2_IRQ(0)
| TRB_2_BYTES(requestData->Length)
| TRB_2_TD_SIZE(0);
descriptor->trbs[index].flags = TRB_3_TYPE(TRB_TYPE_DATA_STAGE)
| (directionIn ? TRB_3_DIR_IN : 0)
| TRB_3_CYCLE_BIT;
if (!directionIn) {
transfer->PrepareKernelAccess();
memcpy(descriptor->buffers[0],
(uint8 *)transfer->Vector()[0].base, requestData->Length);
}
index++;
}
descriptor->trbs[index].address = 0;
descriptor->trbs[index].status = TRB_2_IRQ(0);
descriptor->trbs[index].flags = TRB_3_TYPE(TRB_TYPE_STATUS_STAGE)
| TRB_3_CHAIN_BIT | TRB_3_ENT_BIT | TRB_3_CYCLE_BIT;
if (requestData->Length == 0 || !directionIn)
descriptor->trbs[index].flags |= TRB_3_DIR_IN;
descriptor->trb_used = index + 1;
status = _LinkDescriptorForPipe(descriptor, endpoint);
if (status != B_OK) {
FreeDescriptor(descriptor);
return status;
}
return B_OK;
}
status_t
XHCI::SubmitNormalRequest(Transfer *transfer)
{
TRACE("SubmitNormalRequest() length %" B_PRIuSIZE "\n", transfer->FragmentLength());
Pipe *pipe = transfer->TransferPipe();
usb_isochronous_data *isochronousData = transfer->IsochronousData();
bool directionIn = (pipe->Direction() == Pipe::In);
xhci_endpoint *endpoint = (xhci_endpoint *)pipe->ControllerCookie();
if (endpoint == NULL) {
TRACE_ERROR("pipe has no endpoint!\n");
return B_BAD_VALUE;
}
if (endpoint->device == NULL) {
panic("endpoint is not initialized!");
return B_NO_INIT;
}
status_t status = transfer->InitKernelAccess();
if (status != B_OK)
return status;
size_t trbSize = endpoint->max_burst_payload;
if (isochronousData != NULL) {
if (isochronousData->packet_count == 0)
return B_BAD_VALUE;
trbSize = transfer->DataLength() / isochronousData->packet_count;
if (trbSize == 0 || trbSize > pipe->MaxPacketSize() || trbSize
!= (size_t)isochronousData->packet_descriptors[0].request_length)
return B_BAD_VALUE;
}
int32 trbCount = (transfer->FragmentLength() + trbSize - 1) / trbSize;
generic_io_vec* transferVec = transfer->Vector();
generic_size_t transferVecOffset = 0;
if (transfer->IsPhysical()) {
trbSize = 0;
trbCount = 0;
for (size_t i = 0; i < transfer->VectorCount(); i++) {
if ((transferVec[i].base + transferVec[i].length) > UINT32_MAX)
return B_BAD_VALUE;
trbCount += (transferVec[i].length + endpoint->max_burst_payload - 1)
/ endpoint->max_burst_payload;
}
}
xhci_td *td = CreateDescriptor(trbCount, trbCount, trbSize);
if (td == NULL)
return B_NO_MEMORY;
const size_t maxPacketSize = pipe->MaxPacketSize();
size_t remaining = transfer->FragmentLength();
for (int32 i = 0; i < trbCount; i++) {
phys_addr_t address;
generic_size_t trbLength;
if (!transfer->IsPhysical()) {
address = td->buffer_addrs[i];
trbLength = (remaining < trbSize) ? remaining : trbSize;
} else {
address = transferVec->base + transferVecOffset;
trbLength = transferVec->length - transferVecOffset;
if (trbLength > endpoint->max_burst_payload)
trbLength = endpoint->max_burst_payload;
transferVecOffset += trbLength;
if (transferVecOffset == transferVec->length) {
transferVec++;
transferVecOffset = 0;
}
}
remaining -= trbLength;
int32 tdSize = (remaining + maxPacketSize - 1) / maxPacketSize;
if (tdSize > 31)
tdSize = 31;
td->trbs[i].address = address;
td->trbs[i].status = TRB_2_IRQ(0)
| TRB_2_BYTES(trbLength)
| TRB_2_TD_SIZE(tdSize);
td->trbs[i].flags = TRB_3_TYPE(TRB_TYPE_NORMAL)
| TRB_3_CYCLE_BIT | TRB_3_CHAIN_BIT;
td->trb_used++;
}
if (isochronousData != NULL) {
for (uint32 i = 0; i < isochronousData->packet_count; i++) {
td->trbs[i].flags &= ~(TRB_3_TYPE(TRB_TYPE_NORMAL));
td->trbs[i].flags |= TRB_3_TYPE(TRB_TYPE_ISOCH);
if (i != (isochronousData->packet_count - 1)) {
td->trbs[i].flags |= TRB_3_ISP_BIT | TRB_3_BEI_BIT;
td->trbs[i].flags &= ~TRB_3_CHAIN_BIT;
}
}
uint32 frame;
if ((isochronousData->flags & USB_ISO_ASAP) != 0
|| isochronousData->starting_frame_number == NULL) {
frame = (ReadRunReg32(XHCI_MFINDEX) + 1) >> 3;
td->trbs[0].flags |= TRB_3_ISO_SIA_BIT;
} else {
frame = *isochronousData->starting_frame_number;
td->trbs[0].flags |= TRB_3_FRID(frame);
}
if (isochronousData->starting_frame_number != NULL)
*isochronousData->starting_frame_number = frame;
}
td->trbs[td->trb_used - 1].flags |= TRB_3_ENT_BIT;
if (!directionIn && !transfer->IsPhysical()) {
TRACE("copying out iov count %ld\n", transfer->VectorCount());
status_t status = transfer->PrepareKernelAccess();
if (status != B_OK) {
FreeDescriptor(td);
return status;
}
WriteDescriptor(td, transfer->Vector(),
transfer->VectorCount(), transfer->IsPhysical());
}
td->transfer = transfer;
status = _LinkDescriptorForPipe(td, endpoint);
if (status != B_OK) {
FreeDescriptor(td);
return status;
}
return B_OK;
}
status_t
XHCI::CancelQueuedTransfers(Pipe *pipe, bool force)
{
xhci_endpoint* endpoint = (xhci_endpoint*)pipe->ControllerCookie();
if (endpoint == NULL || endpoint->trbs == NULL) {
return B_NO_INIT;
}
#ifndef TRACE_USB
if (force)
#endif
{
TRACE_ALWAYS("cancel queued transfers (%" B_PRId8 ") for pipe %p (%d)\n",
endpoint->used, pipe, pipe->EndpointAddress());
}
MutexLocker endpointLocker(endpoint->lock);
if (endpoint->td_head == NULL) {
return B_OK;
}
Transfer* transfers[XHCI_MAX_TRANSFERS];
int32 transfersCount = 0;
for (xhci_td* td = endpoint->td_head; td != NULL; td = td->next) {
if (td->transfer == NULL)
continue;
transfers[transfersCount] = td->transfer;
transfersCount++;
td->transfer = NULL;
}
endpointLocker.Unlock();
status_t status = StopEndpoint(false, endpoint);
if (status != B_OK && status != B_DEV_STALLED) {
status = StopEndpoint(false, endpoint);
}
if (status == B_DEV_STALLED) {
TRACE_ERROR("cancel queued transfers: halted endpoint, reset!\n");
status = ResetEndpoint(false, endpoint);
}
endpointLocker.Lock();
xhci_td* td_head = endpoint->td_head;
endpoint->td_head = NULL;
if (status == B_OK) {
memset(endpoint->trbs, 0, sizeof(xhci_trb) * XHCI_ENDPOINT_RING_SIZE);
endpoint->used = 0;
endpoint->next = 0;
SetTRDequeue(endpoint->trb_addr, 0, endpoint->id + 1,
endpoint->device->slot);
} else {
TRACE_ERROR("cancel queued transfers: could not stop endpoint: %s!\n",
strerror(status));
endpoint->td_head = td_head;
td_head = NULL;
}
endpointLocker.Unlock();
for (int32 i = 0; i < transfersCount; i++) {
if (!force)
transfers[i]->Finished(B_CANCELED, 0);
delete transfers[i];
}
xhci_td* td;
while ((td = td_head) != NULL) {
td_head = td_head->next;
FreeDescriptor(td);
}
return B_OK;
}
status_t
XHCI::StartDebugTransfer(Transfer *transfer)
{
Pipe *pipe = transfer->TransferPipe();
xhci_endpoint *endpoint = (xhci_endpoint *)pipe->ControllerCookie();
if (endpoint == NULL)
return B_BAD_VALUE;
if (mutex_trylock(&endpoint->lock) != B_OK)
return B_WOULD_BLOCK;
if (mutex_trylock(&fFinishedLock) != B_OK) {
mutex_unlock(&endpoint->lock);
return B_WOULD_BLOCK;
}
if (mutex_trylock(&fEventLock) != B_OK) {
mutex_unlock(&endpoint->lock);
mutex_unlock(&fFinishedLock);
return B_WOULD_BLOCK;
}
mutex_unlock(&endpoint->lock);
