Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
2002, 2003, 2004, 2005, 2006, 2007, 2008
Free Software Foundation, Inc.
Original code by
Center for Software Science
Department of Computer Science
University of Utah
Largely rewritten by Alan Modra <alan@linuxcare.com.au>
Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
TLS support written by Randolph Chung <tausq@debian.org>
This file is part of BFD, the Binary File Descriptor library.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
MA 02110-1301, USA. */
#include "sysdep.h"
#include "bfd.h"
#include "libbfd.h"
#include "elf-bfd.h"
#include "elf/hppa.h"
#include "libhppa.h"
#include "elf32-hppa.h"
#define ARCH_SIZE 32
#include "elf32-hppa.h"
#include "elf-hppa.h"
knowing all the intricate details of the linker, note the
following:
Functions named elf32_hppa_* are called by external routines, other
functions are only called locally. elf32_hppa_* functions appear
in this file more or less in the order in which they are called
from external routines. eg. elf32_hppa_check_relocs is called
early in the link process, elf32_hppa_finish_dynamic_sections is
one of the last functions. */
The first is the elf32_hppa_link_hash_table which is derived
from the standard ELF linker hash table. We use this as a place to
attach other hash tables and static information.
The second is the stub hash table which is derived from the
base BFD hash table. The stub hash table holds the information
necessary to build the linker stubs during a link.
There are a number of different stubs generated by the linker.
Long branch stub:
: ldil LR'X,%r1
: be,n RR'X(%sr4,%r1)
PIC long branch stub:
: b,l .+8,%r1
: addil LR'X - ($PIC_pcrel$0 - 4),%r1
: be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
Import stub to call shared library routine from normal object file
(single sub-space version)
: addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
: ldw RR'lt_ptr+ltoff(%r1),%r21
: bv %r0(%r21)
: ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
Import stub to call shared library routine from shared library
(single sub-space version)
: addil LR'ltoff,%r19 ; get procedure entry point
: ldw RR'ltoff(%r1),%r21
: bv %r0(%r21)
: ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
Import stub to call shared library routine from normal object file
(multiple sub-space support)
: addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
: ldw RR'lt_ptr+ltoff(%r1),%r21
: ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
: ldsid (%r21),%r1
: mtsp %r1,%sr0
: be 0(%sr0,%r21) ; branch to target
: stw %rp,-24(%sp) ; save rp
Import stub to call shared library routine from shared library
(multiple sub-space support)
: addil LR'ltoff,%r19 ; get procedure entry point
: ldw RR'ltoff(%r1),%r21
: ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
: ldsid (%r21),%r1
: mtsp %r1,%sr0
: be 0(%sr0,%r21) ; branch to target
: stw %rp,-24(%sp) ; save rp
Export stub to return from shared lib routine (multiple sub-space support)
One of these is created for each exported procedure in a shared
library (and stored in the shared lib). Shared lib routines are
called via the first instruction in the export stub so that we can
do an inter-space return. Not required for single sub-space.
: bl,n X,%rp ; trap the return
: nop
: ldw -24(%sp),%rp ; restore the original rp
: ldsid (%rp),%r1
: mtsp %r1,%sr0
: be,n 0(%sr0,%rp) ; inter-space return. */
Please follow this (Apps Hungarian) style:
Structure/Variable Prefix
elf_link_hash_table "etab"
elf_link_hash_entry "eh"
elf32_hppa_link_hash_table "htab"
elf32_hppa_link_hash_entry "hh"
bfd_hash_table "btab"
bfd_hash_entry "bh"
bfd_hash_table containing stubs "bstab"
elf32_hppa_stub_hash_entry "hsh"
elf32_hppa_dyn_reloc_entry "hdh"
Always remember to use GNU Coding Style. */
#define PLT_ENTRY_SIZE 8
#define GOT_ENTRY_SIZE 4
#define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
static const bfd_byte plt_stub[] =
{
0x0e, 0x80, 0x10, 0x96,
0xea, 0xc0, 0xc0, 0x00,
0x0e, 0x88, 0x10, 0x95,
#define PLT_STUB_ENTRY (3*4)
0xea, 0x9f, 0x1f, 0xdd,
0xd6, 0x80, 0x1c, 0x1e,
0x00, 0xc0, 0xff, 0xee,
0xde, 0xad, 0xbe, 0xef
};
string. */
#define STUB_SUFFIX ".stub"
into a shared object's dynamic section. All the relocs of the
limited class we are interested in, are absolute. */
#ifndef RELATIVE_DYNRELOCS
#define RELATIVE_DYNRELOCS 0
#define IS_ABSOLUTE_RELOC(r_type) 1
#endif
copying dynamic variables from a shared lib into an app's dynbss
section, and instead use a dynamic relocation to point into the
shared lib. */
#define ELIMINATE_COPY_RELOCS 1
enum elf32_hppa_stub_type
{
hppa_stub_long_branch,
hppa_stub_long_branch_shared,
hppa_stub_import,
hppa_stub_import_shared,
hppa_stub_export,
hppa_stub_none
};
struct elf32_hppa_stub_hash_entry
{
struct bfd_hash_entry bh_root;
asection *stub_sec;
bfd_vma stub_offset;
value when building the stubs (so the stub knows where to jump. */
bfd_vma target_value;
asection *target_section;
enum elf32_hppa_stub_type stub_type;
struct elf32_hppa_link_hash_entry *hh;
stub sections, the first input section in the group. */
asection *id_sec;
};
struct elf32_hppa_link_hash_entry
{
struct elf_link_hash_entry eh;
symbol. */
struct elf32_hppa_stub_hash_entry *hsh_cache;
sections. */
struct elf32_hppa_dyn_reloc_entry
{
struct elf32_hppa_dyn_reloc_entry *hdh_next;
asection *sec;
bfd_size_type count;
#if RELATIVE_DYNRELOCS
bfd_size_type relative_count;
#endif
} *dyn_relocs;
enum
{
GOT_UNKNOWN = 0, GOT_NORMAL = 1, GOT_TLS_GD = 2, GOT_TLS_LDM = 4, GOT_TLS_IE = 8
} tls_type;
unsigned int plabel:1;
};
struct elf32_hppa_link_hash_table
{
struct elf_link_hash_table etab;
struct bfd_hash_table bstab;
bfd *stub_bfd;
asection * (*add_stub_section) (const char *, asection *);
void (*layout_sections_again) (void);
information on stub grouping. */
struct map_stub
{
attached. */
asection *link_sec;
asection *stub_sec;
} *stub_group;
unsigned int bfd_count;
int top_index;
asection **input_list;
Elf_Internal_Sym **all_local_syms;
asection *sgot;
asection *srelgot;
asection *splt;
asection *srelplt;
asection *sdynbss;
asection *srelbss;
segments so that we can perform SEGREL relocations. */
bfd_vma text_segment_base;
bfd_vma data_segment_base;
unsigned int multi_subspace:1;
select suitable defaults for the stub group size. */
unsigned int has_12bit_branch:1;
unsigned int has_17bit_branch:1;
unsigned int has_22bit_branch:1;
unsigned int need_plt_stub:1;
struct sym_sec_cache sym_sec;
union
{
bfd_signed_vma refcount;
bfd_vma offset;
} tls_ldm_got;
};
#define hppa_link_hash_table(p) \
((struct elf32_hppa_link_hash_table *) ((p)->hash))
#define hppa_elf_hash_entry(ent) \
((struct elf32_hppa_link_hash_entry *)(ent))
#define hppa_stub_hash_entry(ent) \
((struct elf32_hppa_stub_hash_entry *)(ent))
#define hppa_stub_hash_lookup(table, string, create, copy) \
((struct elf32_hppa_stub_hash_entry *) \
bfd_hash_lookup ((table), (string), (create), (copy)))
#define hppa_elf_local_got_tls_type(abfd) \
((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
#define hh_name(hh) \
(hh ? hh->eh.root.root.string : "<undef>")
#define eh_name(eh) \
(eh ? eh->root.root.string : "<undef>")
static bfd_boolean
elf32_hppa_mkobject (bfd *abfd)
{
return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
HPPA_ELF_TDATA);
}
static struct bfd_hash_entry *
stub_hash_newfunc (struct bfd_hash_entry *entry,
struct bfd_hash_table *table,
const char *string)
{
subclass. */
if (entry == NULL)
{
entry = bfd_hash_allocate (table,
sizeof (struct elf32_hppa_stub_hash_entry));
if (entry == NULL)
return entry;
}
entry = bfd_hash_newfunc (entry, table, string);
if (entry != NULL)
{
struct elf32_hppa_stub_hash_entry *hsh;
hsh = hppa_stub_hash_entry (entry);
hsh->stub_sec = NULL;
hsh->stub_offset = 0;
hsh->target_value = 0;
hsh->target_section = NULL;
hsh->stub_type = hppa_stub_long_branch;
hsh->hh = NULL;
hsh->id_sec = NULL;
}
return entry;
}
static struct bfd_hash_entry *
hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
struct bfd_hash_table *table,
const char *string)
{
subclass. */
if (entry == NULL)
{
entry = bfd_hash_allocate (table,
sizeof (struct elf32_hppa_link_hash_entry));
if (entry == NULL)
return entry;
}
entry = _bfd_elf_link_hash_newfunc (entry, table, string);
if (entry != NULL)
{
struct elf32_hppa_link_hash_entry *hh;
hh = hppa_elf_hash_entry (entry);
hh->hsh_cache = NULL;
hh->dyn_relocs = NULL;
hh->plabel = 0;
hh->tls_type = GOT_UNKNOWN;
}
return entry;
}
hash table to keep information specific to the PA ELF linker (without
using static variables). */
static struct bfd_link_hash_table *
elf32_hppa_link_hash_table_create (bfd *abfd)
{
struct elf32_hppa_link_hash_table *htab;
bfd_size_type amt = sizeof (*htab);
htab = bfd_malloc (amt);
if (htab == NULL)
return NULL;
if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
sizeof (struct elf32_hppa_link_hash_entry)))
{
free (htab);
return NULL;
}
if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
sizeof (struct elf32_hppa_stub_hash_entry)))
return NULL;
htab->stub_bfd = NULL;
htab->add_stub_section = NULL;
htab->layout_sections_again = NULL;
htab->stub_group = NULL;
htab->sgot = NULL;
htab->srelgot = NULL;
htab->splt = NULL;
htab->srelplt = NULL;
htab->sdynbss = NULL;
htab->srelbss = NULL;
htab->text_segment_base = (bfd_vma) -1;
htab->data_segment_base = (bfd_vma) -1;
htab->multi_subspace = 0;
htab->has_12bit_branch = 0;
htab->has_17bit_branch = 0;
htab->has_22bit_branch = 0;
htab->need_plt_stub = 0;
htab->sym_sec.abfd = NULL;
htab->tls_ldm_got.refcount = 0;
return &htab->etab.root;
}
static void
elf32_hppa_link_hash_table_free (struct bfd_link_hash_table *btab)
{
struct elf32_hppa_link_hash_table *htab
= (struct elf32_hppa_link_hash_table *) btab;
bfd_hash_table_free (&htab->bstab);
_bfd_generic_link_hash_table_free (btab);
}
static char *
hppa_stub_name (const asection *input_section,
const asection *sym_sec,
const struct elf32_hppa_link_hash_entry *hh,
const Elf_Internal_Rela *rela)
{
char *stub_name;
bfd_size_type len;
if (hh)
{
len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1;
stub_name = bfd_malloc (len);
if (stub_name != NULL)
sprintf (stub_name, "%08x_%s+%x",
input_section->id & 0xffffffff,
hh_name (hh),
(int) rela->r_addend & 0xffffffff);
}
else
{
len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
stub_name = bfd_malloc (len);
if (stub_name != NULL)
sprintf (stub_name, "%08x_%x:%x+%x",
input_section->id & 0xffffffff,
sym_sec->id & 0xffffffff,
(int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
(int) rela->r_addend & 0xffffffff);
}
return stub_name;
}
creating the stub name takes a bit of time. */
static struct elf32_hppa_stub_hash_entry *
hppa_get_stub_entry (const asection *input_section,
const asection *sym_sec,
struct elf32_hppa_link_hash_entry *hh,
const Elf_Internal_Rela *rela,
struct elf32_hppa_link_hash_table *htab)
{
struct elf32_hppa_stub_hash_entry *hsh_entry;
const asection *id_sec;
stub section, then use the id of the first section in the group.
