Copyright 1994, 1995, 1996, 1997, 1998, 2000, 2001, 2002, 2003, 2004,
2005, 2006, 2007 Free Software Foundation, Inc.
Written by Ian Lance Taylor, Cygnus Support.
Hacked by Linas Vepstas for i370 linas@linas.org
This file is part of BFD, the Binary File Descriptor library.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
MA 02110-1301, USA. */
But its been hacked on for the IBM 360/370 architectures.
Basically, the 31bit relocation works, and just about everything
else is a wild card. In particular, don't expect shared libs or
dynamic loading to work ... its never been tested. */
#include "sysdep.h"
#include "bfd.h"
#include "bfdlink.h"
#include "libbfd.h"
#include "elf-bfd.h"
#include "elf/i370.h"
static reloc_howto_type *i370_elf_howto_table[ (int)R_I370_max ];
static reloc_howto_type i370_elf_howto_raw[] =
{
HOWTO (R_I370_NONE,
0,
2,
32,
FALSE,
0,
complain_overflow_bitfield,
bfd_elf_generic_reloc,
"R_I370_NONE",
FALSE,
0,
0,
FALSE),
HOWTO (R_I370_ADDR31,
0,
2,
31,
FALSE,
0,
complain_overflow_bitfield,
bfd_elf_generic_reloc,
"R_I370_ADDR31",
FALSE,
0,
0x7fffffff,
FALSE),
HOWTO (R_I370_ADDR32,
0,
2,
32,
FALSE,
0,
complain_overflow_bitfield,
bfd_elf_generic_reloc,
"R_I370_ADDR32",
FALSE,
0,
0xffffffff,
FALSE),
HOWTO (R_I370_ADDR16,
0,
1,
16,
FALSE,
0,
complain_overflow_bitfield,
bfd_elf_generic_reloc,
"R_I370_ADDR16",
FALSE,
0,
0xffff,
FALSE),
HOWTO (R_I370_REL31,
0,
2,
31,
TRUE,
0,
complain_overflow_bitfield,
bfd_elf_generic_reloc,
"R_I370_REL31",
FALSE,
0,
0x7fffffff,
TRUE),
HOWTO (R_I370_REL32,
0,
2,
32,
TRUE,
0,
complain_overflow_bitfield,
bfd_elf_generic_reloc,
"R_I370_REL32",
FALSE,
0,
0xffffffff,
TRUE),
HOWTO (R_I370_ADDR12,
0,
1,
12,
FALSE,
0,
complain_overflow_bitfield,
bfd_elf_generic_reloc,
"R_I370_ADDR12",
FALSE,
0,
0xfff,
FALSE),
HOWTO (R_I370_REL12,
0,
1,
12,
TRUE,
0,
complain_overflow_bitfield,
bfd_elf_generic_reloc,
"R_I370_REL12",
FALSE,
0,
0xfff,
TRUE),
HOWTO (R_I370_ADDR8,
0,
0,
8,
FALSE,
0,
complain_overflow_bitfield,
bfd_elf_generic_reloc,
"R_I370_ADDR8",
FALSE,
0,
0xff,
FALSE),
HOWTO (R_I370_REL8,
0,
0,
8,
TRUE,
0,
complain_overflow_bitfield,
bfd_elf_generic_reloc,
"R_I370_REL8",
FALSE,
0,
0xff,
TRUE),
both in the object being run and in some shared library. The
dynamic linker copies the data addressed by the symbol from the
shared library into the object, because the object being
run has to have the data at some particular address. */
HOWTO (R_I370_COPY,
0,
2,
32,
FALSE,
0,
complain_overflow_bitfield,
bfd_elf_generic_reloc,
"R_I370_COPY",
FALSE,
0,
0,
FALSE),
longword is set to the load address of the object, plus the
addend. */
HOWTO (R_I370_RELATIVE,
0,
2,
32,
FALSE,
0,
complain_overflow_bitfield,
bfd_elf_generic_reloc,
"R_I370_RELATIVE",
FALSE,
0,
0xffffffff,
FALSE),
};
static void
i370_elf_howto_init (void)
{
unsigned int i, type;
for (i = 0; i < sizeof (i370_elf_howto_raw) / sizeof (i370_elf_howto_raw[0]); i++)
{
type = i370_elf_howto_raw[i].type;
BFD_ASSERT (type < sizeof (i370_elf_howto_table) / sizeof (i370_elf_howto_table[0]));
i370_elf_howto_table[type] = &i370_elf_howto_raw[i];
}
}
static reloc_howto_type *
i370_elf_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
bfd_reloc_code_real_type code)
{
enum i370_reloc_type i370_reloc = R_I370_NONE;
if (!i370_elf_howto_table[ R_I370_ADDR31 ])
i370_elf_howto_init ();
switch ((int) code)
{
default:
return NULL;
case BFD_RELOC_NONE: i370_reloc = R_I370_NONE; break;
case BFD_RELOC_32: i370_reloc = R_I370_ADDR31; break;
case BFD_RELOC_16: i370_reloc = R_I370_ADDR16; break;
case BFD_RELOC_32_PCREL: i370_reloc = R_I370_REL31; break;
case BFD_RELOC_CTOR: i370_reloc = R_I370_ADDR31; break;
case BFD_RELOC_I370_D12: i370_reloc = R_I370_ADDR12; break;
}