mutex_unlock(&fFinishedLock);
mutex_unlock(&fEventLock);
status_t status = SubmitTransfer(transfer);
if (status != B_OK)
return status;
transfer->SetCallback(NULL, endpoint->td_head);
return B_OK;
}
status_t
XHCI::CheckDebugTransfer(Transfer *transfer)
{
xhci_td *transfer_td = (xhci_td *)transfer->CallbackCookie();
if (transfer_td == NULL)
return B_NO_INIT;
ProcessEvents();
xhci_td *previous = NULL;
for (xhci_td *td = fFinishedHead; td != NULL; td = td->next) {
if (td != transfer_td) {
previous = td;
continue;
}
if (previous == NULL) {
fFinishedHead = fFinishedHead->next;
} else {
previous->next = td->next;
}
bool directionIn = (transfer->TransferPipe()->Direction() != Pipe::Out);
status_t status = (td->trb_completion_code == COMP_SUCCESS
|| td->trb_completion_code == COMP_SHORT_PACKET) ? B_OK : B_ERROR;
if (status == B_OK && directionIn && !transfer->IsPhysical()) {
ReadDescriptor(td, transfer->Vector(), transfer->VectorCount(),
transfer->IsPhysical());
}
FreeDescriptor(td);
transfer->SetCallback(NULL, NULL);
return status;
}
spin(75);
return B_DEV_PENDING;
}
void
XHCI::CancelDebugTransfer(Transfer *transfer)
{
while (CheckDebugTransfer(transfer) == B_DEV_PENDING)
spin(100);
}
status_t
XHCI::NotifyPipeChange(Pipe *pipe, usb_change change)
{
TRACE("pipe change %d for pipe %p (%d)\n", change, pipe,
pipe->EndpointAddress());
switch (change) {
case USB_CHANGE_CREATED:
return _InsertEndpointForPipe(pipe);
case USB_CHANGE_DESTROYED:
return _RemoveEndpointForPipe(pipe);
case USB_CHANGE_PIPE_POLICY_CHANGED:
return B_OK;
}
TRACE_ERROR("unknown pipe change!\n");
return B_UNSUPPORTED;
}
xhci_td *
XHCI::CreateDescriptor(uint32 trbCount, uint32 bufferCount, size_t bufferSize)
{
const bool inKDL = debug_debugger_running();
xhci_td *result;
if (!inKDL) {
result = (xhci_td*)calloc(1, sizeof(xhci_td));
} else {
phys_addr_t dummy;
fStack->AllocateChunk((void **)&result, &dummy, sizeof(xhci_td));
}
if (result == NULL) {
TRACE_ERROR("failed to allocate a transfer descriptor\n");
return NULL;
}
trbCount++;
if (fStack->AllocateChunk((void **)&result->trbs, &result->trb_addr,
(trbCount * sizeof(xhci_trb))) < B_OK) {
TRACE_ERROR("failed to allocate TRBs\n");
FreeDescriptor(result);
return NULL;
}
result->trb_count = trbCount;
result->trb_used = 0;
if (bufferSize > 0) {
if (!inKDL) {
result->buffers = (void**)calloc(bufferCount,
(sizeof(void*) + sizeof(phys_addr_t)));
} else {
phys_addr_t dummy;
fStack->AllocateChunk((void **)&result->buffers, &dummy,
bufferCount * (sizeof(void*) + sizeof(phys_addr_t)));
}
if (result->buffers == NULL) {
TRACE_ERROR("unable to allocate space for buffer infos\n");
FreeDescriptor(result);
return NULL;
}
result->buffer_addrs = (phys_addr_t*)&result->buffers[bufferCount];
result->buffer_size = bufferSize;
result->buffer_count = bufferCount;
size_t totalSize = bufferSize * bufferCount;
if (totalSize < (32 * B_PAGE_SIZE)) {
if (fStack->AllocateChunk(&result->buffers[0],
&result->buffer_addrs[0], totalSize) < B_OK) {
TRACE_ERROR("unable to allocate space for large buffer (size %ld)\n",
totalSize);
FreeDescriptor(result);
return NULL;
}
for (uint32 i = 1; i < bufferCount; i++) {
result->buffers[i] = (void*)((addr_t)(result->buffers[i - 1])
+ bufferSize);
result->buffer_addrs[i] = result->buffer_addrs[i - 1]
+ bufferSize;
}
} else {
for (uint32 i = 0; i < bufferCount; i++) {
if (fStack->AllocateChunk(&result->buffers[i],
&result->buffer_addrs[i], bufferSize) < B_OK) {
TRACE_ERROR("unable to allocate space for a buffer (size "
"%" B_PRIuSIZE ", count %" B_PRIu32 ")\n",
bufferSize, bufferCount);
FreeDescriptor(result);
return NULL;
}
}
}
} else {
result->buffers = NULL;
result->buffer_addrs = NULL;
}
result->transfer = NULL;
result->trb_completion_code = 0;
result->trb_left = 0;
result->next = NULL;
TRACE("CreateDescriptor allocated %p, buffer_size %ld, buffer_count %" B_PRIu32 "\n",
result, result->buffer_size, result->buffer_count);
return result;
}
void
XHCI::FreeDescriptor(xhci_td *descriptor)
{
if (descriptor == NULL)
return;
const bool inKDL = debug_debugger_running();
if (descriptor->trbs != NULL) {
fStack->FreeChunk(descriptor->trbs, descriptor->trb_addr,
(descriptor->trb_count * sizeof(xhci_trb)));
}
if (descriptor->buffers != NULL) {
size_t totalSize = descriptor->buffer_size * descriptor->buffer_count;
if (totalSize < (32 * B_PAGE_SIZE)) {
fStack->FreeChunk(descriptor->buffers[0], descriptor->buffer_addrs[0],
totalSize);
} else {
for (uint32 i = 0; i < descriptor->buffer_count; i++) {
if (descriptor->buffers[i] == NULL)
continue;
fStack->FreeChunk(descriptor->buffers[i], descriptor->buffer_addrs[i],
descriptor->buffer_size);
}
}
if (!inKDL) {
free(descriptor->buffers);
} else {
fStack->FreeChunk(descriptor->buffers, 0,
descriptor->buffer_count * (sizeof(void*) + sizeof(phys_addr_t)));
}
}
if (!inKDL)
free(descriptor);
else
fStack->FreeChunk(descriptor, 0, sizeof(xhci_td));
}
size_t
XHCI::WriteDescriptor(xhci_td *descriptor, generic_io_vec *vector, size_t vectorCount, bool physical)
{
size_t written = 0;
size_t bufIdx = 0, bufUsed = 0;
for (size_t vecIdx = 0; vecIdx < vectorCount; vecIdx++) {
size_t length = vector[vecIdx].length;
while (length > 0 && bufIdx < descriptor->buffer_count) {
size_t toCopy = min_c(length, descriptor->buffer_size - bufUsed);
status_t status = generic_memcpy(
(generic_addr_t)descriptor->buffers[bufIdx] + bufUsed, false,
vector[vecIdx].base + (vector[vecIdx].length - length), physical,
toCopy);
ASSERT_ALWAYS(status == B_OK);
written += toCopy;
bufUsed += toCopy;
length -= toCopy;
if (bufUsed == descriptor->buffer_size) {
bufIdx++;
bufUsed = 0;
}
}
}
TRACE("wrote descriptor (%" B_PRIuSIZE " bytes)\n", written);
return written;
}
size_t
XHCI::ReadDescriptor(xhci_td *descriptor, generic_io_vec *vector, size_t vectorCount, bool physical)
{
size_t read = 0;
size_t bufIdx = 0, bufUsed = 0;
for (size_t vecIdx = 0; vecIdx < vectorCount; vecIdx++) {
size_t length = vector[vecIdx].length;
while (length > 0 && bufIdx < descriptor->buffer_count) {
size_t toCopy = min_c(length, descriptor->buffer_size - bufUsed);
status_t status = generic_memcpy(
vector[vecIdx].base + (vector[vecIdx].length - length), physical,
(generic_addr_t)descriptor->buffers[bufIdx] + bufUsed, false, toCopy);
ASSERT_ALWAYS(status == B_OK);
read += toCopy;
bufUsed += toCopy;
length -= toCopy;
if (bufUsed == descriptor->buffer_size) {
bufIdx++;
bufUsed = 0;
}
}
}
TRACE("read descriptor (%" B_PRIuSIZE " bytes)\n", read);
return read;
}
Device *
XHCI::AllocateDevice(Hub *parent, int8 hubAddress, uint8 hubPort,
usb_speed speed)
{
TRACE("AllocateDevice hubAddress %d hubPort %d speed %d\n", hubAddress,
hubPort, speed);
uint8 slot = XHCI_MAX_SLOTS;
status_t status = EnableSlot(&slot);
if (status != B_OK) {
TRACE_ERROR("failed to enable slot: %s\n", strerror(status));
return NULL;
}