Stub names need to include a section id, as there may well be
more than one stub used to reach say, printf, and we need to
distinguish between them. */
id_sec = htab->stub_group[input_section->id].link_sec;
if (hh != NULL && hh->hsh_cache != NULL
&& hh->hsh_cache->hh == hh
&& hh->hsh_cache->id_sec == id_sec)
{
hsh_entry = hh->hsh_cache;
}
else
{
char *stub_name;
stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
if (stub_name == NULL)
return NULL;
hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
stub_name, FALSE, FALSE);
if (hh != NULL)
hh->hsh_cache = hsh_entry;
free (stub_name);
}
return hsh_entry;
}
stub entry are initialised. */
static struct elf32_hppa_stub_hash_entry *
hppa_add_stub (const char *stub_name,
asection *section,
struct elf32_hppa_link_hash_table *htab)
{
asection *link_sec;
asection *stub_sec;
struct elf32_hppa_stub_hash_entry *hsh;
link_sec = htab->stub_group[section->id].link_sec;
stub_sec = htab->stub_group[section->id].stub_sec;
if (stub_sec == NULL)
{
stub_sec = htab->stub_group[link_sec->id].stub_sec;
if (stub_sec == NULL)
{
size_t namelen;
bfd_size_type len;
char *s_name;
namelen = strlen (link_sec->name);
len = namelen + sizeof (STUB_SUFFIX);
s_name = bfd_alloc (htab->stub_bfd, len);
if (s_name == NULL)
return NULL;
memcpy (s_name, link_sec->name, namelen);
memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
stub_sec = (*htab->add_stub_section) (s_name, link_sec);
if (stub_sec == NULL)
return NULL;
htab->stub_group[link_sec->id].stub_sec = stub_sec;
}
htab->stub_group[section->id].stub_sec = stub_sec;
}
hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
TRUE, FALSE);
if (hsh == NULL)
{
(*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
section->owner,
stub_name);
return NULL;
}
hsh->stub_sec = stub_sec;
hsh->stub_offset = 0;
hsh->id_sec = link_sec;
return hsh;
}
static enum elf32_hppa_stub_type
hppa_type_of_stub (asection *input_sec,
const Elf_Internal_Rela *rela,
struct elf32_hppa_link_hash_entry *hh,
bfd_vma destination,
struct bfd_link_info *info)
{
bfd_vma location;
bfd_vma branch_offset;
bfd_vma max_branch_offset;
unsigned int r_type;
if (hh != NULL
&& hh->eh.plt.offset != (bfd_vma) -1
&& hh->eh.dynindx != -1
&& !hh->plabel
&& (info->shared
|| !hh->eh.def_regular
|| hh->eh.root.type == bfd_link_hash_defweak))
{
and hppa_stub_import_shared later. */
return hppa_stub_import;
}
location = (input_sec->output_offset
+ input_sec->output_section->vma
+ rela->r_offset);
branch_offset = destination - location - 8;
r_type = ELF32_R_TYPE (rela->r_info);
are relative to the second instruction past the branch, ie. +8
bytes on from the branch instruction location. The offset is
signed and counts in units of 4 bytes. */
if (r_type == (unsigned int) R_PARISC_PCREL17F)
max_branch_offset = (1 << (17 - 1)) << 2;
else if (r_type == (unsigned int) R_PARISC_PCREL12F)
max_branch_offset = (1 << (12 - 1)) << 2;
else
max_branch_offset = (1 << (22 - 1)) << 2;
if (branch_offset + max_branch_offset >= 2*max_branch_offset)
return hppa_stub_long_branch;
return hppa_stub_none;
}
IN_ARG contains the link info pointer. */
#define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
#define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
#define BL_R1 0xe8200000 /* b,l .+8,%r1 */
#define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
#define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
#define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
#define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
#define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
#define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
#define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
#define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
#define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
#define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
#define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
#define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
#define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
#define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
#define NOP 0x08000240 /* nop */
#define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
#define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
#define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
#ifndef R19_STUBS
#define R19_STUBS 1
#endif
#if R19_STUBS
#define LDW_R1_DLT LDW_R1_R19
#else
#define LDW_R1_DLT LDW_R1_DP
#endif
static bfd_boolean
hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
{
struct elf32_hppa_stub_hash_entry *hsh;
struct bfd_link_info *info;
struct elf32_hppa_link_hash_table *htab;
asection *stub_sec;
bfd *stub_bfd;
bfd_byte *loc;
bfd_vma sym_value;
bfd_vma insn;
bfd_vma off;
int val;
int size;
hsh = hppa_stub_hash_entry (bh);
info = (struct bfd_link_info *)in_arg;
htab = hppa_link_hash_table (info);
stub_sec = hsh->stub_sec;
hsh->stub_offset = stub_sec->size;
loc = stub_sec->contents + hsh->stub_offset;
stub_bfd = stub_sec->owner;
switch (hsh->stub_type)
{
case hppa_stub_long_branch:
loading the upper bits of the target address into a register,
then branching with "be" which adds in the lower bits.
The "be" has its delay slot nullified. */
sym_value = (hsh->target_value
+ hsh->target_section->output_offset
+ hsh->target_section->output_section->vma);
val = hppa_field_adjust (sym_value, 0, e_lrsel);
insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
bfd_put_32 (stub_bfd, insn, loc);
val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
bfd_put_32 (stub_bfd, insn, loc + 4);
size = 8;
break;
case hppa_stub_long_branch_shared:
sym_value = (hsh->target_value
+ hsh->target_section->output_offset
+ hsh->target_section->output_section->vma);
sym_value -= (hsh->stub_offset
+ stub_sec->output_offset
+ stub_sec->output_section->vma);
bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
bfd_put_32 (stub_bfd, insn, loc + 4);
val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
bfd_put_32 (stub_bfd, insn, loc + 8);
size = 12;
break;
case hppa_stub_import:
case hppa_stub_import_shared:
off = hsh->hh->eh.plt.offset;
if (off >= (bfd_vma) -2)
abort ();
off &= ~ (bfd_vma) 1;
sym_value = (off
+ htab->splt->output_offset
+ htab->splt->output_section->vma
- elf_gp (htab->splt->output_section->owner));
insn = ADDIL_DP;
#if R19_STUBS
if (hsh->stub_type == hppa_stub_import_shared)
insn = ADDIL_R19;
#endif
val = hppa_field_adjust (sym_value, 0, e_lrsel),
insn = hppa_rebuild_insn ((int) insn, val, 21);
bfd_put_32 (stub_bfd, insn, loc);
two different offsets (+0 and +4) from sym_value. If we use
lsel/rsel then with unfortunate sym_values we will round
sym_value+4 up to the next 2k block leading to a mis-match
between the lsel and rsel value. */
val = hppa_field_adjust (sym_value, 0, e_rrsel);
insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
bfd_put_32 (stub_bfd, insn, loc + 4);
if (htab->multi_subspace)
{
val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
bfd_put_32 (stub_bfd, insn, loc + 8);
bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
size = 28;
}
else
{
bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
bfd_put_32 (stub_bfd, insn, loc + 12);
size = 16;
}
break;
case hppa_stub_export:
sym_value = (hsh->target_value
+ hsh->target_section->output_offset
+ hsh->target_section->output_section->vma);
sym_value -= (hsh->stub_offset
+ stub_sec->output_offset
+ stub_sec->output_section->vma);
if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
&& (!htab->has_22bit_branch
|| sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
{
(*_bfd_error_handler)
(_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
hsh->target_section->owner,
stub_sec,
(long) hsh->stub_offset,
hsh->bh_root.string);
bfd_set_error (bfd_error_bad_value);
return FALSE;
}
val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
if (!htab->has_22bit_branch)
insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
else
insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
bfd_put_32 (stub_bfd, insn, loc);
bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
hsh->hh->eh.root.u.def.section = stub_sec;
hsh->hh->eh.root.u.def.value = stub_sec->size;
size = 24;
break;
default:
BFD_FAIL ();
return FALSE;
}
stub_sec->size += size;
return TRUE;
}
#undef LDIL_R1
#undef BE_SR4_R1
#undef BL_R1
#undef ADDIL_R1
#undef DEPI_R1
#undef LDW_R1_R21
#undef LDW_R1_DLT
#undef LDW_R1_R19
#undef ADDIL_R19
#undef LDW_R1_DP
#undef LDSID_R21_R1
#undef MTSP_R1
#undef BE_SR0_R21
#undef STW_RP
#undef BV_R0_R21
#undef BL_RP
#undef NOP
#undef LDW_RP
#undef LDSID_RP_R1
#undef BE_SR0_RP
we know stub section sizes. */
static bfd_boolean
hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
{
struct elf32_hppa_stub_hash_entry *hsh;
struct elf32_hppa_link_hash_table *htab;
int size;
hsh = hppa_stub_hash_entry (bh);
htab = in_arg;
if (hsh->stub_type == hppa_stub_long_branch)
size = 8;
else if (hsh->stub_type == hppa_stub_long_branch_shared)
size = 12;
else if (hsh->stub_type == hppa_stub_export)
size = 24;
else
{
if (htab->multi_subspace)
size = 28;
else
size = 16;
}
hsh->stub_sec->size += size;
return TRUE;
}
Additionally we set the default architecture and machine. */
static bfd_boolean
elf32_hppa_object_p (bfd *abfd)
{
Elf_Internal_Ehdr * i_ehdrp;
unsigned int flags;
i_ehdrp = elf_elfheader (abfd);
if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
{
but the kernel produces corefiles with OSABI=SysV. */
if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX &&
i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE)
return FALSE;
}
else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
{
but the kernel produces corefiles with OSABI=SysV. */
if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE)
return FALSE;
}
else
{
if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
return FALSE;
}
flags = i_ehdrp->e_flags;
switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
{
case EFA_PARISC_1_0:
return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
case EFA_PARISC_1_1:
return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
case EFA_PARISC_2_0:
return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
case EFA_PARISC_2_0 | EF_PARISC_WIDE:
return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
}
return TRUE;
}
short-cuts to various dynamic sections. */
static bfd_boolean
elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
{
struct elf32_hppa_link_hash_table *htab;
struct elf_link_hash_entry *eh;
htab = hppa_link_hash_table (info);
if (htab->splt != NULL)
return TRUE;
if (! _bfd_elf_create_dynamic_sections (abfd, info))
return FALSE;
htab->splt = bfd_get_section_by_name (abfd, ".plt");
htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
htab->sgot = bfd_get_section_by_name (abfd, ".got");
htab->srelgot = bfd_make_section_with_flags (abfd, ".rela.got",
(SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
| SEC_LINKER_CREATED
| SEC_READONLY));
if (htab->srelgot == NULL
|| ! bfd_set_section_alignment (abfd, htab->srelgot, 2))
return FALSE;
htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
application, because __canonicalize_funcptr_for_compare needs it. */
eh = elf_hash_table (info)->hgot;
eh->forced_local = 0;
eh->other = STV_DEFAULT;
return bfd_elf_link_record_dynamic_symbol (info, eh);
}
static void
elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
struct elf_link_hash_entry *eh_dir,
struct elf_link_hash_entry *eh_ind)
{
struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
hh_dir = hppa_elf_hash_entry (eh_dir);
hh_ind = hppa_elf_hash_entry (eh_ind);
if (hh_ind->dyn_relocs != NULL)
{
if (hh_dir->dyn_relocs != NULL)
{
struct elf32_hppa_dyn_reloc_entry **hdh_pp;
struct elf32_hppa_dyn_reloc_entry *hdh_p;
list. Merge any entries against the same section. */
for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
{
struct elf32_hppa_dyn_reloc_entry *hdh_q;
for (hdh_q = hh_dir->dyn_relocs;
hdh_q != NULL;
hdh_q = hdh_q->hdh_next)
if (hdh_q->sec == hdh_p->sec)
{
#if RELATIVE_DYNRELOCS
hdh_q->relative_count += hdh_p->relative_count;
#endif
hdh_q->count += hdh_p->count;
*hdh_pp = hdh_p->hdh_next;
break;
}
if (hdh_q == NULL)
hdh_pp = &hdh_p->hdh_next;
}
*hdh_pp = hh_dir->dyn_relocs;
}
hh_dir->dyn_relocs = hh_ind->dyn_relocs;
hh_ind->dyn_relocs = NULL;
}
if (ELIMINATE_COPY_RELOCS
&& eh_ind->root.type != bfd_link_hash_indirect
&& eh_dir->dynamic_adjusted)
{
of elf_adjust_dynamic_symbol, don't copy non_got_ref.