return i370_elf_howto_table[ (int)i370_reloc ];
};
static reloc_howto_type *
i370_elf_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
const char *r_name)
{
unsigned int i;
for (i = 0;
i < sizeof (i370_elf_howto_raw) / sizeof (i370_elf_howto_raw[0]);
i++)
if (i370_elf_howto_raw[i].name != NULL
&& strcasecmp (i370_elf_howto_raw[i].name, r_name) == 0)
return &i370_elf_howto_raw[i];
return NULL;
}
section. */
#define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
static void
i370_elf_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
arelent *cache_ptr,
Elf_Internal_Rela *dst)
{
if (!i370_elf_howto_table[ R_I370_ADDR31 ])
i370_elf_howto_init ();
BFD_ASSERT (ELF32_R_TYPE (dst->r_info) < (unsigned int) R_I370_max);
cache_ptr->howto = i370_elf_howto_table[ELF32_R_TYPE (dst->r_info)];
}
why are we bothering with them ? */
static bfd_boolean
i370_elf_set_private_flags (bfd *abfd, flagword flags)
{
BFD_ASSERT (!elf_flags_init (abfd)
|| elf_elfheader (abfd)->e_flags == flags);
elf_elfheader (abfd)->e_flags = flags;
elf_flags_init (abfd) = TRUE;
return TRUE;
}
object file when linking. */
static bfd_boolean
i370_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
{
flagword old_flags;
flagword new_flags;
if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
|| bfd_get_flavour (obfd) != bfd_target_elf_flavour)
return TRUE;
new_flags = elf_elfheader (ibfd)->e_flags;
old_flags = elf_elfheader (obfd)->e_flags;
if (!elf_flags_init (obfd))
{
elf_flags_init (obfd) = TRUE;
elf_elfheader (obfd)->e_flags = new_flags;
}
else if (new_flags == old_flags)
;
else
{
(*_bfd_error_handler)
("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)",
ibfd, (long) new_flags, (long) old_flags);
bfd_set_error (bfd_error_bad_value);
return FALSE;
}
return TRUE;
}
is called when elfcode.h finds a section with an unknown type. */
certainly does the wrong thing. Its here simply because it does
just enough to allow glibc-2.1 ld.so to compile & link. */
static bfd_boolean
i370_elf_section_from_shdr (bfd *abfd,
Elf_Internal_Shdr *hdr,
const char *name,
int shindex)
{
asection *newsect;
flagword flags;
if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
return FALSE;
newsect = hdr->bfd_section;
flags = bfd_get_section_flags (abfd, newsect);
if (hdr->sh_flags & SHF_EXCLUDE)
flags |= SEC_EXCLUDE;
if (hdr->sh_type == SHT_ORDERED)
flags |= SEC_SORT_ENTRIES;
bfd_set_section_flags (abfd, newsect, flags);
return TRUE;
}
certainly does the wrong thing. Its here simply because it does
just enough to allow glibc-2.1 ld.so to compile & link. */
static bfd_boolean
i370_elf_fake_sections (bfd *abfd ATTRIBUTE_UNUSED,
Elf_Internal_Shdr *shdr,
asection *asect)
{
if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
shdr->sh_flags |= SHF_EXCLUDE;
if ((asect->flags & SEC_SORT_ENTRIES) != 0)
shdr->sh_type = SHT_ORDERED;
return TRUE;
}
to output sections (just like _bfd_elf_create_dynamic_sections has
to create .dynbss and .rela.bss). */
certainly does the wrong thing. Its here simply because it does
just enough to allow glibc-2.1 ld.so to compile & link. */
static bfd_boolean
i370_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
{
asection *s;
flagword flags;
if (!_bfd_elf_create_dynamic_sections(abfd, info))
return FALSE;
flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
| SEC_LINKER_CREATED);
s = bfd_make_section_with_flags (abfd, ".dynsbss",
SEC_ALLOC | SEC_LINKER_CREATED);
if (s == NULL)
return FALSE;
if (! info->shared)
{
s = bfd_make_section_with_flags (abfd, ".rela.sbss",
flags | SEC_READONLY);
if (s == NULL
|| ! bfd_set_section_alignment (abfd, s, 2))
return FALSE;
}
s = bfd_make_section_with_flags (abfd, ".rela.text",
flags | SEC_READONLY);
if (s == NULL
|| ! bfd_set_section_alignment (abfd, s, 2))