if (slot == 0 || slot > fSlotCount) {
TRACE_ERROR("AllocateDevice: bad slot\n");
return NULL;
}
if (fDevices[slot].slot != 0) {
TRACE_ERROR("AllocateDevice: slot already used\n");
return NULL;
}
struct xhci_device *device = &fDevices[slot];
device->slot = slot;
device->input_ctx_area = fStack->AllocateArea((void **)&device->input_ctx,
&device->input_ctx_addr, sizeof(*device->input_ctx) << fContextSizeShift,
"XHCI input context");
if (device->input_ctx_area < B_OK) {
TRACE_ERROR("unable to create a input context area\n");
CleanupDevice(device);
return NULL;
}
if (fContextSizeShift == 1) {
ASSERT((((addr_t)device->input_ctx) % B_PAGE_SIZE) == 0);
}
memset(device->input_ctx, 0, sizeof(*device->input_ctx) << fContextSizeShift);
_WriteContext(&device->input_ctx->input.dropFlags, 0);
_WriteContext(&device->input_ctx->input.addFlags, 3);
uint8 rhPort = hubPort;
uint32 route = 0;
for (Device *hubDevice = parent; hubDevice != RootObject();
hubDevice = (Device *)hubDevice->Parent()) {
if (hubDevice->Parent() == RootObject())
break;
if (rhPort > 15)
rhPort = 15;
route = route << 4;
route |= rhPort;
rhPort = hubDevice->HubPort();
}
uint32 dwslot0 = SLOT_0_NUM_ENTRIES(1) | SLOT_0_ROUTE(route);
if (route == 0) {
GetPortSpeed(hubPort - 1, &speed);
TRACE("speed updated %d\n", speed);
}
switch (speed) {
case USB_SPEED_LOWSPEED:
dwslot0 |= SLOT_0_SPEED(2);
break;
case USB_SPEED_FULLSPEED:
dwslot0 |= SLOT_0_SPEED(1);
break;
case USB_SPEED_HIGHSPEED:
dwslot0 |= SLOT_0_SPEED(3);
break;
case USB_SPEED_SUPERSPEED:
dwslot0 |= SLOT_0_SPEED(4);
break;
case USB_SPEED_SUPERSPEEDPLUS:
dwslot0 |= SLOT_0_SPEED(5);
break;
default:
TRACE_ERROR("unknown usb speed\n");
break;
}
_WriteContext(&device->input_ctx->slot.dwslot0, dwslot0);
_WriteContext(&device->input_ctx->slot.dwslot1, SLOT_1_RH_PORT(rhPort));
uint32 dwslot2 = SLOT_2_IRQ_TARGET(0);
if (route != 0 && parent->Speed() == USB_SPEED_HIGHSPEED
&& (speed == USB_SPEED_LOWSPEED || speed == USB_SPEED_FULLSPEED)) {
struct xhci_device *parenthub = (struct xhci_device *)
parent->ControllerCookie();
dwslot2 |= SLOT_2_PORT_NUM(hubPort);
dwslot2 |= SLOT_2_TT_HUB_SLOT(parenthub->slot);
}
_WriteContext(&device->input_ctx->slot.dwslot2, dwslot2);
_WriteContext(&device->input_ctx->slot.dwslot3, SLOT_3_SLOT_STATE(0)
| SLOT_3_DEVICE_ADDRESS(0));
TRACE("slot 0x%08" B_PRIx32 " 0x%08" B_PRIx32 " 0x%08" B_PRIx32 " 0x%08" B_PRIx32
"\n", _ReadContext(&device->input_ctx->slot.dwslot0),
_ReadContext(&device->input_ctx->slot.dwslot1),
_ReadContext(&device->input_ctx->slot.dwslot2),
_ReadContext(&device->input_ctx->slot.dwslot3));
device->device_ctx_area = fStack->AllocateArea((void **)&device->device_ctx,
&device->device_ctx_addr, sizeof(*device->device_ctx) << fContextSizeShift,
"XHCI device context");
if (device->device_ctx_area < B_OK) {
TRACE_ERROR("unable to create a device context area\n");
CleanupDevice(device);
return NULL;
}
memset(device->device_ctx, 0, sizeof(*device->device_ctx) << fContextSizeShift);
device->trb_area = fStack->AllocateArea((void **)&device->trbs,
&device->trb_addr, sizeof(xhci_trb) * (XHCI_MAX_ENDPOINTS - 1)
* XHCI_ENDPOINT_RING_SIZE, "XHCI endpoint trbs");
if (device->trb_area < B_OK) {
TRACE_ERROR("unable to create a device trbs area\n");
CleanupDevice(device);
return NULL;
}
fDcba->baseAddress[slot] = device->device_ctx_addr;
size_t maxPacketSize;
switch (speed) {
case USB_SPEED_LOWSPEED:
case USB_SPEED_FULLSPEED:
maxPacketSize = 8;
break;
case USB_SPEED_HIGHSPEED:
maxPacketSize = 64;
break;
default:
maxPacketSize = 512;
break;
}
xhci_endpoint* endpoint0 = &device->endpoints[0];
mutex_init(&endpoint0->lock, "xhci endpoint lock");
endpoint0->device = device;
endpoint0->id = 0;
endpoint0->status = 0;
endpoint0->td_head = NULL;
endpoint0->used = 0;
endpoint0->next = 0;
endpoint0->trbs = device->trbs;
endpoint0->trb_addr = device->trb_addr;
if (ConfigureEndpoint(endpoint0, slot, 0, USB_OBJECT_CONTROL_PIPE, false,
0, maxPacketSize, speed, 0, 0) != B_OK) {
TRACE_ERROR("unable to configure default control endpoint\n");
CleanupDevice(device);
return NULL;
}
status = SetAddress(device->input_ctx_addr, false, slot);
if (status != B_OK) {
TRACE_ERROR("unable to set address: %s\n", strerror(status));
CleanupDevice(device);
return NULL;
}
device->address = SLOT_3_DEVICE_ADDRESS_GET(_ReadContext(
&device->device_ctx->slot.dwslot3));
TRACE("device: address 0x%x state 0x%08" B_PRIx32 "\n", device->address,
SLOT_3_SLOT_STATE_GET(_ReadContext(
&device->device_ctx->slot.dwslot3)));
TRACE("endpoint0 state 0x%08" B_PRIx32 "\n",
ENDPOINT_0_STATE_GET(_ReadContext(
&device->device_ctx->endpoints[0].dwendpoint0)));
snooze(USB_DELAY_SET_ADDRESS);
ControlPipe pipe(parent);
pipe.SetControllerCookie(endpoint0);
pipe.InitCommon(device->address + 1, 0, speed, Pipe::Default, maxPacketSize, 0,
hubAddress, hubPort);
size_t actualLength = 0;
usb_device_descriptor deviceDescriptor;
TRACE("getting the device descriptor\n");
status = pipe.SendRequest(
USB_REQTYPE_DEVICE_IN | USB_REQTYPE_STANDARD,
USB_REQUEST_GET_DESCRIPTOR,
USB_DESCRIPTOR_DEVICE << 8,
0,
8,
(void *)&deviceDescriptor,
8,
&actualLength);
if (actualLength != 8) {
TRACE_ERROR("failed to get the device descriptor: %s\n",
strerror(status));
CleanupDevice(device);
return NULL;
}
TRACE("device_class: %d device_subclass %d device_protocol %d\n",
deviceDescriptor.device_class, deviceDescriptor.device_subclass,
deviceDescriptor.device_protocol);
if (speed == USB_SPEED_FULLSPEED && deviceDescriptor.max_packet_size_0 != 8) {
TRACE("Full speed device with different max packet size for Endpoint 0\n");
uint32 dwendpoint1 = _ReadContext(
&device->input_ctx->endpoints[0].dwendpoint1);
dwendpoint1 &= ~ENDPOINT_1_MAXPACKETSIZE(0xffff);
dwendpoint1 |= ENDPOINT_1_MAXPACKETSIZE(
deviceDescriptor.max_packet_size_0);
_WriteContext(&device->input_ctx->endpoints[0].dwendpoint1,
dwendpoint1);
_WriteContext(&device->input_ctx->input.dropFlags, 0);
_WriteContext(&device->input_ctx->input.addFlags, (1 << 1));
EvaluateContext(device->input_ctx_addr, device->slot);
}
Device *deviceObject = NULL;
if (deviceDescriptor.device_class == 0x09) {
TRACE("creating new Hub\n");
TRACE("getting the hub descriptor\n");
size_t actualLength = 0;
usb_hub_descriptor hubDescriptor;
status = pipe.SendRequest(
USB_REQTYPE_DEVICE_IN | USB_REQTYPE_CLASS,
USB_REQUEST_GET_DESCRIPTOR,
USB_DESCRIPTOR_HUB << 8,
0,
sizeof(usb_hub_descriptor),
(void *)&hubDescriptor,
sizeof(usb_hub_descriptor),
&actualLength);
if (actualLength != sizeof(usb_hub_descriptor)) {
TRACE_ERROR("error while getting the hub descriptor: %s\n",
strerror(status));
CleanupDevice(device);
return NULL;
}
uint32 dwslot0 = _ReadContext(&device->input_ctx->slot.dwslot0);
dwslot0 |= SLOT_0_HUB_BIT;
_WriteContext(&device->input_ctx->slot.dwslot0, dwslot0);
uint32 dwslot1 = _ReadContext(&device->input_ctx->slot.dwslot1);