We clear it ourselves for ELIMINATE_COPY_RELOCS. */
eh_dir->ref_dynamic |= eh_ind->ref_dynamic;
eh_dir->ref_regular |= eh_ind->ref_regular;
eh_dir->ref_regular_nonweak |= eh_ind->ref_regular_nonweak;
eh_dir->needs_plt |= eh_ind->needs_plt;
}
else
{
if (eh_ind->root.type == bfd_link_hash_indirect
&& eh_dir->got.refcount <= 0)
{
hh_dir->tls_type = hh_ind->tls_type;
hh_ind->tls_type = GOT_UNKNOWN;
}
_bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
}
}
static int
elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED,
int r_type, int is_local ATTRIBUTE_UNUSED)
{
return r_type;
}
calculate needed space in the global offset table, procedure linkage
table, and dynamic reloc sections. At this point we haven't
necessarily read all the input files. */
static bfd_boolean
elf32_hppa_check_relocs (bfd *abfd,
struct bfd_link_info *info,
asection *sec,
const Elf_Internal_Rela *relocs)
{
Elf_Internal_Shdr *symtab_hdr;
struct elf_link_hash_entry **eh_syms;
const Elf_Internal_Rela *rela;
const Elf_Internal_Rela *rela_end;
struct elf32_hppa_link_hash_table *htab;
asection *sreloc;
asection *stubreloc;
int tls_type = GOT_UNKNOWN, old_tls_type = GOT_UNKNOWN;
if (info->relocatable)
return TRUE;
htab = hppa_link_hash_table (info);
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
eh_syms = elf_sym_hashes (abfd);
sreloc = NULL;
stubreloc = NULL;
rela_end = relocs + sec->reloc_count;
for (rela = relocs; rela < rela_end; rela++)
{
enum {
NEED_GOT = 1,
NEED_PLT = 2,
NEED_DYNREL = 4,
PLT_PLABEL = 8
};
unsigned int r_symndx, r_type;
struct elf32_hppa_link_hash_entry *hh;
int need_entry = 0;
r_symndx = ELF32_R_SYM (rela->r_info);
if (r_symndx < symtab_hdr->sh_info)
hh = NULL;
else
{
hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
while (hh->eh.root.type == bfd_link_hash_indirect
|| hh->eh.root.type == bfd_link_hash_warning)
hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
}
r_type = ELF32_R_TYPE (rela->r_info);
r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL);
switch (r_type)
{
case R_PARISC_DLTIND14F:
case R_PARISC_DLTIND14R:
case R_PARISC_DLTIND21L:
need_entry = NEED_GOT;
break;
case R_PARISC_PLABEL14R:
case R_PARISC_PLABEL21L:
case R_PARISC_PLABEL32:
if (rela->r_addend != 0)
abort ();
create a PLT entry for all PLABELs, because PLABELs with
local symbols may be passed via a pointer to another
object. Additionally, output a dynamic relocation
pointing to the PLT entry.
For executables, the original 32-bit ABI allowed two
different styles of PLABELs (function pointers): For
global functions, the PLABEL word points into the .plt
two bytes past a (function address, gp) pair, and for
local functions the PLABEL points directly at the
function. The magic +2 for the first type allows us to
differentiate between the two. As you can imagine, this
is a real pain when it comes to generating code to call
functions indirectly or to compare function pointers.
We avoid the mess by always pointing a PLABEL into the
.plt, even for local functions. */
need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
break;
case R_PARISC_PCREL12F:
htab->has_12bit_branch = 1;
goto branch_common;
case R_PARISC_PCREL17C:
case R_PARISC_PCREL17F:
htab->has_17bit_branch = 1;
goto branch_common;
case R_PARISC_PCREL22F:
htab->has_22bit_branch = 1;
branch_common:
might require long branch stubs. */
if (hh == NULL)
{
they need a long branch stub we can't guarantee that
we can reach the stub. So just flag an error later
if we're doing a shared link and find we need a long
branch stub. */
continue;
}
else
{
global, and in most cases won't need a long branch
stub. Unfortunately, we have to cater for the case
where a symbol is forced local by versioning, or due
to symbolic linking, and we lose the .plt entry. */
need_entry = NEED_PLT;
if (hh->eh.type == STT_PARISC_MILLI)
need_entry = 0;
}
break;
case R_PARISC_SEGBASE:
case R_PARISC_SEGREL32:
case R_PARISC_PCREL14F:
case R_PARISC_PCREL14R:
case R_PARISC_PCREL17R:
case R_PARISC_PCREL21L:
case R_PARISC_PCREL32:
shared object since these are section relative. */
continue;
case R_PARISC_DPREL14F:
case R_PARISC_DPREL14R:
case R_PARISC_DPREL21L:
if (info->shared)
{
(*_bfd_error_handler)
(_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
abfd,
elf_hppa_howto_table[r_type].name);
bfd_set_error (bfd_error_bad_value);
return FALSE;
}
case R_PARISC_DIR17F:
case R_PARISC_DIR17R:
case R_PARISC_DIR14F:
case R_PARISC_DIR14R:
case R_PARISC_DIR21L:
case R_PARISC_DIR32:
need_entry = NEED_DYNREL;
break;
Reconstruct it for later use during GC. */
case R_PARISC_GNU_VTINHERIT:
if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
return FALSE;
continue;
used. Record for later use during GC. */
case R_PARISC_GNU_VTENTRY:
BFD_ASSERT (hh != NULL);
if (hh != NULL
&& !bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
return FALSE;
continue;
case R_PARISC_TLS_GD21L:
case R_PARISC_TLS_GD14R:
case R_PARISC_TLS_LDM21L:
case R_PARISC_TLS_LDM14R:
need_entry = NEED_GOT;
break;
case R_PARISC_TLS_IE21L:
case R_PARISC_TLS_IE14R:
if (info->shared)
info->flags |= DF_STATIC_TLS;
need_entry = NEED_GOT;
break;
default:
continue;
}
if (need_entry & NEED_GOT)
{
switch (r_type)
{
default:
tls_type = GOT_NORMAL;
break;
case R_PARISC_TLS_GD21L:
case R_PARISC_TLS_GD14R:
tls_type |= GOT_TLS_GD;
break;
case R_PARISC_TLS_LDM21L:
case R_PARISC_TLS_LDM14R:
tls_type |= GOT_TLS_LDM;
break;
case R_PARISC_TLS_IE21L:
case R_PARISC_TLS_IE14R:
tls_type |= GOT_TLS_IE;
break;
}
relocation for this entry. */
if (htab->sgot == NULL)
{
if (htab->etab.dynobj == NULL)
htab->etab.dynobj = abfd;
if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
return FALSE;
}
if (r_type == R_PARISC_TLS_LDM21L
|| r_type == R_PARISC_TLS_LDM14R)
hppa_link_hash_table (info)->tls_ldm_got.refcount += 1;
else
{
if (hh != NULL)
{
hh->eh.got.refcount += 1;
old_tls_type = hh->tls_type;
}
else
{
bfd_signed_vma *local_got_refcounts;
local_got_refcounts = elf_local_got_refcounts (abfd);
if (local_got_refcounts == NULL)
{
bfd_size_type size;
plt offsets. Done this way to save polluting
elf_obj_tdata with another target specific
pointer. */
size = symtab_hdr->sh_info;
size *= 2 * sizeof (bfd_signed_vma);
size += symtab_hdr->sh_info;
local_got_refcounts = bfd_zalloc (abfd, size);
if (local_got_refcounts == NULL)
return FALSE;
elf_local_got_refcounts (abfd) = local_got_refcounts;
memset (hppa_elf_local_got_tls_type (abfd),
GOT_UNKNOWN, symtab_hdr->sh_info);
}
local_got_refcounts[r_symndx] += 1;
old_tls_type = hppa_elf_local_got_tls_type (abfd) [r_symndx];
}
tls_type |= old_tls_type;
if (old_tls_type != tls_type)
{
if (hh != NULL)
hh->tls_type = tls_type;
else
hppa_elf_local_got_tls_type (abfd) [r_symndx] = tls_type;
}
}
}
if (need_entry & NEED_PLT)
{
against a weak symbol or a global symbol in a dynamic
object, then we will be creating an import stub and a
.plt entry for the symbol. Similarly, on a normal link
to symbols defined in a dynamic object we'll need the
import stub and a .plt entry. We don't know yet whether
the symbol is defined or not, so make an entry anyway and
clean up later in adjust_dynamic_symbol. */
if ((sec->flags & SEC_ALLOC) != 0)
{
if (hh != NULL)
{
hh->eh.needs_plt = 1;
hh->eh.plt.refcount += 1;
that adjust_dynamic_symbol will keep the entry
even if it appears to be local. */
if (need_entry & PLT_PLABEL)
hh->plabel = 1;
}
else if (need_entry & PLT_PLABEL)
{
bfd_signed_vma *local_got_refcounts;
bfd_signed_vma *local_plt_refcounts;
local_got_refcounts = elf_local_got_refcounts (abfd);
if (local_got_refcounts == NULL)
{
bfd_size_type size;
plt offsets. */
size = symtab_hdr->sh_info;
size *= 2 * sizeof (bfd_signed_vma);
size += symtab_hdr->sh_info;
local_got_refcounts = bfd_zalloc (abfd, size);
if (local_got_refcounts == NULL)
return FALSE;
elf_local_got_refcounts (abfd) = local_got_refcounts;
}
local_plt_refcounts = (local_got_refcounts
+ symtab_hdr->sh_info);
local_plt_refcounts[r_symndx] += 1;
}
}
}
if (need_entry & NEED_DYNREL)
{
so that we generate copy relocs if it turns out to be
dynamic. */
if (hh != NULL && !info->shared)
hh->eh.non_got_ref = 1;
the reloc into the shared library. However, if we are
linking with -Bsymbolic, we need only copy absolute
relocs or relocs against symbols that are not defined in
an object we are including in the link. PC- or DP- or
DLT-relative relocs against any local sym or global sym
with DEF_REGULAR set, can be discarded. At this point we
have not seen all the input files, so it is possible that
DEF_REGULAR is not set now but will be set later (it is
never cleared). We account for that possibility below by
storing information in the dyn_relocs field of the
hash table entry.