return FALSE;
return TRUE;
}
regular object. The current definition is in some section of the
dynamic object, but we're not including those sections. We have to
change the definition to something the rest of the link can
understand. */
certainly does the wrong thing. Its here simply because it does
just enough to allow glibc-2.1 ld.so to compile & link. */
static bfd_boolean
i370_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
struct elf_link_hash_entry *h)
{
bfd *dynobj = elf_hash_table (info)->dynobj;
asection *s;
#ifdef DEBUG
fprintf (stderr, "i370_elf_adjust_dynamic_symbol called for %s\n",
h->root.root.string);
#endif
BFD_ASSERT (dynobj != NULL
&& (h->needs_plt
|| h->u.weakdef != NULL
|| (h->def_dynamic
&& h->ref_regular
&& !h->def_regular)));
s = bfd_get_section_by_name (dynobj, ".rela.text");
BFD_ASSERT (s != NULL);
s->size += sizeof (Elf32_External_Rela);
processor independent code will have arranged for us to see the
real definition first, and we can just use the same value. */
if (h->u.weakdef != NULL)
{
BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
|| h->u.weakdef->root.type == bfd_link_hash_defweak);
h->root.u.def.section = h->u.weakdef->root.u.def.section;
h->root.u.def.value = h->u.weakdef->root.u.def.value;
return TRUE;
}
is not a function. */
only references to the symbol are via the global offset table.
For such cases we need not do anything here; the relocations will
be handled correctly by relocate_section. */
if (info->shared)
return TRUE;
if (h->size == 0)
{
(*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
h->root.root.string);
return TRUE;
}
become part of the .bss section of the executable. There will be
an entry for this symbol in the .dynsym section. The dynamic
object will contain position independent code, so all references
from the dynamic object to this symbol will go through the global
offset table. The dynamic linker will use the .dynsym entry to
determine the address it must put in the global offset table, so
both the dynamic object and the regular object will refer to the
same memory location for the variable.
Of course, if the symbol is sufficiently small, we must instead
allocate it in .sbss. FIXME: It would be better to do this if and
only if there were actually SDAREL relocs for that symbol. */
if (h->size <= elf_gp_size (dynobj))
s = bfd_get_section_by_name (dynobj, ".dynsbss");
else
s = bfd_get_section_by_name (dynobj, ".dynbss");
BFD_ASSERT (s != NULL);
copy the initial value out of the dynamic object and into the
runtime process image. We need to remember the offset into the
.rela.bss section we are going to use. */
if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
{
asection *srel;
if (h->size <= elf_gp_size (dynobj))
srel = bfd_get_section_by_name (dynobj, ".rela.sbss");
else
srel = bfd_get_section_by_name (dynobj, ".rela.bss");
BFD_ASSERT (srel != NULL);
srel->size += sizeof (Elf32_External_Rela);
h->needs_copy = 1;
}
return _bfd_elf_adjust_dynamic_copy (h, s);
}
via elf_link_hash_traverse. */
certainly does the wrong thing. Its here simply because it does
just enough to allow glibc-2.1 ld.so to compile & link. */
static bfd_boolean
i370_elf_adjust_dynindx (struct elf_link_hash_entry *h, void * cparg)
{
int *cp = (int *) cparg;
#ifdef DEBUG
fprintf (stderr,
"i370_elf_adjust_dynindx called, h->dynindx = %ld, *cp = %d\n",
h->dynindx, *cp);
#endif
if (h->root.type == bfd_link_hash_warning)
h = (struct elf_link_hash_entry *) h->root.u.i.link;
if (h->dynindx != -1)
h->dynindx += *cp;
return TRUE;
}
certainly does the wrong thing. Its here simply because it does
just enough to allow glibc-2.1 ld.so to compile & link. */
static bfd_boolean
i370_elf_size_dynamic_sections (bfd *output_bfd,