dwslot1 |= SLOT_1_NUM_PORTS(hubDescriptor.num_ports);
_WriteContext(&device->input_ctx->slot.dwslot1, dwslot1);
if (speed == USB_SPEED_HIGHSPEED) {
uint32 dwslot2 = _ReadContext(&device->input_ctx->slot.dwslot2);
dwslot2 |= SLOT_2_TT_TIME(HUB_TTT_GET(hubDescriptor.characteristics));
_WriteContext(&device->input_ctx->slot.dwslot2, dwslot2);
}
deviceObject = new(std::nothrow) Hub(parent, hubAddress, hubPort,
deviceDescriptor, device->address + 1, speed, false, device);
} else {
TRACE("creating new device\n");
deviceObject = new(std::nothrow) Device(parent, hubAddress, hubPort,
deviceDescriptor, device->address + 1, speed, false, device);
}
if (deviceObject == NULL || deviceObject->InitCheck() != B_OK) {
if (deviceObject == NULL) {
TRACE_ERROR("no memory to allocate device\n");
} else {
TRACE_ERROR("device object failed to initialize\n");
}
CleanupDevice(device);
return NULL;
}
pipe.SetControllerCookie(NULL);
deviceObject->RegisterNode();
TRACE("AllocateDevice() port %d slot %d\n", hubPort, slot);
return deviceObject;
}
void
XHCI::FreeDevice(Device *usbDevice)
{
xhci_device* device = (xhci_device*)usbDevice->ControllerCookie();
TRACE("FreeDevice() slot %d\n", device->slot);
delete usbDevice;
CleanupDevice(device);
}
void
XHCI::CleanupDevice(xhci_device *device)
{
if (device->slot != 0) {
DisableSlot(device->slot);
fDcba->baseAddress[device->slot] = 0;
}
if (device->trb_addr != 0)
delete_area(device->trb_area);
if (device->input_ctx_addr != 0)
delete_area(device->input_ctx_area);
if (device->device_ctx_addr != 0)
delete_area(device->device_ctx_area);
memset(device, 0, sizeof(xhci_device));
}
uint8
XHCI::_GetEndpointState(xhci_endpoint* endpoint)
{
struct xhci_device_ctx* device_ctx = endpoint->device->device_ctx;
return ENDPOINT_0_STATE_GET(
_ReadContext(&device_ctx->endpoints[endpoint->id].dwendpoint0));
}
status_t
XHCI::_InsertEndpointForPipe(Pipe *pipe)
{
TRACE("insert endpoint for pipe %p (%d)\n", pipe, pipe->EndpointAddress());
if (pipe->ControllerCookie() != NULL
|| pipe->Parent()->Type() != USB_OBJECT_DEVICE) {
return B_OK;
}
Device* usbDevice = (Device *)pipe->Parent();
if (usbDevice->Parent() == RootObject()) {
return B_OK;
}
struct xhci_device *device = (struct xhci_device *)
usbDevice->ControllerCookie();
if (device == NULL) {
panic("device is NULL\n");
return B_NO_INIT;
}
const uint8 id = (2 * pipe->EndpointAddress()
+ (pipe->Direction() != Pipe::Out ? 1 : 0)) - 1;
if (id >= XHCI_MAX_ENDPOINTS - 1)
return B_BAD_VALUE;
if (id > 0) {
uint32 devicedwslot0 = _ReadContext(&device->device_ctx->slot.dwslot0);
if (SLOT_0_NUM_ENTRIES_GET(devicedwslot0) == 1) {
uint32 inputdwslot0 = _ReadContext(&device->input_ctx->slot.dwslot0);
inputdwslot0 &= ~(SLOT_0_NUM_ENTRIES(0x1f));
inputdwslot0 |= SLOT_0_NUM_ENTRIES(XHCI_MAX_ENDPOINTS - 1);
_WriteContext(&device->input_ctx->slot.dwslot0, inputdwslot0);
EvaluateContext(device->input_ctx_addr, device->slot);
}
xhci_endpoint* endpoint = &device->endpoints[id];
mutex_init(&endpoint->lock, "xhci endpoint lock");
MutexLocker endpointLocker(endpoint->lock);
endpoint->device = device;
endpoint->id = id;
endpoint->td_head = NULL;
endpoint->used = 0;
endpoint->next = 0;
endpoint->trbs = device->trbs + id * XHCI_ENDPOINT_RING_SIZE;
endpoint->trb_addr = device->trb_addr
+ id * XHCI_ENDPOINT_RING_SIZE * sizeof(xhci_trb);
memset(endpoint->trbs, 0,
sizeof(xhci_trb) * XHCI_ENDPOINT_RING_SIZE);
TRACE("insert endpoint for pipe: trbs, device %p endpoint %p\n",
device->trbs, endpoint->trbs);
TRACE("insert endpoint for pipe: trb_addr, device 0x%" B_PRIxPHYSADDR
" endpoint 0x%" B_PRIxPHYSADDR "\n", device->trb_addr,
endpoint->trb_addr);
const uint8 endpointNum = id + 1;
status_t status = ConfigureEndpoint(endpoint, device->slot, id, pipe->Type(),
pipe->Direction() == Pipe::In, pipe->Interval(), pipe->MaxPacketSize(),
usbDevice->Speed(), pipe->MaxBurst(), pipe->BytesPerInterval());
if (status != B_OK) {
TRACE_ERROR("unable to configure endpoint: %s\n", strerror(status));
return status;
}
_WriteContext(&device->input_ctx->input.dropFlags, 0);
_WriteContext(&device->input_ctx->input.addFlags,
(1 << endpointNum) | (1 << 0));
ConfigureEndpoint(device->input_ctx_addr, false, device->slot);
TRACE("device: address 0x%x state 0x%08" B_PRIx32 "\n",
device->address, SLOT_3_SLOT_STATE_GET(_ReadContext(
&device->device_ctx->slot.dwslot3)));
TRACE("endpoint[0] state 0x%08" B_PRIx32 "\n",
ENDPOINT_0_STATE_GET(_ReadContext(
&device->device_ctx->endpoints[0].dwendpoint0)));
TRACE("endpoint[%d] state 0x%08" B_PRIx32 "\n", id,
ENDPOINT_0_STATE_GET(_ReadContext(
&device->device_ctx->endpoints[id].dwendpoint0)));
}
pipe->SetControllerCookie(&device->endpoints[id]);
return B_OK;
}
status_t
XHCI::_RemoveEndpointForPipe(Pipe *pipe)
{
TRACE("remove endpoint for pipe %p (%d)\n", pipe, pipe->EndpointAddress());
if (pipe->Parent()->Type() != USB_OBJECT_DEVICE)
return B_OK;
Device* usbDevice = (Device *)pipe->Parent();
if (usbDevice->Parent() == RootObject())
return B_BAD_VALUE;
xhci_endpoint *endpoint = (xhci_endpoint *)pipe->ControllerCookie();
if (endpoint == NULL || endpoint->trbs == NULL)
return B_NO_INIT;
pipe->SetControllerCookie(NULL);
if (endpoint->id > 0) {
xhci_device *device = endpoint->device;
uint8 epNumber = endpoint->id + 1;
StopEndpoint(true, endpoint);
mutex_lock(&endpoint->lock);
xhci_td* td;
while ((td = endpoint->td_head) != NULL) {
endpoint->td_head = endpoint->td_head->next;
FreeDescriptor(td);
}
mutex_destroy(&endpoint->lock);
memset(endpoint, 0, sizeof(xhci_endpoint));
_WriteContext(&device->input_ctx->input.dropFlags, (1 << epNumber));
_WriteContext(&device->input_ctx->input.addFlags, (1 << 0));
ConfigureEndpoint(device->input_ctx_addr, false, device->slot);
}
return B_OK;
}
status_t
XHCI::_LinkDescriptorForPipe(xhci_td *descriptor, xhci_endpoint *endpoint)
{
TRACE("link descriptor for pipe\n");
MutexLocker endpointLocker(&endpoint->lock, mutex_trylock(&endpoint->lock) == B_OK);
if (endpoint->used >= (XHCI_MAX_TRANSFERS - 1)) {
TRACE_ERROR("link descriptor for pipe: max transfers count exceeded\n");
return B_BAD_VALUE;
}
if (endpoint->td_head != NULL && endpoint->td_head->transfer != NULL
&& endpoint->td_head->transfer->IsFragmented()) {
TRACE_ERROR("cannot submit transfer: a fragmented transfer is queued\n");
return B_DEV_RESOURCE_CONFLICT;
}
endpoint->used++;
descriptor->next = endpoint->td_head;
endpoint->td_head = descriptor;
uint32 link = endpoint->next, eventdata = link + 1, next = eventdata + 1;
if (eventdata == XHCI_ENDPOINT_RING_SIZE || next == XHCI_ENDPOINT_RING_SIZE) {
eventdata = 0;
next = 1;
}
TRACE("link descriptor for pipe: link %d, next %d\n", link, next);
phys_addr_t addr = endpoint->trb_addr + (eventdata * sizeof(xhci_trb));
descriptor->trbs[descriptor->trb_used].address = addr;
descriptor->trbs[descriptor->trb_used].status = TRB_2_IRQ(0);