A similar situation to the -Bsymbolic case occurs when
creating shared libraries and symbol visibility changes
render the symbol local.
As it turns out, all the relocs we will be creating here
are absolute, so we cannot remove them on -Bsymbolic
links or visibility changes anyway. A STUB_REL reloc
is absolute too, as in that case it is the reloc in the
stub we will be creating, rather than copying the PCREL
reloc in the branch.
If on the other hand, we are creating an executable, we
may need to keep relocations for symbols satisfied by a
dynamic library if we manage to avoid copy relocs for the
symbol. */
if ((info->shared
&& (sec->flags & SEC_ALLOC) != 0
&& (IS_ABSOLUTE_RELOC (r_type)
|| (hh != NULL
&& (!info->symbolic
|| hh->eh.root.type == bfd_link_hash_defweak
|| !hh->eh.def_regular))))
|| (ELIMINATE_COPY_RELOCS
&& !info->shared
&& (sec->flags & SEC_ALLOC) != 0
&& hh != NULL
&& (hh->eh.root.type == bfd_link_hash_defweak
|| !hh->eh.def_regular)))
{
struct elf32_hppa_dyn_reloc_entry *hdh_p;
struct elf32_hppa_dyn_reloc_entry **hdh_head;
this reloc. */
if (sreloc == NULL)
{
char *name;
bfd *dynobj;
name = (bfd_elf_string_from_elf_section
(abfd,
elf_elfheader (abfd)->e_shstrndx,
elf_section_data (sec)->rel_hdr.sh_name));
if (name == NULL)
{
(*_bfd_error_handler)
(_("Could not find relocation section for %s"),
sec->name);
bfd_set_error (bfd_error_bad_value);
return FALSE;
}
if (htab->etab.dynobj == NULL)
htab->etab.dynobj = abfd;
dynobj = htab->etab.dynobj;
sreloc = bfd_get_section_by_name (dynobj, name);
if (sreloc == NULL)
{
flagword flags;
flags = (SEC_HAS_CONTENTS | SEC_READONLY
| SEC_IN_MEMORY | SEC_LINKER_CREATED);
if ((sec->flags & SEC_ALLOC) != 0)
flags |= SEC_ALLOC | SEC_LOAD;
sreloc = bfd_make_section_with_flags (dynobj,
name,
flags);
if (sreloc == NULL
|| !bfd_set_section_alignment (dynobj, sreloc, 2))
return FALSE;
}
elf_section_data (sec)->sreloc = sreloc;
}
relocations we need for this symbol. */
if (hh != NULL)
{
hdh_head = &hh->dyn_relocs;
}
else
{
We really need local syms available to do this
easily. Oh well. */
asection *sr;
void *vpp;
sr = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
sec, r_symndx);
if (sr == NULL)
return FALSE;
vpp = &elf_section_data (sr)->local_dynrel;
hdh_head = (struct elf32_hppa_dyn_reloc_entry **) vpp;
}
hdh_p = *hdh_head;
if (hdh_p == NULL || hdh_p->sec != sec)
{
hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
if (hdh_p == NULL)
return FALSE;
hdh_p->hdh_next = *hdh_head;
*hdh_head = hdh_p;
hdh_p->sec = sec;
hdh_p->count = 0;
#if RELATIVE_DYNRELOCS
hdh_p->relative_count = 0;
#endif
}
hdh_p->count += 1;
#if RELATIVE_DYNRELOCS
if (!IS_ABSOLUTE_RELOC (rtype))
hdh_p->relative_count += 1;
#endif
}
}
}
return TRUE;
}
for a given relocation. */
static asection *
elf32_hppa_gc_mark_hook (asection *sec,
struct bfd_link_info *info,
Elf_Internal_Rela *rela,
struct elf_link_hash_entry *hh,
Elf_Internal_Sym *sym)
{
if (hh != NULL)
switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
{
case R_PARISC_GNU_VTINHERIT:
case R_PARISC_GNU_VTENTRY:
return NULL;
}
return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym);
}
removed. */
static bfd_boolean
elf32_hppa_gc_sweep_hook (bfd *abfd,
struct bfd_link_info *info ATTRIBUTE_UNUSED,
asection *sec,
const Elf_Internal_Rela *relocs)
{
Elf_Internal_Shdr *symtab_hdr;
struct elf_link_hash_entry **eh_syms;
bfd_signed_vma *local_got_refcounts;
bfd_signed_vma *local_plt_refcounts;
const Elf_Internal_Rela *rela, *relend;
if (info->relocatable)
return TRUE;
elf_section_data (sec)->local_dynrel = NULL;
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
eh_syms = elf_sym_hashes (abfd);
local_got_refcounts = elf_local_got_refcounts (abfd);
local_plt_refcounts = local_got_refcounts;
if (local_plt_refcounts != NULL)
local_plt_refcounts += symtab_hdr->sh_info;
relend = relocs + sec->reloc_count;
for (rela = relocs; rela < relend; rela++)
{
unsigned long r_symndx;
unsigned int r_type;
struct elf_link_hash_entry *eh = NULL;
r_symndx = ELF32_R_SYM (rela->r_info);
if (r_symndx >= symtab_hdr->sh_info)
{
struct elf32_hppa_link_hash_entry *hh;
struct elf32_hppa_dyn_reloc_entry **hdh_pp;
struct elf32_hppa_dyn_reloc_entry *hdh_p;
eh = eh_syms[r_symndx - symtab_hdr->sh_info];
while (eh->root.type == bfd_link_hash_indirect
|| eh->root.type == bfd_link_hash_warning)
eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
hh = hppa_elf_hash_entry (eh);
for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; hdh_pp = &hdh_p->hdh_next)
if (hdh_p->sec == sec)
{
*hdh_pp = hdh_p->hdh_next;
break;
}
}
r_type = ELF32_R_TYPE (rela->r_info);
r_type = elf32_hppa_optimized_tls_reloc (info, r_type, eh != NULL);
switch (r_type)
{
case R_PARISC_DLTIND14F:
case R_PARISC_DLTIND14R:
case R_PARISC_DLTIND21L:
case R_PARISC_TLS_GD21L:
case R_PARISC_TLS_GD14R:
case R_PARISC_TLS_IE21L:
case R_PARISC_TLS_IE14R:
if (eh != NULL)
{
if (eh->got.refcount > 0)
eh->got.refcount -= 1;
}
else if (local_got_refcounts != NULL)
{
if (local_got_refcounts[r_symndx] > 0)
local_got_refcounts[r_symndx] -= 1;
}
break;
case R_PARISC_TLS_LDM21L:
case R_PARISC_TLS_LDM14R:
hppa_link_hash_table (info)->tls_ldm_got.refcount -= 1;
break;
case R_PARISC_PCREL12F:
case R_PARISC_PCREL17C:
case R_PARISC_PCREL17F:
case R_PARISC_PCREL22F:
if (eh != NULL)
{
if (eh->plt.refcount > 0)
eh->plt.refcount -= 1;
}
break;
case R_PARISC_PLABEL14R:
case R_PARISC_PLABEL21L:
case R_PARISC_PLABEL32:
if (eh != NULL)
{
if (eh->plt.refcount > 0)
eh->plt.refcount -= 1;
}
else if (local_plt_refcounts != NULL)
{
if (local_plt_refcounts[r_symndx] > 0)
local_plt_refcounts[r_symndx] -= 1;
}
break;
default:
break;
}
}
return TRUE;
}
static bfd_boolean
elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
{
int offset;
size_t size;
switch (note->descsz)
{
default:
return FALSE;
case 396:
elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
offset = 72;
size = 320;
break;
}
return _bfd_elfcore_make_pseudosection (abfd, ".reg",
size, note->descpos + offset);
}
static bfd_boolean
elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
{
switch (note->descsz)
{
default:
return FALSE;
case 124:
elf_tdata (abfd)->core_program
= _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
elf_tdata (abfd)->core_command
= _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
}
onto the end of the args in some (at least one anyway)
implementations, so strip it off if it exists. */
{
char *command = elf_tdata (abfd)->core_command;
int n = strlen (command);
if (0 < n && command[n - 1] == ' ')
command[n - 1] = '\0';
}
return TRUE;
}
plabels. */
static void
elf32_hppa_hide_symbol (struct bfd_link_info *info,
struct elf_link_hash_entry *eh,
bfd_boolean force_local)
{
if (force_local)
{
eh->forced_local = 1;
if (eh->dynindx != -1)
{
eh->dynindx = -1;
_bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
eh->dynstr_index);
}
}
if (! hppa_elf_hash_entry (eh)->plabel)
{
eh->needs_plt = 0;
eh->plt = elf_hash_table (info)->init_plt_refcount;
}
}
regular object. The current definition is in some section of the
dynamic object, but we're not including those sections. We have to
change the definition to something the rest of the link can
understand. */
static bfd_boolean
elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
struct elf_link_hash_entry *eh)
{
struct elf32_hppa_link_hash_table *htab;
asection *sec;
will fill in the contents of the procedure linkage table later. */
if (eh->type == STT_FUNC
|| eh->needs_plt)
{
if (eh->plt.refcount <= 0
|| (eh->def_regular
&& eh->root.type != bfd_link_hash_defweak
&& ! hppa_elf_hash_entry (eh)->plabel
&& (!info->shared || info->symbolic)))
{
a) Garbage collection has removed all references to the
symbol, or
b) We know for certain the symbol is defined in this
object, and it's not a weak definition, nor is the symbol
used by a plabel relocation. Either this object is the
application or we are doing a shared symbolic link. */
eh->plt.offset = (bfd_vma) -1;
eh->needs_plt = 0;
}
return TRUE;
}
else
eh->plt.offset = (bfd_vma) -1;
processor independent code will have arranged for us to see the
real definition first, and we can just use the same value. */
if (eh->u.weakdef != NULL)
{
if (eh->u.weakdef->root.type != bfd_link_hash_defined
&& eh->u.weakdef->root.type != bfd_link_hash_defweak)
abort ();
eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
if (ELIMINATE_COPY_RELOCS)
eh->non_got_ref = eh->u.weakdef->non_got_ref;
return TRUE;
}
is not a function. */
only references to the symbol are via the global offset table.
For such cases we need not do anything here; the relocations will
be handled correctly by relocate_section. */
if (info->shared)
return TRUE;
GOT, we don't need to generate a copy reloc. */
if (!eh->non_got_ref)
return TRUE;
if (ELIMINATE_COPY_RELOCS)
{
struct elf32_hppa_link_hash_entry *hh;
struct elf32_hppa_dyn_reloc_entry *hdh_p;
hh = hppa_elf_hash_entry (eh);
for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
{
sec = hdh_p->sec->output_section;
if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
break;
}
we'll be keeping the dynamic relocs and avoiding the copy reloc. */
if (hdh_p == NULL)
{
eh->non_got_ref = 0;
return TRUE;
}
}
if (eh->size == 0)
{
(*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
eh->root.root.string);
return TRUE;
}
become part of the .bss section of the executable. There will be
an entry for this symbol in the .dynsym section. The dynamic
object will contain position independent code, so all references
from the dynamic object to this symbol will go through the global
offset table. The dynamic linker will use the .dynsym entry to
determine the address it must put in the global offset table, so
both the dynamic object and the regular object will refer to the
same memory location for the variable. */
htab = hppa_link_hash_table (info);
copy the initial value out of the dynamic object and into the
runtime process image. */
if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0)
{
htab->srelbss->size += sizeof (Elf32_External_Rela);
eh->needs_copy = 1;
}
sec = htab->sdynbss;
return _bfd_elf_adjust_dynamic_copy (eh, sec);
}
ie. plabel entries. */
static bfd_boolean
allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
{
struct bfd_link_info *info;
struct elf32_hppa_link_hash_table *htab;
struct elf32_hppa_link_hash_entry *hh;
asection *sec;
if (eh->root.type == bfd_link_hash_indirect)
return TRUE;
if (eh->root.type == bfd_link_hash_warning)
eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
info = (struct bfd_link_info *) inf;
hh = hppa_elf_hash_entry (eh);
htab = hppa_link_hash_table (info);
if (htab->etab.dynamic_sections_created
&& eh->plt.refcount > 0)
{
Undefined weak syms won't yet be marked as dynamic. */
if (eh->dynindx == -1
&& !eh->forced_local
&& eh->type != STT_PARISC_MILLI)
{
if (! bfd_elf_link_record_dynamic_symbol (info, eh))
return FALSE;
}
if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, eh))
{
means that the plt entry is only used by a plabel.