struct bfd_link_info *info)
{
bfd *dynobj;
asection *s;
bfd_boolean plt;
bfd_boolean relocs;
bfd_boolean reltext;
#ifdef DEBUG
fprintf (stderr, "i370_elf_size_dynamic_sections called\n");
#endif
dynobj = elf_hash_table (info)->dynobj;
BFD_ASSERT (dynobj != NULL);
if (elf_hash_table (info)->dynamic_sections_created)
{
if (info->executable)
{
s = bfd_get_section_by_name (dynobj, ".interp");
BFD_ASSERT (s != NULL);
s->size = sizeof ELF_DYNAMIC_INTERPRETER;
s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
}
}
else
{
.rela.sdata2 sections. However, if we are not creating the
dynamic sections, we will not actually use these entries. Reset
the size of .rela.got, et al, which will cause it to get
stripped from the output file below. */
static char *rela_sections[] = { ".rela.got", ".rela.sdata",
".rela.sdata2", ".rela.sbss",
NULL };
char **p;
for (p = rela_sections; *p != NULL; p++)
{
s = bfd_get_section_by_name (dynobj, *p);
if (s != NULL)
s->size = 0;
}
}
determined the sizes of the various dynamic sections. Allocate
memory for them. */
plt = FALSE;
relocs = FALSE;
reltext = FALSE;
for (s = dynobj->sections; s != NULL; s = s->next)
{
const char *name;
if ((s->flags & SEC_LINKER_CREATED) == 0)
continue;
of the dynobj section names depend upon the input files. */
name = bfd_get_section_name (dynobj, s);
if (strcmp (name, ".plt") == 0)
{
plt = s->size != 0;
}
else if (CONST_STRNEQ (name, ".rela"))
{
if (s->size != 0)
{
asection *target;
const char *outname;
relocs = TRUE;
section, then we probably need a DT_TEXTREL entry. */
outname = bfd_get_section_name (output_bfd,
s->output_section);
target = bfd_get_section_by_name (output_bfd, outname + 5);
if (target != NULL
&& (target->flags & SEC_READONLY) != 0
&& (target->flags & SEC_ALLOC) != 0)
reltext = TRUE;
to copy relocs into the output file. */
s->reloc_count = 0;
}
}
else if (strcmp (name, ".got") != 0
&& strcmp (name, ".sdata") != 0
&& strcmp (name, ".sdata2") != 0
&& strcmp (name, ".dynbss") != 0
&& strcmp (name, ".dynsbss") != 0)
{
continue;
}
if (s->size == 0)
{
output file. This is mostly to handle .rela.bss and
.rela.plt. We must create both sections in
create_dynamic_sections, because they must be created
before the linker maps input sections to output
sections. The linker does that before
adjust_dynamic_symbol is called, and it is that
function which decides whether anything needs to go
into these sections. */
s->flags |= SEC_EXCLUDE;
continue;
}
if ((s->flags & SEC_HAS_CONTENTS) == 0)
continue;
s->contents = bfd_zalloc (dynobj, s->size);
if (s->contents == NULL)
return FALSE;
}
if (elf_hash_table (info)->dynamic_sections_created)
{
values later, in i370_elf_finish_dynamic_sections, but we
must add the entries now so that we get the correct size for
the .dynamic section. The DT_DEBUG entry is filled in by the
dynamic linker and used by the debugger. */
#define add_dynamic_entry(TAG, VAL) \
_bfd_elf_add_dynamic_entry (info, TAG, VAL)
if (!info->shared)
{
if (!add_dynamic_entry (DT_DEBUG, 0))
return FALSE;
}
if (plt)
{
if (!add_dynamic_entry (DT_PLTGOT, 0)
|| !add_dynamic_entry (DT_PLTRELSZ, 0)
|| !add_dynamic_entry (DT_PLTREL, DT_RELA)
|| !add_dynamic_entry (DT_JMPREL, 0))
return FALSE;
}
if (relocs)
{
if (!add_dynamic_entry (DT_RELA, 0)
|| !add_dynamic_entry (DT_RELASZ, 0)
|| !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
return FALSE;
}
if (reltext)
{
if (!add_dynamic_entry (DT_TEXTREL, 0))
return FALSE;
info->flags |= DF_TEXTREL;
}
}
#undef add_dynamic_entry
symbol for each output section. These are local symbols, which
means that they must come first in the dynamic symbol table.
That means we must increment the dynamic symbol index of every
other dynamic symbol.