descriptor->trbs[descriptor->trb_used].flags = TRB_3_TYPE(TRB_TYPE_LINK)
| TRB_3_CHAIN_BIT | TRB_3_CYCLE_BIT;
#if !B_HOST_IS_LENDIAN
for (uint32 i = 0; i <= descriptor->trb_used; i++) {
descriptor->trbs[i].address =
B_HOST_TO_LENDIAN_INT64(descriptor->trbs[i].address);
descriptor->trbs[i].status =
B_HOST_TO_LENDIAN_INT32(descriptor->trbs[i].status);
descriptor->trbs[i].flags =
B_HOST_TO_LENDIAN_INT32(descriptor->trbs[i].flags);
}
#endif
endpoint->trbs[link].address =
B_HOST_TO_LENDIAN_INT64(descriptor->trb_addr);
endpoint->trbs[link].status =
B_HOST_TO_LENDIAN_INT32(TRB_2_IRQ(0));
endpoint->trbs[link].flags =
B_HOST_TO_LENDIAN_INT32(TRB_3_TYPE(TRB_TYPE_LINK));
endpoint->trbs[eventdata].address =
B_HOST_TO_LENDIAN_INT64(descriptor->trb_addr
+ (descriptor->trb_used - 1) * sizeof(xhci_trb));
endpoint->trbs[eventdata].status =
B_HOST_TO_LENDIAN_INT32(TRB_2_IRQ(0));
endpoint->trbs[eventdata].flags =
B_HOST_TO_LENDIAN_INT32(TRB_3_TYPE(TRB_TYPE_EVENT_DATA)
| TRB_3_IOC_BIT | TRB_3_CYCLE_BIT);
endpoint->trbs[next].address = 0;
endpoint->trbs[next].status = 0;
endpoint->trbs[next].flags = 0;
memory_write_barrier();
endpoint->trbs[link].flags |= B_HOST_TO_LENDIAN_INT32(TRB_3_CYCLE_BIT);
TRACE("_LinkDescriptorForPipe pLink %p phys 0x%" B_PRIxPHYSADDR
" 0x%" B_PRIxPHYSADDR " 0x%08" B_PRIx32 "\n", &endpoint->trbs[link],
endpoint->trb_addr + link * sizeof(struct xhci_trb),
endpoint->trbs[link].address,
B_LENDIAN_TO_HOST_INT32(endpoint->trbs[link].flags));
endpoint->next = next;
endpointLocker.Unlock();
TRACE("Endpoint status 0x%08" B_PRIx32 " 0x%08" B_PRIx32 " 0x%016" B_PRIx64 "\n",
_ReadContext(&endpoint->device->device_ctx->endpoints[endpoint->id].dwendpoint0),
_ReadContext(&endpoint->device->device_ctx->endpoints[endpoint->id].dwendpoint1),
_ReadContext(&endpoint->device->device_ctx->endpoints[endpoint->id].qwendpoint2));
Ring(endpoint->device->slot, endpoint->id + 1);
TRACE("Endpoint status 0x%08" B_PRIx32 " 0x%08" B_PRIx32 " 0x%016" B_PRIx64 "\n",
_ReadContext(&endpoint->device->device_ctx->endpoints[endpoint->id].dwendpoint0),
_ReadContext(&endpoint->device->device_ctx->endpoints[endpoint->id].dwendpoint1),
_ReadContext(&endpoint->device->device_ctx->endpoints[endpoint->id].qwendpoint2));
return B_OK;
}
status_t
XHCI::_UnlinkDescriptorForPipe(xhci_td *descriptor, xhci_endpoint *endpoint)
{
TRACE("unlink descriptor for pipe\n");
endpoint->used--;
if (descriptor == endpoint->td_head) {
endpoint->td_head = descriptor->next;
descriptor->next = NULL;
return B_OK;
} else {
for (xhci_td *td = endpoint->td_head; td->next != NULL; td = td->next) {
if (td->next == descriptor) {
td->next = descriptor->next;
descriptor->next = NULL;
return B_OK;
}
}
}
endpoint->used++;
return B_ERROR;
}
status_t
XHCI::ConfigureEndpoint(xhci_endpoint* ep, uint8 slot, uint8 number, uint8 type,
bool directionIn, uint16 interval, uint16 maxPacketSize, usb_speed speed,
uint8 maxBurst, uint16 bytesPerInterval)
{
struct xhci_device* device = &fDevices[slot];
uint32 dwendpoint0 = 0;
uint32 dwendpoint1 = 0;
uint64 qwendpoint2 = 0;
uint32 dwendpoint4 = 0;
uint8 xhciType = 4;
if ((type & USB_OBJECT_INTERRUPT_PIPE) != 0)
xhciType = 3;
if ((type & USB_OBJECT_BULK_PIPE) != 0)
xhciType = 2;
if ((type & USB_OBJECT_ISO_PIPE) != 0)
xhciType = 1;
xhciType |= directionIn ? (1 << 2) : 0;
dwendpoint1 |= ENDPOINT_1_EPTYPE(xhciType);
uint16 calcInterval;
if ((type & USB_OBJECT_BULK_PIPE) != 0
|| (type & USB_OBJECT_CONTROL_PIPE) != 0) {
calcInterval = 0;
} else {
switch (speed) {
case USB_SPEED_FULLSPEED:
if ((type & USB_OBJECT_ISO_PIPE) != 0) {
calcInterval = min_c(max_c(interval, 1), 16) + 2;
break;
}
case USB_SPEED_LOWSPEED: {
uint32 temp = min_c(max_c(interval, 1), 255);
for (calcInterval = 0; temp != 1; calcInterval++)
temp = temp >> 1;
calcInterval += 3;
break;
}
case USB_SPEED_HIGHSPEED:
case USB_SPEED_SUPERSPEED:
case USB_SPEED_SUPERSPEEDPLUS:
default:
calcInterval = min_c(max_c(interval, 1), 16) - 1;
break;
}
}
dwendpoint0 |= ENDPOINT_0_INTERVAL(calcInterval);
if ((type & USB_OBJECT_ISO_PIPE) == 0)
dwendpoint1 |= ENDPOINT_1_CERR(3);
if (speed == USB_SPEED_HIGHSPEED && (type & (USB_OBJECT_INTERRUPT_PIPE
| USB_OBJECT_ISO_PIPE)) != 0) {
maxBurst = (maxPacketSize & 0x1800) >> 11;
} else if (speed < USB_SPEED_SUPERSPEED) {
maxBurst = 0;
}
dwendpoint1 |= ENDPOINT_1_MAXBURST(maxBurst);
dwendpoint1 |= ENDPOINT_1_MAXPACKETSIZE(maxPacketSize);
qwendpoint2 |= ENDPOINT_2_DCS_BIT | ep->trb_addr;
ep->max_burst_payload = (maxBurst + 1) * maxPacketSize;
if (ep->max_burst_payload == 0) {
TRACE_ERROR("ConfigureEndpoint() failed invalid max_burst_payload\n");
return B_BAD_VALUE;
}
if ((type & USB_OBJECT_CONTROL_PIPE) != 0) {
dwendpoint4 |= ENDPOINT_4_AVGTRBLENGTH(8);
} else if ((type & USB_OBJECT_ISO_PIPE) != 0) {
dwendpoint4 |= ENDPOINT_4_AVGTRBLENGTH(maxPacketSize);
} else {
dwendpoint4 |= ENDPOINT_4_AVGTRBLENGTH(ep->max_burst_payload);
}
if ((type & (USB_OBJECT_INTERRUPT_PIPE | USB_OBJECT_ISO_PIPE)) != 0) {
if (speed >= USB_SPEED_SUPERSPEED && bytesPerInterval != 0)
dwendpoint4 |= ENDPOINT_4_MAXESITPAYLOAD(bytesPerInterval);
else if (speed >= USB_SPEED_HIGHSPEED)
dwendpoint4 |= ENDPOINT_4_MAXESITPAYLOAD((maxBurst + 1) * maxPacketSize);
}
_WriteContext(&device->input_ctx->endpoints[number].dwendpoint0,
dwendpoint0);
_WriteContext(&device->input_ctx->endpoints[number].dwendpoint1,
dwendpoint1);
_WriteContext(&device->input_ctx->endpoints[number].qwendpoint2,
qwendpoint2);
_WriteContext(&device->input_ctx->endpoints[number].dwendpoint4,
dwendpoint4);
TRACE("endpoint 0x%" B_PRIx32 " 0x%" B_PRIx32 " 0x%" B_PRIx64 " 0x%"
B_PRIx32 "\n",
_ReadContext(&device->input_ctx->endpoints[number].dwendpoint0),
_ReadContext(&device->input_ctx->endpoints[number].dwendpoint1),
_ReadContext(&device->input_ctx->endpoints[number].qwendpoint2),
_ReadContext(&device->input_ctx->endpoints[number].dwendpoint4));
return B_OK;
}
status_t
XHCI::GetPortSpeed(uint8 index, usb_speed* speed)
{
if (index >= fPortCount)
return B_BAD_INDEX;
uint32 portStatus = ReadOpReg(XHCI_PORTSC(index));
switch (PS_SPEED_GET(portStatus)) {
case 2:
*speed = USB_SPEED_LOWSPEED;
break;
case 1:
*speed = USB_SPEED_FULLSPEED;
break;
case 3:
*speed = USB_SPEED_HIGHSPEED;
break;
case 4:
*speed = USB_SPEED_SUPERSPEED;
break;
case 5:
*speed = USB_SPEED_SUPERSPEEDPLUS;
break;
default:
TRACE_ALWAYS("nonstandard port speed %" B_PRId32 ", assuming SuperSpeed\n",
PS_SPEED_GET(portStatus));
*speed = USB_SPEED_SUPERSPEED;
break;
}
return B_OK;
}
status_t
XHCI::GetPortStatus(uint8 index, usb_port_status* status)
{
if (index >= fPortCount)
return B_BAD_INDEX;
status->status = status->change = 0;
uint32 portStatus = ReadOpReg(XHCI_PORTSC(index));
TRACE("port %" B_PRId8 " status=0x%08" B_PRIx32 "\n", index, portStatus);
switch (PS_SPEED_GET(portStatus)) {
case 3:
status->status |= PORT_STATUS_HIGH_SPEED;
break;
case 2:
status->status |= PORT_STATUS_LOW_SPEED;
break;
default:
break;
}
if (portStatus & PS_CCS)
status->status |= PORT_STATUS_CONNECTION;
if (portStatus & PS_PED)
status->status |= PORT_STATUS_ENABLE;
if (portStatus & PS_OCA)
status->status |= PORT_STATUS_OVER_CURRENT;
if (portStatus & PS_PR)
status->status |= PORT_STATUS_RESET;
if (portStatus & PS_PP) {
if (fPortSpeeds[index] >= USB_SPEED_SUPERSPEED)
status->status |= PORT_STATUS_SS_POWER;
else
status->status |= PORT_STATUS_POWER;
}
if (fPortSpeeds[index] >= USB_SPEED_SUPERSPEED)
status->status |= portStatus & PS_PLS_MASK;
if (portStatus & PS_CSC)
status->change |= PORT_STATUS_CONNECTION;
if (portStatus & PS_PEC)
status->change |= PORT_STATUS_ENABLE;
if (portStatus & PS_OCC)
status->change |= PORT_STATUS_OVER_CURRENT;
if (portStatus & PS_PRC)
status->change |= PORT_STATUS_RESET;
if (fPortSpeeds[index] >= USB_SPEED_SUPERSPEED) {
if (portStatus & PS_PLC)
status->change |= PORT_CHANGE_LINK_STATE;
if (portStatus & PS_WRC)
status->change |= PORT_CHANGE_BH_PORT_RESET;
}
return B_OK;
}
status_t
XHCI::SetPortFeature(uint8 index, uint16 feature)
{
TRACE("set port feature index %u feature %u\n", index, feature);
if (index >= fPortCount)
return B_BAD_INDEX;
uint32 portRegister = XHCI_PORTSC(index);
uint32 portStatus = ReadOpReg(portRegister) & ~PS_CLEAR;
switch (feature) {
case PORT_SUSPEND:
if ((portStatus & PS_PED) == 0 || (portStatus & PS_PR)
|| (portStatus & PS_PLS_MASK) >= PS_XDEV_U3) {
TRACE_ERROR("USB core suspending device not in U0/U1/U2.\n");
return B_BAD_VALUE;
}
portStatus &= ~PS_PLS_MASK;
WriteOpReg(portRegister, portStatus | PS_LWS | PS_XDEV_U3);
break;
case PORT_RESET:
WriteOpReg(portRegister, portStatus | PS_PR);
break;
case PORT_POWER:
WriteOpReg(portRegister, portStatus | PS_PP);
break;
default:
return B_BAD_VALUE;
}
ReadOpReg(portRegister);
return B_OK;
}
status_t
XHCI::ClearPortFeature(uint8 index, uint16 feature)
{
TRACE("clear port feature index %u feature %u\n", index, feature);
if (index >= fPortCount)
return B_BAD_INDEX;
uint32 portRegister = XHCI_PORTSC(index);
uint32 portStatus = ReadOpReg(portRegister) & ~PS_CLEAR;
switch (feature) {
case PORT_SUSPEND:
portStatus = ReadOpReg(portRegister);
if (portStatus & PS_PR)
return B_BAD_VALUE;
if (portStatus & PS_XDEV_U3) {
if ((portStatus & PS_PED) == 0)
return B_BAD_VALUE;
portStatus &= ~PS_PLS_MASK;
WriteOpReg(portRegister, portStatus | PS_XDEV_U0 | PS_LWS);
}
break;
case PORT_ENABLE:
WriteOpReg(portRegister, portStatus | PS_PED);
break;
case PORT_POWER:
WriteOpReg(portRegister, portStatus & ~PS_PP);
break;
case C_PORT_CONNECTION:
WriteOpReg(portRegister, portStatus | PS_CSC);
break;
case C_PORT_ENABLE:
WriteOpReg(portRegister, portStatus | PS_PEC);
break;
case C_PORT_OVER_CURRENT:
WriteOpReg(portRegister, portStatus | PS_OCC);
break;
case C_PORT_RESET:
WriteOpReg(portRegister, portStatus | PS_PRC);
break;
case C_PORT_BH_PORT_RESET:
WriteOpReg(portRegister, portStatus | PS_WRC);
break;
case C_PORT_LINK_STATE:
WriteOpReg(portRegister, portStatus | PS_PLC);
break;
default:
return B_BAD_VALUE;
}
ReadOpReg(portRegister);
return B_OK;
}
status_t
XHCI::ControllerHalt()
{
WriteOpReg(XHCI_CMD, ReadOpReg(XHCI_CMD) & ~CMD_RUN);
if (WaitOpBits(XHCI_STS, STS_HCH, STS_HCH) != B_OK) {
TRACE_ERROR("HCH shutdown timeout\n");
return B_ERROR;
}
return B_OK;
}
status_t
XHCI::ControllerReset()
{
TRACE("ControllerReset() cmd: 0x%" B_PRIx32 " sts: 0x%" B_PRIx32 "\n",
ReadOpReg(XHCI_CMD), ReadOpReg(XHCI_STS));
WriteOpReg(XHCI_CMD, ReadOpReg(XHCI_CMD) | CMD_HCRST);
if (WaitOpBits(XHCI_CMD, CMD_HCRST, 0) != B_OK) {
TRACE_ERROR("ControllerReset() failed CMD_HCRST\n");
return B_ERROR;
}
if (WaitOpBits(XHCI_STS, STS_CNR, 0) != B_OK) {
TRACE_ERROR("ControllerReset() failed STS_CNR\n");
return B_ERROR;
}
return B_OK;
}
int32
XHCI::InterruptHandler(void* data)
{
return ((XHCI*)data)->Interrupt();
}
int32
XHCI::Interrupt()
{
SpinLocker _(&fSpinlock);
uint32 status = ReadOpReg(XHCI_STS);
uint32 temp = ReadRunReg32(XHCI_IMAN(0));
WriteOpReg(XHCI_STS, status);
WriteRunReg32(XHCI_IMAN(0), temp);
int32 result = B_HANDLED_INTERRUPT;
if ((status & STS_HCH) != 0) {
TRACE_ERROR("Host Controller halted\n");
return result;
}
if ((status & STS_HSE) != 0) {
TRACE_ERROR("Host System Error\n");
return result;
}
if ((status & STS_HCE) != 0) {
TRACE_ERROR("Host Controller Error\n");
return result;
}
if ((status & STS_EINT) == 0) {
TRACE("STS: 0x%" B_PRIx32 " IRQ_PENDING: 0x%" B_PRIx32 "\n",
status, temp);
return B_UNHANDLED_INTERRUPT;
}
TRACE("Event Interrupt\n");
release_sem_etc(fEventSem, 1, B_DO_NOT_RESCHEDULE);
return B_INVOKE_SCHEDULER;
}
void
XHCI::Ring(uint8 slot, uint8 endpoint)
{
TRACE("Ding Dong! slot:%d endpoint %d\n", slot, endpoint)
if ((slot == 0 && endpoint > 0) || (slot > 0 && endpoint == 0))
panic("Ring() invalid slot/endpoint combination\n");
if (slot > fSlotCount || endpoint >= XHCI_MAX_ENDPOINTS)
panic("Ring() invalid slot or endpoint\n");
WriteDoorReg32(XHCI_DOORBELL(slot), XHCI_DOORBELL_TARGET(endpoint)
| XHCI_DOORBELL_STREAMID(0));
ReadDoorReg32(XHCI_DOORBELL(slot));
}
void
XHCI::QueueCommand(xhci_trb* trb)
{
uint8 i, j;
uint32 temp;
i = fCmdIdx;
j = fCmdCcs;
TRACE("command[%u] = %" B_PRId32 " (0x%016" B_PRIx64 ", 0x%08" B_PRIx32
", 0x%08" B_PRIx32 ")\n", i, TRB_3_TYPE_GET(trb->flags), trb->address,
trb->status, trb->flags);
fCmdRing[i].address = trb->address;
fCmdRing[i].status = trb->status;
temp = trb->flags;
if (j)
temp |= TRB_3_CYCLE_BIT;
else
temp &= ~TRB_3_CYCLE_BIT;
temp &= ~TRB_3_TC_BIT;
fCmdRing[i].flags = B_HOST_TO_LENDIAN_INT32(temp);
fCmdAddr = fErst->rs_addr + (XHCI_MAX_EVENTS + i) * sizeof(xhci_trb);
i++;
if (i == (XHCI_MAX_COMMANDS - 1)) {
temp = TRB_3_TYPE(TRB_TYPE_LINK) | TRB_3_TC_BIT;
if (j)
temp |= TRB_3_CYCLE_BIT;
fCmdRing[i].flags = B_HOST_TO_LENDIAN_INT32(temp);
i = 0;
j ^= 1;
}
fCmdIdx = i;
fCmdCcs = j;
}
void
XHCI::HandleCmdComplete(xhci_trb* trb)
{
if (fCmdAddr == trb->address) {
TRACE("Received command event\n");
fCmdResult[0] = trb->status;
fCmdResult[1] = B_LENDIAN_TO_HOST_INT32(trb->flags);
release_sem_etc(fCmdCompSem, 1, B_DO_NOT_RESCHEDULE);
} else
TRACE_ERROR("received command event for unknown command!\n")
}
void
XHCI::HandleTransferComplete(xhci_trb* trb)
{
const uint32 flags = B_LENDIAN_TO_HOST_INT32(trb->flags);
const uint8 endpointNumber = TRB_3_ENDPOINT_GET(flags),
slot = TRB_3_SLOT_GET(flags);
if (slot > fSlotCount)
TRACE_ERROR("invalid slot\n");
if (endpointNumber == 0 || endpointNumber >= XHCI_MAX_ENDPOINTS) {
TRACE_ERROR("invalid endpoint\n");
return;
}
xhci_device *device = &fDevices[slot];
xhci_endpoint *endpoint = &device->endpoints[endpointNumber - 1];
if (endpoint->trbs == NULL) {
TRACE_ERROR("got TRB but endpoint is not allocated!\n");
return;
}
MutexLocker endpointLocker(endpoint->lock, mutex_trylock(&endpoint->lock) == B_OK);
if (!endpointLocker.IsLocked()) {