We'll be using a normal plt entry for this symbol, so
clear the plabel indicator. */
hh->plabel = 0;
}
else if (hh->plabel)
{
that won't have a .plt entry for other reasons. */
sec = htab->splt;
eh->plt.offset = sec->size;
sec->size += PLT_ENTRY_SIZE;
}
else
{
eh->plt.offset = (bfd_vma) -1;
eh->needs_plt = 0;
}
}
else
{
eh->plt.offset = (bfd_vma) -1;
eh->needs_plt = 0;
}
return TRUE;
}
global syms. */
static bfd_boolean
allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
{
struct bfd_link_info *info;
struct elf32_hppa_link_hash_table *htab;
asection *sec;
struct elf32_hppa_link_hash_entry *hh;
struct elf32_hppa_dyn_reloc_entry *hdh_p;
if (eh->root.type == bfd_link_hash_indirect)
return TRUE;
if (eh->root.type == bfd_link_hash_warning)
eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
info = inf;
htab = hppa_link_hash_table (info);
hh = hppa_elf_hash_entry (eh);
if (htab->etab.dynamic_sections_created
&& eh->plt.offset != (bfd_vma) -1
&& !hh->plabel
&& eh->plt.refcount > 0)
{
sec = htab->splt;
eh->plt.offset = sec->size;
sec->size += PLT_ENTRY_SIZE;
htab->srelplt->size += sizeof (Elf32_External_Rela);
htab->need_plt_stub = 1;
}
if (eh->got.refcount > 0)
{
Undefined weak syms won't yet be marked as dynamic. */
if (eh->dynindx == -1
&& !eh->forced_local
&& eh->type != STT_PARISC_MILLI)
{
if (! bfd_elf_link_record_dynamic_symbol (info, eh))
return FALSE;
}
sec = htab->sgot;
eh->got.offset = sec->size;
sec->size += GOT_ENTRY_SIZE;
if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
sec->size += GOT_ENTRY_SIZE * 2;
else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
sec->size += GOT_ENTRY_SIZE;
if (htab->etab.dynamic_sections_created
&& (info->shared
|| (eh->dynindx != -1
&& !eh->forced_local)))
{
htab->srelgot->size += sizeof (Elf32_External_Rela);
if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
htab->srelgot->size += 2 * sizeof (Elf32_External_Rela);
else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
htab->srelgot->size += sizeof (Elf32_External_Rela);
}
}
else
eh->got.offset = (bfd_vma) -1;
if (hh->dyn_relocs == NULL)
return TRUE;
space allocated for dynamic pc-relative relocs against symbols
defined in a regular object. For the normal shared case, discard
space for relocs that have become local due to symbol visibility
changes. */
if (info->shared)
{
#if RELATIVE_DYNRELOCS
if (SYMBOL_CALLS_LOCAL (info, eh))
{
struct elf32_hppa_dyn_reloc_entry **hdh_pp;
for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
{
hdh_p->count -= hdh_p->relative_count;
hdh_p->relative_count = 0;
if (hdh_p->count == 0)
*hdh_pp = hdh_p->hdh_next;
else
hdh_pp = &hdh_p->hdh_next;
}
}
#endif
visibility. */
if (hh->dyn_relocs != NULL
&& eh->root.type == bfd_link_hash_undefweak)
{
if (ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
hh->dyn_relocs = NULL;
symbol in PIEs. */
else if (eh->dynindx == -1
&& !eh->forced_local)
{
if (! bfd_elf_link_record_dynamic_symbol (info, eh))
return FALSE;
}
}
}
else
{
symbols which turn out to need copy relocs or are not
dynamic. */
if (!eh->non_got_ref
&& ((ELIMINATE_COPY_RELOCS
&& eh->def_dynamic
&& !eh->def_regular)
|| (htab->etab.dynamic_sections_created
&& (eh->root.type == bfd_link_hash_undefweak
|| eh->root.type == bfd_link_hash_undefined))))
{
Undefined weak syms won't yet be marked as dynamic. */
if (eh->dynindx == -1
&& !eh->forced_local
&& eh->type != STT_PARISC_MILLI)
{
if (! bfd_elf_link_record_dynamic_symbol (info, eh))
return FALSE;
}
relocs. */
if (eh->dynindx != -1)
goto keep;
}
hh->dyn_relocs = NULL;
return TRUE;
keep: ;
}
for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
{
asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
}
return TRUE;
}
millicode symbols local so they do not end up as globals in the
dynamic symbol table. We ought to be able to do this in
adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
for all dynamic symbols. Arguably, this is a bug in
elf_adjust_dynamic_symbol. */
static bfd_boolean
clobber_millicode_symbols (struct elf_link_hash_entry *eh,
struct bfd_link_info *info)
{
if (eh->root.type == bfd_link_hash_warning)
eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
if (eh->type == STT_PARISC_MILLI
&& !eh->forced_local)
{
elf32_hppa_hide_symbol (info, eh, TRUE);
}
return TRUE;
}
static bfd_boolean
readonly_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
{
struct elf32_hppa_link_hash_entry *hh;
struct elf32_hppa_dyn_reloc_entry *hdh_p;
if (eh->root.type == bfd_link_hash_warning)
eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
hh = hppa_elf_hash_entry (eh);
for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
{
asection *sec = hdh_p->sec->output_section;
if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
{
struct bfd_link_info *info = inf;
info->flags |= DF_TEXTREL;
return FALSE;
}
}
return TRUE;
}
static bfd_boolean
elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
struct bfd_link_info *info)
{
struct elf32_hppa_link_hash_table *htab;
bfd *dynobj;
bfd *ibfd;
asection *sec;
bfd_boolean relocs;
htab = hppa_link_hash_table (info);
dynobj = htab->etab.dynobj;
if (dynobj == NULL)
abort ();
if (htab->etab.dynamic_sections_created)
{
if (info->executable)
{
sec = bfd_get_section_by_name (dynobj, ".interp");
if (sec == NULL)
abort ();
sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
}
elf_link_hash_traverse (&htab->etab,
clobber_millicode_symbols,
info);
}
dynamic relocs. */
for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
{
bfd_signed_vma *local_got;
bfd_signed_vma *end_local_got;
bfd_signed_vma *local_plt;
bfd_signed_vma *end_local_plt;
bfd_size_type locsymcount;
Elf_Internal_Shdr *symtab_hdr;
asection *srel;
char *local_tls_type;
if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
continue;
for (sec = ibfd->sections; sec != NULL; sec = sec->next)
{
struct elf32_hppa_dyn_reloc_entry *hdh_p;
for (hdh_p = ((struct elf32_hppa_dyn_reloc_entry *)
elf_section_data (sec)->local_dynrel);
hdh_p != NULL;
hdh_p = hdh_p->hdh_next)
{
if (!bfd_is_abs_section (hdh_p->sec)
&& bfd_is_abs_section (hdh_p->sec->output_section))
{
it is a copy of a linkonce section or due to
linker script /DISCARD/, so we'll be discarding
the relocs too. */
}
else if (hdh_p->count != 0)
{
srel = elf_section_data (hdh_p->sec)->sreloc;
srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
info->flags |= DF_TEXTREL;
}
}
}
local_got = elf_local_got_refcounts (ibfd);
if (!local_got)
continue;
symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
locsymcount = symtab_hdr->sh_info;
end_local_got = local_got + locsymcount;
local_tls_type = hppa_elf_local_got_tls_type (ibfd);
sec = htab->sgot;
srel = htab->srelgot;
for (; local_got < end_local_got; ++local_got)
{
if (*local_got > 0)
{
*local_got = sec->size;
sec->size += GOT_ENTRY_SIZE;
if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
sec->size += 2 * GOT_ENTRY_SIZE;
else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
sec->size += GOT_ENTRY_SIZE;
if (info->shared)
{
srel->size += sizeof (Elf32_External_Rela);
if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
srel->size += 2 * sizeof (Elf32_External_Rela);
else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
srel->size += sizeof (Elf32_External_Rela);
}
}
else
*local_got = (bfd_vma) -1;
++local_tls_type;
}
local_plt = end_local_got;
end_local_plt = local_plt + locsymcount;
if (! htab->etab.dynamic_sections_created)
{
for (; local_plt < end_local_plt; ++local_plt)
*local_plt = (bfd_vma) -1;
}
else
{
sec = htab->splt;
srel = htab->srelplt;
for (; local_plt < end_local_plt; ++local_plt)
{
if (*local_plt > 0)
{
*local_plt = sec->size;
sec->size += PLT_ENTRY_SIZE;
if (info->shared)
srel->size += sizeof (Elf32_External_Rela);
}
else
*local_plt = (bfd_vma) -1;
}
}
}
if (htab->tls_ldm_got.refcount > 0)
{
R_PARISC_TLS_DTPMOD32 relocs. */
htab->tls_ldm_got.offset = htab->sgot->size;
htab->sgot->size += (GOT_ENTRY_SIZE * 2);
htab->srelgot->size += sizeof (Elf32_External_Rela);
}
else
htab->tls_ldm_got.offset = -1;
uses the last .plt reloc to find the end of the .plt (and hence
the start of the .got) for lazy linking. */
elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
sym dynamic relocs. */
elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
determined the sizes of the various dynamic sections. Allocate
memory for them. */
relocs = FALSE;
for (sec = dynobj->sections; sec != NULL; sec = sec->next)
{
if ((sec->flags & SEC_LINKER_CREATED) == 0)
continue;
if (sec == htab->splt)
{
if (htab->need_plt_stub)
{
section. We want this stub right at the end, up
against the .got section. */
int gotalign = bfd_section_alignment (dynobj, htab->sgot);
int pltalign = bfd_section_alignment (dynobj, sec);
bfd_size_type mask;
if (gotalign > pltalign)
bfd_set_section_alignment (dynobj, sec, gotalign);
mask = ((bfd_size_type) 1 << gotalign) - 1;
sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
}
}
else if (sec == htab->sgot
|| sec == htab->sdynbss)
;
else if (CONST_STRNEQ (bfd_get_section_name (dynobj, sec), ".rela"))
{
if (sec->size != 0)
{
than .rela.plt. */
if (sec != htab->srelplt)
relocs = TRUE;
to copy relocs into the output file. */
sec->reloc_count = 0;
}
}
else
{
continue;
}
if (sec->size == 0)
{
output file. This is mostly to handle .rela.bss and
.rela.plt. We must create both sections in
create_dynamic_sections, because they must be created
before the linker maps input sections to output
sections. The linker does that before
adjust_dynamic_symbol is called, and it is that
function which decides whether anything needs to go
into these sections. */
sec->flags |= SEC_EXCLUDE;
continue;
}
if ((sec->flags & SEC_HAS_CONTENTS) == 0)
continue;
we may not fill in all the reloc sections. */
sec->contents = bfd_zalloc (dynobj, sec->size);
if (sec->contents == NULL)
return FALSE;
}
if (htab->etab.dynamic_sections_created)
{
actually has nothing to do with the PLT, it is how we
communicate the LTP value of a load module to the dynamic
linker. */
#define add_dynamic_entry(TAG, VAL) \
_bfd_elf_add_dynamic_entry (info, TAG, VAL)
if (!add_dynamic_entry (DT_PLTGOT, 0))
return FALSE;
values later, in elf32_hppa_finish_dynamic_sections, but we
must add the entries now so that we get the correct size for
the .dynamic section. The DT_DEBUG entry is filled in by the
dynamic linker and used by the debugger. */
if (info->executable)
{
if (!add_dynamic_entry (DT_DEBUG, 0))
return FALSE;
}
if (htab->srelplt->size != 0)
{
if (!add_dynamic_entry (DT_PLTRELSZ, 0)
|| !add_dynamic_entry (DT_PLTREL, DT_RELA)
|| !add_dynamic_entry (DT_JMPREL, 0))
return FALSE;
}
if (relocs)
{
if (!add_dynamic_entry (DT_RELA, 0)
|| !add_dynamic_entry (DT_RELASZ, 0)
|| !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
return FALSE;
then we need a DT_TEXTREL entry. */
if ((info->flags & DF_TEXTREL) == 0)
elf_link_hash_traverse (&htab->etab, readonly_dynrelocs, info);
if ((info->flags & DF_TEXTREL) != 0)
{
if (!add_dynamic_entry (DT_TEXTREL, 0))
return FALSE;
}
}
}
#undef add_dynamic_entry
return TRUE;
}
for each output section included in the link. Returns -1 on error,
0 when no stubs will be needed, and 1 on success. */
int
elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
{
bfd *input_bfd;
unsigned int bfd_count;
int top_id, top_index;
asection *section;
asection **input_list, **list;
bfd_size_type amt;
struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
input_bfd != NULL;
input_bfd = input_bfd->link_next)
{
bfd_count += 1;
for (section = input_bfd->sections;
section != NULL;
section = section->next)
{
if (top_id < section->id)
top_id = section->id;
}
}
htab->bfd_count = bfd_count;
amt = sizeof (struct map_stub) * (top_id + 1);
htab->stub_group = bfd_zmalloc (amt);
if (htab->stub_group == NULL)
return -1;
section index as some sections may have been removed, and
strip_excluded_output_sections doesn't renumber the indices. */
for (section = output_bfd->sections, top_index = 0;
section != NULL;
section = section->next)
{
if (top_index < section->index)
top_index = section->index;
}
htab->top_index = top_index;
amt = sizeof (asection *) * (top_index + 1);
input_list = bfd_malloc (amt);
htab->input_list = input_list;
if (input_list == NULL)
return -1;
value we can check later. */
list = input_list + top_index;
do
*list = bfd_abs_section_ptr;
while (list-- != input_list);
for (section = output_bfd->sections;
section != NULL;
section = section->next)
{
if ((section->flags & SEC_CODE) != 0)
input_list[section->index] = NULL;
}
return 1;
}
in the order that input sections are linked into output sections.