FIXME: We assume that there will never be relocations to
locations in linker-created sections that do not have
externally-visible names. Instead, we should work out precisely
which sections relocations are targeted at. */
if (info->shared)
{
int c;
for (c = 0, s = output_bfd->sections; s != NULL; s = s->next)
{
if ((s->flags & SEC_LINKER_CREATED) != 0
|| (s->flags & SEC_ALLOC) == 0)
{
elf_section_data (s)->dynindx = -1;
continue;
}
fiddle with dynstr_index. */
elf_section_data (s)->dynindx = c + 1;
c++;
}
elf_link_hash_traverse (elf_hash_table (info),
i370_elf_adjust_dynindx, & c);
elf_hash_table (info)->dynsymcount += c;
}
return TRUE;
}
allocate space in the global offset table or procedure linkage
table. */
certainly does the wrong thing. Its here simply because it does
just enough to allow glibc-2.1 ld.so to compile & link. */
static bfd_boolean
i370_elf_check_relocs (bfd *abfd,
struct bfd_link_info *info,
asection *sec,
const Elf_Internal_Rela *relocs)
{
bfd *dynobj;
Elf_Internal_Shdr *symtab_hdr;
struct elf_link_hash_entry **sym_hashes;
const Elf_Internal_Rela *rel;
const Elf_Internal_Rela *rel_end;
bfd_vma *local_got_offsets;
asection *sreloc;
if (info->relocatable)
return TRUE;
#ifdef DEBUG
_bfd_error_handler ("i370_elf_check_relocs called for section %A in %B",
sec, abfd);
#endif
dynobj = elf_hash_table (info)->dynobj;
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
sym_hashes = elf_sym_hashes (abfd);
local_got_offsets = elf_local_got_offsets (abfd);
sreloc = NULL;
rel_end = relocs + sec->reloc_count;
for (rel = relocs; rel < rel_end; rel++)
{
unsigned long r_symndx;
struct elf_link_hash_entry *h;
r_symndx = ELF32_R_SYM (rel->r_info);
if (r_symndx < symtab_hdr->sh_info)
h = NULL;
else
{
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
while (h->root.type == bfd_link_hash_indirect
|| h->root.type == bfd_link_hash_warning)
h = (struct elf_link_hash_entry *) h->root.u.i.link;
}
if (info->shared)
{
#ifdef DEBUG
fprintf (stderr,
"i370_elf_check_relocs needs to create relocation for %s\n",
(h && h->root.root.string)
? h->root.root.string : "<unknown>");
#endif
if (sreloc == NULL)
{
const char *name;
name = (bfd_elf_string_from_elf_section
(abfd,
elf_elfheader (abfd)->e_shstrndx,
elf_section_data (sec)->rel_hdr.sh_name));
if (name == NULL)
return FALSE;
BFD_ASSERT (CONST_STRNEQ (name, ".rela")
&& strcmp (bfd_get_section_name (abfd, sec), name + 5) == 0);
sreloc = bfd_get_section_by_name (dynobj, name);
if (sreloc == NULL)
{
flagword flags;
flags = (SEC_HAS_CONTENTS | SEC_READONLY
| SEC_IN_MEMORY | SEC_LINKER_CREATED);
if ((sec->flags & SEC_ALLOC) != 0)
flags |= SEC_ALLOC | SEC_LOAD;
sreloc = bfd_make_section_with_flags (dynobj, name,
flags);
if (sreloc == NULL
|| ! bfd_set_section_alignment (dynobj, sreloc, 2))
return FALSE;
}
}
sreloc->size += sizeof (Elf32_External_Rela);
backends do: if the reloc is pc-relative, record it
in case it turns out that the reloc is unnecessary
because the symbol is forced local by versioning or
we are linking with -Bdynamic. Fortunately this
case is not frequent. */
}
}
return TRUE;
}
certainly does the wrong thing. Its here simply because it does
just enough to allow glibc-2.1 ld.so to compile & link. */
static bfd_boolean
i370_elf_finish_dynamic_sections (bfd *output_bfd,
struct bfd_link_info *info)
{
asection *sdyn;
bfd *dynobj = elf_hash_table (info)->dynobj;
asection *sgot = bfd_get_section_by_name (dynobj, ".got");
#ifdef DEBUG
fprintf (stderr, "i370_elf_finish_dynamic_sections called\n");
#endif
sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
if (elf_hash_table (info)->dynamic_sections_created)
{
asection *splt;
Elf32_External_Dyn *dyncon, *dynconend;
splt = bfd_get_section_by_name (dynobj, ".plt");
BFD_ASSERT (splt != NULL && sdyn != NULL);
dyncon = (Elf32_External_Dyn *) sdyn->contents;
dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
for (; dyncon < dynconend; dyncon++)
{
Elf_Internal_Dyn dyn;