return;
}
TRACE("HandleTransferComplete: ed %" B_PRIu32 ", status %" B_PRId32 "\n",
(flags & TRB_3_EVENT_DATA_BIT), trb->status);
uint8 completionCode = TRB_2_COMP_CODE_GET(trb->status);
if (completionCode == COMP_RING_OVERRUN || completionCode == COMP_RING_UNDERRUN) {
endpoint->status = completionCode;
return;
}
int32 remainder = TRB_2_REM_GET(trb->status), transferred = -1;
if ((flags & TRB_3_EVENT_DATA_BIT) != 0) {
transferred = remainder;
remainder = -1;
} else {
TRACE("got transfer event for a non-Event Data TRB!\n");
if (completionCode == COMP_STOPPED_LENGTH_INVALID)
remainder = -1;
}
if (completionCode != COMP_SUCCESS && completionCode != COMP_SHORT_PACKET
&& completionCode != COMP_STOPPED && completionCode != COMP_STOPPED_LENGTH_INVALID) {
TRACE_ALWAYS("transfer error on slot %" B_PRId8 " endpoint %" B_PRId8
": %s\n", slot, endpointNumber, xhci_error_string(completionCode));
}
phys_addr_t source = B_LENDIAN_TO_HOST_INT64(trb->address);
if (source >= endpoint->trb_addr
&& (source - endpoint->trb_addr) < (XHCI_ENDPOINT_RING_SIZE * sizeof(xhci_trb))) {
const int64 offset = (source - endpoint->trb_addr) / sizeof(xhci_trb);
const int32 type = TRB_3_TYPE_GET(endpoint->trbs[offset].flags);
if (type == TRB_TYPE_EVENT_DATA || type == TRB_TYPE_LINK)
source = B_LENDIAN_TO_HOST_INT64(endpoint->trbs[offset].address);
}
for (xhci_td *td = endpoint->td_head; td != NULL; td = td->next) {
int64 offset = (source - td->trb_addr) / sizeof(xhci_trb);
if (offset < 0 || offset >= td->trb_count)
continue;
TRACE("HandleTransferComplete td %p trb %" B_PRId64 " found\n",
td, offset);
if (td->transfer != NULL && td->transfer->IsochronousData() != NULL) {
usb_isochronous_data* isochronousData = td->transfer->IsochronousData();
usb_iso_packet_descriptor& descriptor = isochronousData->packet_descriptors[offset];
if (transferred < 0)
transferred = (TRB_2_BYTES_GET(td->trbs[offset].status) - remainder);
descriptor.actual_length = transferred;
descriptor.status = xhci_error_status(completionCode,
(td->transfer->TransferPipe()->Direction() != Pipe::Out));
completionCode = COMP_SUCCESS;
if (offset != (td->trb_used - 1)) {
return;
}
transferred = 0;
for (int32 i = 0; i < offset; i++) {
usb_iso_packet_descriptor& descriptor = isochronousData->packet_descriptors[i];
if (descriptor.status == B_NO_INIT) {
descriptor.actual_length = descriptor.request_length;
descriptor.status = B_OK;
}
transferred += descriptor.actual_length;
}
if (endpoint->status != 0) {
completionCode = endpoint->status;
endpoint->status = 0;
}
} else if (completionCode == COMP_STOPPED_LENGTH_INVALID) {
transferred = 0;
for (int32 i = 0; i < offset; i++)
transferred += TRB_2_BYTES_GET(td->trbs[i].status);
}
if (offset == (td->trb_used - 1) || completionCode != COMP_SUCCESS) {
_UnlinkDescriptorForPipe(td, endpoint);
endpointLocker.Unlock();
td->trb_completion_code = completionCode;
td->td_transferred = transferred;
td->trb_left = remainder;
if (mutex_trylock(&fFinishedLock) != B_OK)
mutex_lock(&fFinishedLock);
td->next = fFinishedHead;
fFinishedHead = td;
mutex_unlock(&fFinishedLock);
release_sem_etc(fFinishTransfersSem, 1, B_DO_NOT_RESCHEDULE);
TRACE("HandleTransferComplete td %p done\n", td);
} else {
TRACE_ERROR("successful TRB 0x%" B_PRIxPHYSADDR " was found, but it wasn't "
"the last in the TD!\n", source);
}
return;
}
TRACE_ERROR("TRB 0x%" B_PRIxPHYSADDR " was not found in the endpoint!\n", source);
}
void
XHCI::DumpRing(xhci_trb *trbs, uint32 size)
{
if (!Lock()) {
TRACE("Unable to get lock!\n");
return;
}
for (uint32 i = 0; i < size; i++) {
TRACE("command[%" B_PRId32 "] = %" B_PRId32 " (0x%016" B_PRIx64 ","
" 0x%08" B_PRIx32 ", 0x%08" B_PRIx32 ")\n", i,
TRB_3_TYPE_GET(B_LENDIAN_TO_HOST_INT32(trbs[i].flags)),
trbs[i].address, trbs[i].status, trbs[i].flags);
}
Unlock();
}
status_t
XHCI::DoCommand(xhci_trb* trb)
{
if (!Lock()) {
TRACE("Unable to get lock!\n");
return B_ERROR;
}
QueueCommand(trb);
Ring(0, 0);
if (acquire_sem_etc(fCmdCompSem, 1, B_RELATIVE_TIMEOUT, 50 * 1000) != B_OK) {
release_sem(fEventSem);
if (acquire_sem_etc(fCmdCompSem, 1, B_RELATIVE_TIMEOUT,
750 * 1000) != B_OK) {
TRACE("Unable to obtain fCmdCompSem!\n");
fCmdAddr = 0;
Unlock();
return B_TIMED_OUT;
}
}
int32 semCount = 0;
get_sem_count(fCmdCompSem, &semCount);
if (semCount > 0)
acquire_sem_etc(fCmdCompSem, semCount, B_RELATIVE_TIMEOUT, 0);
status_t status = B_OK;
uint32 completionCode = TRB_2_COMP_CODE_GET(fCmdResult[0]);
TRACE("command complete\n");
if (completionCode != COMP_SUCCESS) {
TRACE_ERROR("unsuccessful command %" B_PRId32 ", error %s (%" B_PRId32 ")\n",
TRB_3_TYPE_GET(trb->flags), xhci_error_string(completionCode),
completionCode);
status = B_IO_ERROR;
}
trb->status = fCmdResult[0];
trb->flags = fCmdResult[1];
fCmdAddr = 0;
Unlock();
return status;
}
status_t
XHCI::Noop()
{
TRACE("Issue No-Op\n");
xhci_trb trb;
trb.address = 0;
trb.status = 0;
trb.flags = TRB_3_TYPE(TRB_TYPE_CMD_NOOP);
return DoCommand(&trb);
}
status_t
XHCI::EnableSlot(uint8* slot)
{
TRACE("Enable Slot\n");
xhci_trb trb;
trb.address = 0;
trb.status = 0;
trb.flags = TRB_3_TYPE(TRB_TYPE_ENABLE_SLOT);
status_t status = DoCommand(&trb);
if (status != B_OK)
return status;
*slot = TRB_3_SLOT_GET(trb.flags);
return *slot != 0 ? B_OK : B_BAD_VALUE;
}
status_t
XHCI::DisableSlot(uint8 slot)
{
TRACE("Disable Slot\n");
xhci_trb trb;
trb.address = 0;
trb.status = 0;
trb.flags = TRB_3_TYPE(TRB_TYPE_DISABLE_SLOT) | TRB_3_SLOT(slot);
return DoCommand(&trb);
}
status_t
XHCI::SetAddress(uint64 inputContext, bool bsr, uint8 slot)
{
TRACE("Set Address\n");
xhci_trb trb;
trb.address = inputContext;
trb.status = 0;
trb.flags = TRB_3_TYPE(TRB_TYPE_ADDRESS_DEVICE) | TRB_3_SLOT(slot);
if (bsr)
trb.flags |= TRB_3_BSR_BIT;
return DoCommand(&trb);
}
status_t
XHCI::ConfigureEndpoint(uint64 inputContext, bool deconfigure, uint8 slot)
{
TRACE("Configure Endpoint\n");
xhci_trb trb;
trb.address = inputContext;
trb.status = 0;
trb.flags = TRB_3_TYPE(TRB_TYPE_CONFIGURE_ENDPOINT) | TRB_3_SLOT(slot);
if (deconfigure)
trb.flags |= TRB_3_DCEP_BIT;
return DoCommand(&trb);
}
status_t
XHCI::EvaluateContext(uint64 inputContext, uint8 slot)
{
TRACE("Evaluate Context\n");
xhci_trb trb;
trb.address = inputContext;
trb.status = 0;
trb.flags = TRB_3_TYPE(TRB_TYPE_EVALUATE_CONTEXT) | TRB_3_SLOT(slot);
return DoCommand(&trb);
}
status_t
XHCI::ResetEndpoint(bool preserve, xhci_endpoint* endpoint)
{
TRACE("Reset Endpoint\n");
switch (_GetEndpointState(endpoint)) {
case ENDPOINT_STATE_STOPPED:
TRACE("Reset Endpoint: already stopped");
return B_OK;
case ENDPOINT_STATE_HALTED:
TRACE("Reset Endpoint: warning, weird state!");
default:
break;
}
xhci_trb trb;
trb.address = 0;
trb.status = 0;
trb.flags = TRB_3_TYPE(TRB_TYPE_RESET_ENDPOINT)
| TRB_3_SLOT(endpoint->device->slot) | TRB_3_ENDPOINT(endpoint->id + 1);
if (preserve)