Build lists of input sections to determine groupings between which
we may insert linker stubs. */
void
elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
{
struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
if (isec->output_section->index <= htab->top_index)
{
asection **list = htab->input_list + isec->output_section->index;
if (*list != bfd_abs_section_ptr)
{
#define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
which is what we want. */
PREV_SEC (isec) = *list;
*list = isec;
}
}
}
sections may result in fewer stubs. More importantly, we need to
put all .init* and .fini* stubs at the beginning of the .init or
.fini output sections respectively, because glibc splits the
_init and _fini functions into multiple parts. Putting a stub in
the middle of a function is not a good idea. */
static void
group_sections (struct elf32_hppa_link_hash_table *htab,
bfd_size_type stub_group_size,
bfd_boolean stubs_always_before_branch)
{
asection **list = htab->input_list + htab->top_index;
do
{
asection *tail = *list;
if (tail == bfd_abs_section_ptr)
continue;
while (tail != NULL)
{
asection *curr;
asection *prev;
bfd_size_type total;
bfd_boolean big_sec;
curr = tail;
total = tail->size;
big_sec = total >= stub_group_size;
while ((prev = PREV_SEC (curr)) != NULL
&& ((total += curr->output_offset - prev->output_offset)
< stub_group_size))
curr = prev;
than 240000 bytes and thus can be handled by one stub
section. (or the tail section is itself larger than
240000 bytes, in which case we may be toast.)
We should really be keeping track of the total size of
stubs added here, as stubs contribute to the final output
section size. That's a little tricky, and this way will
only break if stubs added total more than 22144 bytes, or
2768 long branch stubs. It seems unlikely for more than
2768 different functions to be called, especially from
code only 240000 bytes long. This limit used to be
250000, but c++ code tends to generate lots of little
functions, and sometimes violated the assumption. */
do
{
prev = PREV_SEC (tail);
htab->stub_group[tail->id].link_sec = curr;
}
while (tail != curr && (tail = prev) != NULL);
bytes before the stub section can be handled by it too.
Don't do this if we have a really large section after the
stubs, as adding more stubs increases the chance that
branches may not reach into the stub section. */
if (!stubs_always_before_branch && !big_sec)
{
total = 0;
while (prev != NULL
&& ((total += tail->output_offset - prev->output_offset)
< stub_group_size))
{
tail = prev;
prev = PREV_SEC (tail);
htab->stub_group[tail->id].link_sec = curr;
}
}
tail = prev;
}
}
while (list-- != htab->input_list);
free (htab->input_list);
#undef PREV_SEC
}
for export stubs if we are building a multi-subspace shared lib.
Returns -1 on error, 1 if export stubs created, 0 otherwise. */
static int
get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
{
unsigned int bfd_indx;
Elf_Internal_Sym *local_syms, **all_local_syms;
int stub_changed = 0;
struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
we need to read in the local symbols in parallel and save them for
later use; so hold pointers to the local symbols in an array. */
bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
all_local_syms = bfd_zmalloc (amt);
htab->all_local_syms = all_local_syms;
if (all_local_syms == NULL)
return -1;
If we are creating a shared library, create hash entries for the
export stubs. */
for (bfd_indx = 0;
input_bfd != NULL;
input_bfd = input_bfd->link_next, bfd_indx++)
{
Elf_Internal_Shdr *symtab_hdr;
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
if (symtab_hdr->sh_info == 0)
continue;
local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
if (local_syms == NULL)
{
local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
symtab_hdr->sh_info, 0,
NULL, NULL, NULL);
symtab_hdr->contents = (unsigned char *) local_syms;
}
if (local_syms == NULL)
return -1;
all_local_syms[bfd_indx] = local_syms;
if (info->shared && htab->multi_subspace)
{
struct elf_link_hash_entry **eh_syms;
struct elf_link_hash_entry **eh_symend;
unsigned int symcount;
symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
- symtab_hdr->sh_info);
eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
build export stubs for all globally visible functions. */
for (; eh_syms < eh_symend; eh_syms++)
{
struct elf32_hppa_link_hash_entry *hh;
hh = hppa_elf_hash_entry (*eh_syms);
while (hh->eh.root.type == bfd_link_hash_indirect
|| hh->eh.root.type == bfd_link_hash_warning)
hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
resolved, so we need to check that the symbol was
defined in this BFD. */
if ((hh->eh.root.type == bfd_link_hash_defined
|| hh->eh.root.type == bfd_link_hash_defweak)
&& hh->eh.type == STT_FUNC
&& hh->eh.root.u.def.section->output_section != NULL
&& (hh->eh.root.u.def.section->output_section->owner
== output_bfd)
&& hh->eh.root.u.def.section->owner == input_bfd
&& hh->eh.def_regular
&& !hh->eh.forced_local
&& ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
{
asection *sec;
const char *stub_name;
struct elf32_hppa_stub_hash_entry *hsh;
sec = hh->eh.root.u.def.section;
stub_name = hh_name (hh);
hsh = hppa_stub_hash_lookup (&htab->bstab,
stub_name,
FALSE, FALSE);
if (hsh == NULL)
{
hsh = hppa_add_stub (stub_name, sec, htab);
if (!hsh)
return -1;
hsh->target_value = hh->eh.root.u.def.value;
hsh->target_section = hh->eh.root.u.def.section;
hsh->stub_type = hppa_stub_export;
hsh->hh = hh;
stub_changed = 1;
}
else
{
(*_bfd_error_handler) (_("%B: duplicate export stub %s"),
input_bfd,
stub_name);
}
}
}
}
}
return stub_changed;
}
The basic idea here is to examine all the relocations looking for
PC-relative calls to a target that is unreachable with a "bl"
instruction. */
bfd_boolean
elf32_hppa_size_stubs
(bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
bfd_boolean multi_subspace, bfd_signed_vma group_size,
asection * (*add_stub_section) (const char *, asection *),
void (*layout_sections_again) (void))
{
bfd_size_type stub_group_size;
bfd_boolean stubs_always_before_branch;
bfd_boolean stub_changed;
struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
htab->stub_bfd = stub_bfd;
htab->multi_subspace = multi_subspace;
htab->add_stub_section = add_stub_section;
htab->layout_sections_again = layout_sections_again;
stubs_always_before_branch = group_size < 0;
if (group_size < 0)
stub_group_size = -group_size;
else
stub_group_size = group_size;
if (stub_group_size == 1)
{
if (stubs_always_before_branch)
{
stub_group_size = 7680000;
if (htab->has_17bit_branch || htab->multi_subspace)
stub_group_size = 240000;
if (htab->has_12bit_branch)
stub_group_size = 7500;
}
else
{
stub_group_size = 6971392;
if (htab->has_17bit_branch || htab->multi_subspace)
stub_group_size = 217856;
if (htab->has_12bit_branch)
stub_group_size = 6808;
}
}
group_sections (htab, stub_group_size, stubs_always_before_branch);
switch (get_local_syms (output_bfd, info->input_bfds, info))
{
default:
if (htab->all_local_syms)
goto error_ret_free_local;
return FALSE;
case 0:
stub_changed = FALSE;
break;
case 1:
stub_changed = TRUE;
break;
}
while (1)
{
bfd *input_bfd;
unsigned int bfd_indx;
asection *stub_sec;
for (input_bfd = info->input_bfds, bfd_indx = 0;
input_bfd != NULL;
input_bfd = input_bfd->link_next, bfd_indx++)
{
Elf_Internal_Shdr *symtab_hdr;
asection *section;
Elf_Internal_Sym *local_syms;
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
if (symtab_hdr->sh_info == 0)
continue;
local_syms = htab->all_local_syms[bfd_indx];
for (section = input_bfd->sections;
section != NULL;
section = section->next)
{
Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
to do. */
if ((section->flags & SEC_RELOC) == 0
|| section->reloc_count == 0)
continue;
discarded, then don't create any stubs. */
if (section->output_section == NULL
|| section->output_section->owner != output_bfd)
continue;
internal_relocs
= _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
info->keep_memory);
if (internal_relocs == NULL)
goto error_ret_free_local;
irela = internal_relocs;
irelaend = irela + section->reloc_count;
for (; irela < irelaend; irela++)
{
unsigned int r_type, r_indx;
enum elf32_hppa_stub_type stub_type;
struct elf32_hppa_stub_hash_entry *hsh;
asection *sym_sec;
bfd_vma sym_value;
bfd_vma destination;
struct elf32_hppa_link_hash_entry *hh;
char *stub_name;
const asection *id_sec;
r_type = ELF32_R_TYPE (irela->r_info);
r_indx = ELF32_R_SYM (irela->r_info);
if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
{
bfd_set_error (bfd_error_bad_value);
error_ret_free_internal:
if (elf_section_data (section)->relocs == NULL)
free (internal_relocs);
goto error_ret_free_local;
}
if (r_type != (unsigned int) R_PARISC_PCREL12F
&& r_type != (unsigned int) R_PARISC_PCREL17F
&& r_type != (unsigned int) R_PARISC_PCREL22F)
continue;
section. */
sym_sec = NULL;
sym_value = 0;
destination = 0;
hh = NULL;
if (r_indx < symtab_hdr->sh_info)
{
Elf_Internal_Sym *sym;
Elf_Internal_Shdr *hdr;
unsigned int shndx;
sym = local_syms + r_indx;
if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
sym_value = sym->st_value;
shndx = sym->st_shndx;
if (shndx < elf_numsections (input_bfd))
{
hdr = elf_elfsections (input_bfd)[shndx];
sym_sec = hdr->bfd_section;
destination = (sym_value + irela->r_addend
+ sym_sec->output_offset
+ sym_sec->output_section->vma);
}
}
else
{
int e_indx;
e_indx = r_indx - symtab_hdr->sh_info;
hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
while (hh->eh.root.type == bfd_link_hash_indirect
|| hh->eh.root.type == bfd_link_hash_warning)
hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