const char *name;
bfd_boolean size;
bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
switch (dyn.d_tag)
{
case DT_PLTGOT: name = ".plt"; size = FALSE; break;
case DT_PLTRELSZ: name = ".rela.plt"; size = TRUE; break;
case DT_JMPREL: name = ".rela.plt"; size = FALSE; break;
default: name = NULL; size = FALSE; break;
}
if (name != NULL)
{
asection *s;
s = bfd_get_section_by_name (output_bfd, name);
if (s == NULL)
dyn.d_un.d_val = 0;
else
{
if (! size)
dyn.d_un.d_ptr = s->vma;
else
dyn.d_un.d_val = s->size;
}
bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
}
}
}
if (sgot && sgot->size != 0)
{
unsigned char *contents = sgot->contents;
if (sdyn == NULL)
bfd_put_32 (output_bfd, (bfd_vma) 0, contents);
else
bfd_put_32 (output_bfd,
sdyn->output_section->vma + sdyn->output_offset,
contents);
elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
}
if (info->shared)
{
asection *sdynsym;
asection *s;
Elf_Internal_Sym sym;
int maxdindx = 0;
sdynsym = bfd_get_section_by_name (dynobj, ".dynsym");
BFD_ASSERT (sdynsym != NULL);
sym.st_size = 0;
sym.st_name = 0;
sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
sym.st_other = 0;
for (s = output_bfd->sections; s != NULL; s = s->next)
{
int indx, dindx;
Elf32_External_Sym *esym;
sym.st_value = s->vma;
indx = elf_section_data (s)->this_idx;
dindx = elf_section_data (s)->dynindx;
if (dindx != -1)
{
BFD_ASSERT(indx > 0);
BFD_ASSERT(dindx > 0);
if (dindx > maxdindx)
maxdindx = dindx;
sym.st_shndx = indx;
esym = (Elf32_External_Sym *) sdynsym->contents + dindx;
bfd_elf32_swap_symbol_out (output_bfd, &sym, esym, NULL);
}
}
index of the first global symbol. */
elf_section_data (sdynsym->output_section)->this_hdr.sh_info =
maxdindx + 1;
}
return TRUE;
}
to handle the relocations for a section.
The relocs are always passed as Rela structures; if the section
actually uses Rel structures, the r_addend field will always be
zero.
This function is responsible for adjust the section contents as
necessary, and (if using Rela relocs and generating a
relocatable output file) adjusting the reloc addend as
necessary.
This function does not have to worry about setting the reloc
address or the reloc symbol index.
LOCAL_SYMS is a pointer to the swapped in local symbols.
LOCAL_SECTIONS is an array giving the section in the input file
corresponding to the st_shndx field of each local symbol.
The global hash table entry for the global symbols can be found
via elf_sym_hashes (input_bfd).
When generating relocatable output, this function must handle
STB_LOCAL/STT_SECTION symbols specially. The output symbol is
going to be the section symbol corresponding to the output
section, which means that the addend must be adjusted
accordingly. */
static bfd_boolean
i370_elf_relocate_section (bfd *output_bfd,
struct bfd_link_info *info,
bfd *input_bfd,
asection *input_section,
bfd_byte *contents,
Elf_Internal_Rela *relocs,
Elf_Internal_Sym *local_syms,
asection **local_sections)
{
Elf_Internal_Shdr *symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
bfd *dynobj = elf_hash_table (info)->dynobj;
Elf_Internal_Rela *rel = relocs;
Elf_Internal_Rela *relend = relocs + input_section->reloc_count;
asection *sreloc = NULL;
bfd_vma *local_got_offsets;
bfd_boolean ret = TRUE;
#ifdef DEBUG
_bfd_error_handler ("i370_elf_relocate_section called for %B section %A, %ld relocations%s",
input_bfd, input_section,
(long) input_section->reloc_count,
(info->relocatable) ? " (relocatable)" : "");
#endif
if (!i370_elf_howto_table[ R_I370_ADDR31 ])
i370_elf_howto_init ();
local_got_offsets = elf_local_got_offsets (input_bfd);
for (; rel < relend; rel++)
{
enum i370_reloc_type r_type = (enum i370_reloc_type) ELF32_R_TYPE (rel->r_info);
bfd_vma offset = rel->r_offset;
bfd_vma addend = rel->r_addend;
bfd_reloc_status_type r = bfd_reloc_other;
Elf_Internal_Sym *sym = NULL;
asection *sec = NULL;
struct elf_link_hash_entry * h = NULL;
const char *sym_name = NULL;