trb.flags |= TRB_3_PRSV_BIT;
return DoCommand(&trb);
}
status_t
XHCI::StopEndpoint(bool suspend, xhci_endpoint* endpoint)
{
TRACE("Stop Endpoint\n");
switch (_GetEndpointState(endpoint)) {
case ENDPOINT_STATE_HALTED:
TRACE("Stop Endpoint: error, halted");
return B_DEV_STALLED;
case ENDPOINT_STATE_STOPPED:
TRACE("Stop Endpoint: already stopped");
return B_OK;
default:
break;
}
xhci_trb trb;
trb.address = 0;
trb.status = 0;
trb.flags = TRB_3_TYPE(TRB_TYPE_STOP_ENDPOINT)
| TRB_3_SLOT(endpoint->device->slot) | TRB_3_ENDPOINT(endpoint->id + 1);
if (suspend)
trb.flags |= TRB_3_SUSPEND_ENDPOINT_BIT;
return DoCommand(&trb);
}
status_t
XHCI::SetTRDequeue(uint64 dequeue, uint16 stream, uint8 endpoint, uint8 slot)
{
TRACE("Set TR Dequeue\n");
xhci_trb trb;
trb.address = dequeue | ENDPOINT_2_DCS_BIT;
trb.status = TRB_2_STREAM(stream);
trb.flags = TRB_3_TYPE(TRB_TYPE_SET_TR_DEQUEUE)
| TRB_3_SLOT(slot) | TRB_3_ENDPOINT(endpoint);
return DoCommand(&trb);
}
status_t
XHCI::ResetDevice(uint8 slot)
{
TRACE("Reset Device\n");
xhci_trb trb;
trb.address = 0;
trb.status = 0;
trb.flags = TRB_3_TYPE(TRB_TYPE_RESET_DEVICE) | TRB_3_SLOT(slot);
return DoCommand(&trb);
}
int32
XHCI::EventThread(void* data)
{
((XHCI *)data)->CompleteEvents();
return B_OK;
}
void
XHCI::CompleteEvents()
{
while (!fStopThreads) {
if (acquire_sem(fEventSem) < B_OK)
continue;
int32 semCount = 0;
get_sem_count(fEventSem, &semCount);
if (semCount > 0)
acquire_sem_etc(fEventSem, semCount, B_RELATIVE_TIMEOUT, 0);
ProcessEvents();
}
}
void
XHCI::ProcessEvents()
{
MutexLocker locker(fEventLock, mutex_trylock(&fEventLock) == B_OK);
if (!locker.IsLocked()) {
TRACE_ERROR("failed to acquire event lock!\n");
return;
}
uint16 i = fEventIdx;
uint8 j = fEventCcs;
uint8 t = 2;
while (1) {
uint32 temp = B_LENDIAN_TO_HOST_INT32(fEventRing[i].flags);
uint8 event = TRB_3_TYPE_GET(temp);
TRACE("event[%u] = %u (0x%016" B_PRIx64 " 0x%08" B_PRIx32 " 0x%08"
B_PRIx32 ")\n", i, event, fEventRing[i].address,
fEventRing[i].status, B_LENDIAN_TO_HOST_INT32(fEventRing[i].flags));
uint8 k = (temp & TRB_3_CYCLE_BIT) ? 1 : 0;
if (j != k)
break;
switch (event) {
case TRB_TYPE_COMMAND_COMPLETION:
HandleCmdComplete(&fEventRing[i]);
break;
case TRB_TYPE_TRANSFER:
HandleTransferComplete(&fEventRing[i]);
break;
case TRB_TYPE_PORT_STATUS_CHANGE:
TRACE("port change detected\n");
break;
default:
TRACE_ERROR("Unhandled event = %u\n", event);
break;
}
i++;
if (i == XHCI_MAX_EVENTS) {
i = 0;
j ^= 1;
if (!--t)
break;
}
}
fEventIdx = i;
fEventCcs = j;
uint64 addr = fErst->rs_addr + i * sizeof(xhci_trb);
WriteRunReg32(XHCI_ERDP_LO(0), (uint32)addr | ERDP_BUSY);
WriteRunReg32(XHCI_ERDP_HI(0), (uint32)(addr >> 32));
}
int32
XHCI::FinishThread(void* data)
{
((XHCI *)data)->FinishTransfers();
return B_OK;
}
void
XHCI::FinishTransfers()
{
while (!fStopThreads) {
if (acquire_sem(fFinishTransfersSem) < B_OK)
continue;
int32 semCount = 0;
get_sem_count(fFinishTransfersSem, &semCount);
if (semCount > 0)
acquire_sem_etc(fFinishTransfersSem, semCount, B_RELATIVE_TIMEOUT, 0);
mutex_lock(&fFinishedLock);
TRACE("finishing transfers\n");
while (fFinishedHead != NULL) {
xhci_td* td = fFinishedHead;
fFinishedHead = td->next;
td->next = NULL;
mutex_unlock(&fFinishedLock);
TRACE("finishing transfer td %p\n", td);
Transfer* transfer = td->transfer;
if (transfer == NULL) {
FreeDescriptor(td);
mutex_lock(&fFinishedLock);
continue;
}
bool directionIn = (transfer->TransferPipe()->Direction() != Pipe::Out);
const uint8 completionCode = td->trb_completion_code;
status_t callbackStatus = xhci_error_status(completionCode, directionIn);
size_t actualLength = transfer->FragmentLength();
if (completionCode != COMP_SUCCESS) {
actualLength = td->td_transferred;
if (td->td_transferred == -1)
actualLength = transfer->FragmentLength() - td->trb_left;
TRACE("transfer not successful, actualLength=%" B_PRIuSIZE "\n",
actualLength);
}
if (directionIn && actualLength > 0 && !transfer->IsPhysical()) {
TRACE("copying in iov count %ld\n", transfer->VectorCount());
status_t status = transfer->PrepareKernelAccess();
if (status == B_OK) {
ReadDescriptor(td, transfer->Vector(),
transfer->VectorCount(), transfer->IsPhysical());
} else {
callbackStatus = status;
}
}
FreeDescriptor(td);
bool finished = true;
transfer->AdvanceByFragment(actualLength);
if (completionCode == COMP_SUCCESS
&& transfer->FragmentLength() > 0) {
TRACE("still %" B_PRIuSIZE " bytes left on transfer\n",
transfer->FragmentLength());
callbackStatus = SubmitTransfer(transfer);
finished = (callbackStatus != B_OK);
}
if (finished) {
transfer->Finished(callbackStatus, 0);
delete transfer;
}
mutex_lock(&fFinishedLock);
}
mutex_unlock(&fFinishedLock);
}
}
inline void
XHCI::WriteOpReg(uint32 reg, uint32 value)
{
*(volatile uint32 *)(fRegisters + fOperationalRegisterOffset + reg) = value;
}
inline uint32
XHCI::ReadOpReg(uint32 reg)
{
return *(volatile uint32 *)(fRegisters + fOperationalRegisterOffset + reg);
}
inline status_t
XHCI::WaitOpBits(uint32 reg, uint32 mask, uint32 expected)
{
int loops = 0;
uint32 value = ReadOpReg(reg);
while ((value & mask) != expected) {
snooze(1000);
value = ReadOpReg(reg);
if (loops == 100) {
TRACE("delay waiting on reg 0x%" B_PRIX32 " match 0x%" B_PRIX32
" (0x%" B_PRIX32 ")\n", reg, expected, mask);
} else if (loops > 250) {
TRACE_ERROR("timeout waiting on reg 0x%" B_PRIX32
" match 0x%" B_PRIX32 " (0x%" B_PRIX32 ")\n", reg, expected,
mask);
return B_ERROR;
}
loops++;
}
return B_OK;
}
inline uint32
XHCI::ReadCapReg32(uint32 reg)
{
return *(volatile uint32 *)(fRegisters + fCapabilityRegisterOffset + reg);
}
inline void
XHCI::WriteCapReg32(uint32 reg, uint32 value)
{
*(volatile uint32 *)(fRegisters + fCapabilityRegisterOffset + reg) = value;
}
inline uint32
XHCI::ReadRunReg32(uint32 reg)
{
return *(volatile uint32 *)(fRegisters + fRuntimeRegisterOffset + reg);
}
inline void
XHCI::WriteRunReg32(uint32 reg, uint32 value)
{
*(volatile uint32 *)(fRegisters + fRuntimeRegisterOffset + reg) = value;
}
inline uint32
XHCI::ReadDoorReg32(uint32 reg)
{
return *(volatile uint32 *)(fRegisters + fDoorbellRegisterOffset + reg);
}
inline void
XHCI::WriteDoorReg32(uint32 reg, uint32 value)
{
*(volatile uint32 *)(fRegisters + fDoorbellRegisterOffset + reg) = value;
}
inline addr_t
XHCI::_OffsetContextAddr(addr_t p)
{
if (fContextSizeShift == 1) {
uint32 offset = p & ((B_PAGE_SIZE - 1) & ~31U);
p += offset;
}
return p;
}
inline uint32
XHCI::_ReadContext(uint32* p)
{
p = (uint32*)_OffsetContextAddr((addr_t)p);
return *p;
}
inline void
XHCI::_WriteContext(uint32* p, uint32 value)
{
p = (uint32*)_OffsetContextAddr((addr_t)p);
*p = value;
}
inline uint64
XHCI::_ReadContext(uint64* p)
{
p = (uint64*)_OffsetContextAddr((addr_t)p);
return *p;
}
inline void
XHCI::_WriteContext(uint64* p, uint64 value)
{
p = (uint64*)_OffsetContextAddr((addr_t)p);
*p = value;
}