reloc_howto_type *howto;
unsigned long r_symndx;
bfd_vma relocation;
if ((unsigned) r_type >= (unsigned) R_I370_max
|| !i370_elf_howto_table[(int)r_type])
{
(*_bfd_error_handler) ("%B: unknown relocation type %d",
input_bfd,
(int) r_type);
bfd_set_error (bfd_error_bad_value);
ret = FALSE;
continue;
}
howto = i370_elf_howto_table[(int) r_type];
r_symndx = ELF32_R_SYM (rel->r_info);
relocation = 0;
if (r_symndx < symtab_hdr->sh_info)
{
sym = local_syms + r_symndx;
sec = local_sections[r_symndx];
sym_name = "<local symbol>";
relocation = _bfd_elf_rela_local_sym (output_bfd, sym, & sec, rel);
addend = rel->r_addend;
}
else
{
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
while (h->root.type == bfd_link_hash_indirect
|| h->root.type == bfd_link_hash_warning)
h = (struct elf_link_hash_entry *) h->root.u.i.link;
sym_name = h->root.root.string;
if (h->root.type == bfd_link_hash_defined
|| h->root.type == bfd_link_hash_defweak)
{
sec = h->root.u.def.section;
if (info->shared
&& ((! info->symbolic && h->dynindx != -1)
|| !h->def_regular)
&& (input_section->flags & SEC_ALLOC) != 0
&& (r_type == R_I370_ADDR31
|| r_type == R_I370_COPY
|| r_type == R_I370_ADDR16
|| r_type == R_I370_RELATIVE))
value. We check specially because in some
obscure cases sec->output_section will be NULL. */
;
else
relocation = (h->root.u.def.value
+ sec->output_section->vma
+ sec->output_offset);
}
else if (h->root.type == bfd_link_hash_undefweak)
;
else if (info->unresolved_syms_in_objects == RM_IGNORE
&& ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
;
else if (!info->relocatable)
{
if ((*info->callbacks->undefined_symbol)
(info, h->root.root.string, input_bfd,
input_section, rel->r_offset,
(info->unresolved_syms_in_objects == RM_GENERATE_ERROR
|| ELF_ST_VISIBILITY (h->other))))
{
ret = FALSE;
continue;
}
}
}
if (sec != NULL && elf_discarded_section (sec))
{
or sections discarded by a linker script, we just want the
section contents zeroed. Avoid any special processing. */
_bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
rel->r_info = 0;
rel->r_addend = 0;
continue;
}
if (info->relocatable)
continue;
switch ((int) r_type)
{
default:
(*_bfd_error_handler)
("%B: unknown relocation type %d for symbol %s",
input_bfd, (int) r_type, sym_name);
bfd_set_error (bfd_error_bad_value);
ret = FALSE;
continue;
case (int) R_I370_NONE:
continue;
object. */
case (int) R_I370_REL31:
handled right here, no need to bother the dynamic linker. */
if (h == NULL
|| strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
break;
object. */
case (int) R_I370_ADDR31:
case (int) R_I370_ADDR16:
if (info->shared
&& r_symndx != 0)
{
Elf_Internal_Rela outrel;
bfd_byte *loc;
int skip;
#ifdef DEBUG
fprintf (stderr,
"i370_elf_relocate_section needs to create relocation for %s\n",
(h && h->root.root.string) ? h->root.root.string : "<unknown>");
#endif
are copied into the output file to be resolved at run
time. */
if (sreloc == NULL)
{
const char *name;
name = (bfd_elf_string_from_elf_section
(input_bfd,
elf_elfheader (input_bfd)->e_shstrndx,
elf_section_data (input_section)->rel_hdr.sh_name));
if (name == NULL)
return FALSE;
BFD_ASSERT (CONST_STRNEQ (name, ".rela")
&& strcmp (bfd_get_section_name (input_bfd,
input_section),
name + 5) == 0);
sreloc = bfd_get_section_by_name (dynobj, name);
BFD_ASSERT (sreloc != NULL);
}
skip = 0;
outrel.r_offset =
_bfd_elf_section_offset (output_bfd, info, input_section,
rel->r_offset);
if (outrel.r_offset == (bfd_vma) -1
|| outrel.r_offset == (bfd_vma) -2)
skip = (int) outrel.r_offset;
outrel.r_offset += (input_section->output_section->vma
+ input_section->output_offset);
if (skip)
memset (&outrel, 0, sizeof outrel);
become local. */
else if (h != NULL
&& ((! info->symbolic && h->dynindx != -1)
|| !h->def_regular))
{
BFD_ASSERT (h->dynindx != -1);
outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
outrel.r_addend = rel->r_addend;
}
else
{
if (r_type == R_I370_ADDR31)
{
outrel.r_info = ELF32_R_INFO (0, R_I370_RELATIVE);
outrel.r_addend = relocation + rel->r_addend;
}
else
{
long indx;
if (bfd_is_abs_section (sec))
indx = 0;
else if (sec == NULL || sec->owner == NULL)
{
bfd_set_error (bfd_error_bad_value);
return FALSE;
}
else
{
asection *osec;
against a section symbol. It would be
proper to subtract the symbol's value,
osec->vma, from the emitted reloc addend,
but ld.so expects buggy relocs. */
osec = sec->output_section;
indx = elf_section_data (osec)->dynindx;
if (indx == 0)
{
struct elf_link_hash_table *htab;
htab = elf_hash_table (info);
osec = htab->text_index_section;
indx = elf_section_data (osec)->dynindx;
}
BFD_ASSERT (indx != 0);
#ifdef DEBUG
if (indx <= 0)
{
printf ("indx=%ld section=%s flags=%08x name=%s\n",
indx, osec->name, osec->flags,
h->root.root.string);
}
#endif
}
outrel.r_info = ELF32_R_INFO (indx, r_type);
outrel.r_addend = relocation + rel->r_addend;
}
}
loc = sreloc->contents;
loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
need to do anything now, unless this is a RELATIVE
reloc in an unallocated section. */
if (skip == -1
|| (input_section->flags & SEC_ALLOC) != 0
|| ELF32_R_TYPE (outrel.r_info) != R_I370_RELATIVE)
continue;
}
break;
case (int) R_I370_COPY:
case (int) R_I370_RELATIVE:
(*_bfd_error_handler)
("%B: Relocation %s is not yet supported for symbol %s.",
input_bfd,
i370_elf_howto_table[(int) r_type]->name,
sym_name);
bfd_set_error (bfd_error_invalid_operation);
ret = FALSE;
continue;
}
#ifdef DEBUG
fprintf (stderr, "\ttype = %s (%d), name = %s, symbol index = %ld, offset = %ld, addend = %ld\n",
howto->name,
(int)r_type,
sym_name,
r_symndx,
(long) offset,
(long) addend);
#endif
r = _bfd_final_link_relocate (howto, input_bfd, input_section, contents,
offset, relocation, addend);
if (r != bfd_reloc_ok)
{
ret = FALSE;
switch (r)
{
default:
break;
case bfd_reloc_overflow:
{
const char *name;
if (h != NULL)
name = NULL;
else
{
name = bfd_elf_string_from_elf_section (input_bfd,
symtab_hdr->sh_link,
sym->st_name);
if (name == NULL)
break;
if (*name == '\0')
name = bfd_section_name (input_bfd, sec);
}
(*info->callbacks->reloc_overflow) (info,
(h ? &h->root : NULL),
name,
howto->name,
(bfd_vma) 0,
input_bfd,
input_section,
offset);
}
break;
}
}
}
#ifdef DEBUG
fprintf (stderr, "\n");
#endif
return ret;
}
#define TARGET_BIG_SYM bfd_elf32_i370_vec
#define TARGET_BIG_NAME "elf32-i370"
#define ELF_ARCH bfd_arch_i370
#define ELF_MACHINE_CODE EM_S370
#ifdef EM_I370_OLD
#define ELF_MACHINE_ALT1 EM_I370_OLD
#endif
#define ELF_MAXPAGESIZE 0x1000
#define ELF_OSABI ELFOSABI_LINUX
#define elf_info_to_howto i370_elf_info_to_howto
#define elf_backend_plt_not_loaded 1
#define elf_backend_rela_normal 1
#define bfd_elf32_bfd_reloc_type_lookup i370_elf_reloc_type_lookup
#define bfd_elf32_bfd_reloc_name_lookup i370_elf_reloc_name_lookup
#define bfd_elf32_bfd_set_private_flags i370_elf_set_private_flags
#define bfd_elf32_bfd_merge_private_bfd_data i370_elf_merge_private_bfd_data
#define elf_backend_relocate_section i370_elf_relocate_section
link glibc's ld.so without errors. */
#define elf_backend_create_dynamic_sections i370_elf_create_dynamic_sections
#define elf_backend_size_dynamic_sections i370_elf_size_dynamic_sections
#define elf_backend_init_index_section _bfd_elf_init_1_index_section
#define elf_backend_finish_dynamic_sections i370_elf_finish_dynamic_sections
#define elf_backend_fake_sections i370_elf_fake_sections
#define elf_backend_section_from_shdr i370_elf_section_from_shdr
#define elf_backend_adjust_dynamic_symbol i370_elf_adjust_dynamic_symbol
#define elf_backend_check_relocs i370_elf_check_relocs
#define elf_backend_post_process_headers _bfd_elf_set_osabi
static int
i370_noop (void)
{
return 1;
}
#define elf_backend_finish_dynamic_symbol \
(bfd_boolean (*) \
(bfd *, struct bfd_link_info *, struct elf_link_hash_entry *, \
Elf_Internal_Sym *)) i370_noop
#include "elf32-target.h"