if (hh->eh.root.type == bfd_link_hash_defined
|| hh->eh.root.type == bfd_link_hash_defweak)
{
sym_sec = hh->eh.root.u.def.section;
sym_value = hh->eh.root.u.def.value;
if (sym_sec->output_section != NULL)
destination = (sym_value + irela->r_addend
+ sym_sec->output_offset
+ sym_sec->output_section->vma);
}
else if (hh->eh.root.type == bfd_link_hash_undefweak)
{
if (! info->shared)
continue;
}
else if (hh->eh.root.type == bfd_link_hash_undefined)
{
if (! (info->unresolved_syms_in_objects == RM_IGNORE
&& (ELF_ST_VISIBILITY (hh->eh.other)
== STV_DEFAULT)
&& hh->eh.type != STT_PARISC_MILLI))
continue;
}
else
{
bfd_set_error (bfd_error_bad_value);
goto error_ret_free_internal;
}
}
stub_type = hppa_type_of_stub (section, irela, hh,
destination, info);
if (stub_type == hppa_stub_none)
continue;
id_sec = htab->stub_group[section->id].link_sec;
stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
if (!stub_name)
goto error_ret_free_internal;
hsh = hppa_stub_hash_lookup (&htab->bstab,
stub_name,
FALSE, FALSE);
if (hsh != NULL)
{
free (stub_name);
continue;
}
hsh = hppa_add_stub (stub_name, section, htab);
if (hsh == NULL)
{
free (stub_name);
goto error_ret_free_internal;
}
hsh->target_value = sym_value;
hsh->target_section = sym_sec;
hsh->stub_type = stub_type;
if (info->shared)
{
if (stub_type == hppa_stub_import)
hsh->stub_type = hppa_stub_import_shared;
else if (stub_type == hppa_stub_long_branch)
hsh->stub_type = hppa_stub_long_branch_shared;
}
hsh->hh = hh;
stub_changed = TRUE;
}
if (elf_section_data (section)->relocs == NULL)
free (internal_relocs);
}
}
if (!stub_changed)
break;
stub sections. */
for (stub_sec = htab->stub_bfd->sections;
stub_sec != NULL;
stub_sec = stub_sec->next)
stub_sec->size = 0;
bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
(*htab->layout_sections_again) ();
stub_changed = FALSE;
}
free (htab->all_local_syms);
return TRUE;
error_ret_free_local:
free (htab->all_local_syms);
return FALSE;
}
stubs to provide a value for __gp. */
bfd_boolean
elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
{
struct bfd_link_hash_entry *h;
asection *sec = NULL;
bfd_vma gp_val = 0;
struct elf32_hppa_link_hash_table *htab;
htab = hppa_link_hash_table (info);
h = bfd_link_hash_lookup (&htab->etab.root, "$global$", FALSE, FALSE, FALSE);
if (h != NULL
&& (h->type == bfd_link_hash_defined
|| h->type == bfd_link_hash_defweak))
{
gp_val = h->u.def.value;
sec = h->u.def.section;
}
else
{
asection *splt = bfd_get_section_by_name (abfd, ".plt");
asection *sgot = bfd_get_section_by_name (abfd, ".got");
or .data, if these sections exist. In the case of choosing
.plt try to make the LTP ideal for addressing anywhere in the
.plt or .got with a 14 bit signed offset. Typically, the end
of the .plt is the start of the .got, so choose .plt + 0x2000
if either the .plt or .got is larger than 0x2000. If both
the .plt and .got are smaller than 0x2000, choose the end of
the .plt section. */
sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
? NULL : splt;
if (sec != NULL)
{
gp_val = sec->size;
if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
{
gp_val = 0x2000;
}
}
else
{
sec = sgot;
if (sec != NULL)
{
if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
{
offset our LTP. */
if (sec->size > 0x2000)
gp_val = 0x2000;
}
}
else
{
sec = bfd_get_section_by_name (abfd, ".data");
}
}
if (h != NULL)
{
h->type = bfd_link_hash_defined;
h->u.def.value = gp_val;
if (sec != NULL)
h->u.def.section = sec;
else
h->u.def.section = bfd_abs_section_ptr;
}
}
if (sec != NULL && sec->output_section != NULL)
gp_val += sec->output_section->vma + sec->output_offset;
elf_gp (abfd) = gp_val;
return TRUE;
}
stubs are kept in a hash table attached to the main linker hash
table. We also set up the .plt entries for statically linked PIC
functions here. This function is called via hppaelf_finish in the
linker. */
bfd_boolean
elf32_hppa_build_stubs (struct bfd_link_info *info)
{
asection *stub_sec;
struct bfd_hash_table *table;
struct elf32_hppa_link_hash_table *htab;
htab = hppa_link_hash_table (info);
for (stub_sec = htab->stub_bfd->sections;
stub_sec != NULL;
stub_sec = stub_sec->next)
{
bfd_size_type size;
size = stub_sec->size;
stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
if (stub_sec->contents == NULL && size != 0)
return FALSE;
stub_sec->size = 0;
}
table = &htab->bstab;
bfd_hash_traverse (table, hppa_build_one_stub, info);
return TRUE;
}
address when resolving a dtpoff relocation.
This is PT_TLS segment p_vaddr. */
static bfd_vma
dtpoff_base (struct bfd_link_info *info)
{
if (elf_hash_table (info)->tls_sec == NULL)
return 0;
return elf_hash_table (info)->tls_sec->vma;
}
static bfd_vma
tpoff (struct bfd_link_info *info, bfd_vma address)
{
struct elf_link_hash_table *htab = elf_hash_table (info);
if (htab->tls_sec == NULL)
return 0;
tcbhead structure which has 2 pointer fields. */
return (address - htab->tls_sec->vma
+ align_power ((bfd_vma) 8, htab->tls_sec->alignment_power));
}
static bfd_boolean
elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
{
if (!bfd_elf_final_link (abfd, info))
return FALSE;
unwind section. */
return elf_hppa_sort_unwind (abfd);
}
static void
hppa_record_segment_addr (bfd *abfd, asection *section, void *data)
{
struct elf32_hppa_link_hash_table *htab;
htab = (struct elf32_hppa_link_hash_table*) data;
if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
{
bfd_vma value;
Elf_Internal_Phdr *p;
p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
BFD_ASSERT (p != NULL);
value = p->p_vaddr;
if ((section->flags & SEC_READONLY) != 0)
{
if (value < htab->text_segment_base)
htab->text_segment_base = value;
}
else
{
if (value < htab->data_segment_base)
htab->data_segment_base = value;
}
}
}
static bfd_reloc_status_type
final_link_relocate (asection *input_section,
bfd_byte *contents,
const Elf_Internal_Rela *rela,
bfd_vma value,
struct elf32_hppa_link_hash_table *htab,
asection *sym_sec,
struct elf32_hppa_link_hash_entry *hh,
struct bfd_link_info *info)
{
int insn;
unsigned int r_type = ELF32_R_TYPE (rela->r_info);
unsigned int orig_r_type = r_type;
reloc_howto_type *howto = elf_hppa_howto_table + r_type;
int r_format = howto->bitsize;
enum hppa_reloc_field_selector_type_alt r_field;
bfd *input_bfd = input_section->owner;
bfd_vma offset = rela->r_offset;
bfd_vma max_branch_offset = 0;
bfd_byte *hit_data = contents + offset;
bfd_signed_vma addend = rela->r_addend;
bfd_vma location;
struct elf32_hppa_stub_hash_entry *hsh = NULL;
int val;
if (r_type == R_PARISC_NONE)
return bfd_reloc_ok;
insn = bfd_get_32 (input_bfd, hit_data);
location = (offset +
input_section->output_offset +
input_section->output_section->vma);
DPREL relocs. */
if (!info->shared)
{
switch (r_type)
{
case R_PARISC_DLTIND21L:
r_type = R_PARISC_DPREL21L;
break;
case R_PARISC_DLTIND14R:
r_type = R_PARISC_DPREL14R;
break;
case R_PARISC_DLTIND14F:
r_type = R_PARISC_DPREL14F;
break;
}
}
switch (r_type)
{
case R_PARISC_PCREL12F:
case R_PARISC_PCREL17F:
case R_PARISC_PCREL22F:
the stub hash. */
if (sym_sec == NULL
|| sym_sec->output_section == NULL
|| (hh != NULL
&& hh->eh.plt.offset != (bfd_vma) -1
&& hh->eh.dynindx != -1
&& !hh->plabel
&& (info->shared
|| !hh->eh.def_regular
|| hh->eh.root.type == bfd_link_hash_defweak)))
{
hsh = hppa_get_stub_entry (input_section, sym_sec,
hh, rela, htab);
if (hsh != NULL)
{
value = (hsh->stub_offset
+ hsh->stub_sec->output_offset
+ hsh->stub_sec->output_section->vma);
addend = 0;
}
else if (sym_sec == NULL && hh != NULL
&& hh->eh.root.type == bfd_link_hash_undefweak)
{
symbols behave as if the "called" function
immediately returns. We can thus call to a weak
function without first checking whether the function
is defined. */
value = location;
addend = 8;
}
else
return bfd_reloc_undefined;
}
case R_PARISC_PCREL21L:
case R_PARISC_PCREL17C:
case R_PARISC_PCREL17R:
case R_PARISC_PCREL14R:
case R_PARISC_PCREL14F:
case R_PARISC_PCREL32:
value -= location;
addend -= 8;
break;
case R_PARISC_DPREL21L:
case R_PARISC_DPREL14R:
case R_PARISC_DPREL14F:
instructions that use the global data pointer (dp). This is the
most efficient way of using PIC code in an incomplete executable,
but the user must follow the standard runtime conventions for
accessing data for this to work. */
if (orig_r_type == R_PARISC_DLTIND21L)
{
DLTIND21L. GCC sometimes uses a register other than r19 for
the operation, so we must convert any addil instruction
that uses this relocation. */
if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
insn = ADDIL_DP;
else
and convert the associated add instruction, so issue an
error. */
(*_bfd_error_handler)
(_("%B(%A+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
input_bfd,
input_section,
offset,
howto->name,
insn);
}
else if (orig_r_type == R_PARISC_DLTIND14F)
{
register to dp. */
insn = (insn & 0xfc1ffff) | (27 << 21);
}
section. If it has no section or if it's a code section, then
"data pointer relative" makes no sense. In that case we don't
adjust the "value", and for 21 bit addil instructions, we change the
source addend register from %dp to %r0. This situation commonly
arises for undefined weak symbols and when a variable's "constness"
is declared differently from the way the variable is defined. For
instance: "extern int foo" with foo defined as "const int foo". */
if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
{
if ((insn & ((0x3f << 26) | (0x1f << 21)))
== (((int) OP_ADDIL << 26) | (27 << 21)))
{
insn &= ~ (0x1f << 21);
}
break;
}
case R_PARISC_DLTIND21L:
case R_PARISC_DLTIND14R:
case R_PARISC_DLTIND14F:
case R_PARISC_TLS_GD21L:
case R_PARISC_TLS_GD14R:
case R_PARISC_TLS_LDM21L:
case R_PARISC_TLS_LDM14R:
case R_PARISC_TLS_IE21L:
case R_PARISC_TLS_IE14R:
value -= elf_gp (input_section->output_section->owner);
break;
case R_PARISC_SEGREL32:
if ((sym_sec->flags & SEC_CODE) != 0)
value -= htab->text_segment_base;
else
value -= htab->data_segment_base;
break;
default:
break;
}
switch (r_type)
{
case R_PARISC_DIR32:
case R_PARISC_DIR14F:
case R_PARISC_DIR17F:
case R_PARISC_PCREL17C:
case R_PARISC_PCREL14F:
case R_PARISC_PCREL32:
case R_PARISC_DPREL14F:
case R_PARISC_PLABEL32:
case R_PARISC_DLTIND14F:
case R_PARISC_SEGBASE:
case R_PARISC_SEGREL32:
case R_PARISC_TLS_DTPMOD32:
case R_PARISC_TLS_DTPOFF32:
case R_PARISC_TLS_TPREL32:
r_field = e_fsel;
break;
case R_PARISC_DLTIND21L:
case R_PARISC_PCREL21L:
case R_PARISC_PLABEL21L:
r_field = e_lsel;
break;
case R_PARISC_DIR21L:
case R_PARISC_DPREL21L:
case R_PARISC_TLS_GD21L:
case R_PARISC_TLS_LDM21L:
case R_PARISC_TLS_LDO21L:
case R_PARISC_TLS_IE21L:
case R_PARISC_TLS_LE21L:
r_field = e_lrsel;
break;
case R_PARISC_PCREL17R:
case R_PARISC_PCREL14R:
case R_PARISC_PLABEL14R:
case R_PARISC_DLTIND14R:
r_field = e_rsel;
break;
case R_PARISC_DIR17R:
case R_PARISC_DIR14R:
case R_PARISC_DPREL14R:
case R_PARISC_TLS_GD14R:
case R_PARISC_TLS_LDM14R:
case R_PARISC_TLS_LDO14R:
case R_PARISC_TLS_IE14R:
case R_PARISC_TLS_LE14R:
r_field = e_rrsel;
break;
case R_PARISC_PCREL12F:
case R_PARISC_PCREL17F:
case R_PARISC_PCREL22F:
r_field = e_fsel;
if (r_type == (unsigned int) R_PARISC_PCREL17F)
{
max_branch_offset = (1 << (17-1)) << 2;
}
else if (r_type == (unsigned int) R_PARISC_PCREL12F)
{
max_branch_offset = (1 << (12-1)) << 2;
}
else
{
max_branch_offset = (1 << (22-1)) << 2;
}
undefined syms. We've already checked for a stub for the
shared undefined case. */
if (sym_sec == NULL)
break;
call to the local stub for this function. */
if (value + addend + max_branch_offset >= 2*max_branch_offset)
{
hsh = hppa_get_stub_entry (input_section, sym_sec,
hh, rela, htab);
if (hsh == NULL)
return bfd_reloc_undefined;
rather than the procedure directly. */
value = (hsh->stub_offset
+ hsh->stub_sec->output_offset
+ hsh->stub_sec->output_section->vma
- location);
addend = -8;
}
break;
default:
return bfd_reloc_notsupported;
}
if (max_branch_offset != 0
&& value + addend + max_branch_offset >= 2*max_branch_offset)
{
(*_bfd_error_handler)
(_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
input_bfd,
input_section,
offset,
hsh->bh_root.string);
bfd_set_error (bfd_error_bad_value);
return bfd_reloc_notsupported;
}
val = hppa_field_adjust (value, addend, r_field);
switch (r_type)
{
case R_PARISC_PCREL12F:
case R_PARISC_PCREL17C:
case R_PARISC_PCREL17F:
case R_PARISC_PCREL17R:
case R_PARISC_PCREL22F:
case R_PARISC_DIR17F:
case R_PARISC_DIR17R:
Note that we need to decide whether it's a branch or
otherwise by inspecting the reloc. Inspecting insn won't
work as insn might be from a .word directive. */
val >>= 2;
break;
default:
break;
}
insn = hppa_rebuild_insn (insn, val, r_format);
bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
return bfd_reloc_ok;
}
static bfd_boolean
elf32_hppa_relocate_section (bfd *output_bfd,
struct bfd_link_info *info,
bfd *input_bfd,
asection *input_section,
bfd_byte *contents,
Elf_Internal_Rela *relocs,
Elf_Internal_Sym *local_syms,
asection **local_sections)
{
bfd_vma *local_got_offsets;
struct elf32_hppa_link_hash_table *htab;
Elf_Internal_Shdr *symtab_hdr;
Elf_Internal_Rela *rela;
Elf_Internal_Rela *relend;
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
htab = hppa_link_hash_table (info);
local_got_offsets = elf_local_got_offsets (input_bfd);
rela = relocs;
relend = relocs + input_section->reloc_count;
for (; rela < relend; rela++)
{
unsigned int r_type;
reloc_howto_type *howto;
unsigned int r_symndx;
struct elf32_hppa_link_hash_entry *hh;
Elf_Internal_Sym *sym;
asection *sym_sec;
bfd_vma relocation;
bfd_reloc_status_type rstatus;
const char *sym_name;
bfd_boolean plabel;
bfd_boolean warned_undef;
r_type = ELF32_R_TYPE (rela->r_info);
if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
{
bfd_set_error (bfd_error_bad_value);
return FALSE;
}
if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
|| r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
continue;
r_symndx = ELF32_R_SYM (rela->r_info);
hh = NULL;
sym = NULL;
sym_sec = NULL;
warned_undef = FALSE;
if (r_symndx < symtab_hdr->sh_info)
{
sym = local_syms + r_symndx;
sym_sec = local_sections[r_symndx];
relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
}
else
{
struct elf_link_hash_entry *eh;
bfd_boolean unresolved_reloc;
struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
r_symndx, symtab_hdr, sym_hashes,
eh, sym_sec, relocation,
unresolved_reloc, warned_undef);
if (!info->relocatable
&& relocation == 0
&& eh->root.type != bfd_link_hash_defined
&& eh->root.type != bfd_link_hash_defweak
&& eh->root.type != bfd_link_hash_undefweak)
{
if (info->unresolved_syms_in_objects == RM_IGNORE
&& ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
&& eh->type == STT_PARISC_MILLI)
{
if (! info->callbacks->undefined_symbol
(info, eh_name (eh), input_bfd,
input_section, rela->r_offset, FALSE))
return FALSE;
warned_undef = TRUE;
}
}
hh = hppa_elf_hash_entry (eh);
}
if (sym_sec != NULL && elf_discarded_section (sym_sec))
{
sections, or sections discarded by a linker script,
we just want the section contents zeroed. Avoid any
special processing. */
_bfd_clear_contents (elf_hppa_howto_table + r_type, input_bfd,
contents + rela->r_offset);
rela->r_info = 0;
rela->r_addend = 0;
continue;
}
if (info->relocatable)
continue;
determine what types of dynamic info we need to output, if
any. */
plabel = 0;
switch (r_type)
{
case R_PARISC_DLTIND14F:
case R_PARISC_DLTIND14R:
case R_PARISC_DLTIND21L:
{
bfd_vma off;
bfd_boolean do_got = 0;
global offset table. */
if (hh != NULL)
{
bfd_boolean dyn;
off = hh->eh.got.offset;
dyn = htab->etab.dynamic_sections_created;
if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
&hh->eh))
{
then we need to handle initialisation of the .got
entry and create needed relocs here. Since the
offset must always be a multiple of 4, we use the
least significant bit to record whether we have
initialised it already. */
if ((off & 1) != 0)
off &= ~1;
else
{
hh->eh.got.offset |= 1;
do_got = 1;
}
}
}
else
{
if (local_got_offsets == NULL)
abort ();
off = local_got_offsets[r_symndx];
the least significant bit to record whether we have
already generated the necessary reloc. */
if ((off & 1) != 0)
off &= ~1;
else
{
local_got_offsets[r_symndx] |= 1;
do_got = 1;
}
}
if (do_got)
{
if (info->shared)
{
In this case it is relative to the base of the
object because the symbol index is zero. */
Elf_Internal_Rela outrel;
bfd_byte *loc;
asection *sec = htab->srelgot;
outrel.r_offset = (off
+ htab->sgot->output_offset
+ htab->sgot->output_section->vma);
outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
outrel.r_addend = relocation;
loc = sec->contents;
loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
}
else
bfd_put_32 (output_bfd, relocation,
htab->sgot->contents + off);
}
if (off >= (bfd_vma) -2)
abort ();
relocation = (off
+ htab->sgot->output_offset
+ htab->sgot->output_section->vma);
}
break;
case R_PARISC_SEGREL32:
the segment base values. */
if (htab->text_segment_base == (bfd_vma) -1)
bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
break;
case R_PARISC_PLABEL14R:
case R_PARISC_PLABEL21L:
case R_PARISC_PLABEL32:
if (htab->etab.dynamic_sections_created)
{
bfd_vma off;
bfd_boolean do_plt = 0;
redirect this relocation to it. */
if (hh != NULL)
{
off = hh->eh.plt.offset;
if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared,
&hh->eh))
{
isn't called for symbols forced local. We
need to write out the plt entry here. */
if ((off & 1) != 0)
off &= ~1;
else
{
hh->eh.plt.offset |= 1;
do_plt = 1;
}
}
}
else
{
bfd_vma *local_plt_offsets;
if (local_got_offsets == NULL)
abort ();
local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
off = local_plt_offsets[r_symndx];
bit to record whether we've already initialised
this local .plt entry. */
if ((off & 1) != 0)
off &= ~1;
else
{
local_plt_offsets[r_symndx] |= 1;
do_plt = 1;
}
}
if (do_plt)
{
if (info->shared)
{
PLT entry. */
Elf_Internal_Rela outrel;
bfd_byte *loc;
asection *s = htab->srelplt;
outrel.r_offset = (off
+ htab->splt->output_offset
+ htab->splt->output_section->vma);
outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
outrel.r_addend = relocation;
loc = s->contents;
loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
}
else
{
bfd_put_32 (output_bfd,
relocation,
htab->splt->contents + off);
bfd_put_32 (output_bfd,
elf_gp (htab->splt->output_section->owner),
htab->splt->contents + off + 4);
}
}
if (off >= (bfd_vma) -2)
abort ();
the entry for the function in the .plt. The magic +2
offset signals to $$dyncall that the function pointer
is in the .plt and thus has a gp pointer too.
Exception: Undefined PLABELs should have a value of
zero. */
if (hh == NULL
|| (hh->eh.root.type != bfd_link_hash_undefweak
&& hh->eh.root.type != bfd_link_hash_undefined))
{
relocation = (off
+ htab->splt->output_offset
+ htab->splt->output_section->vma
+ 2);
}
plabel = 1;
}
case R_PARISC_DIR17F:
case R_PARISC_DIR17R:
case R_PARISC_DIR14F:
case R_PARISC_DIR14R:
case R_PARISC_DIR21L:
case R_PARISC_DPREL14F:
case R_PARISC_DPREL14R:
case R_PARISC_DPREL21L:
case R_PARISC_DIR32:
if ((input_section->flags & SEC_ALLOC) == 0)
break;
expression must match the code in ..check_relocs and
allocate_dynrelocs. ie. We need exactly the same condition
as in ..check_relocs, with some extra conditions (dynindx
test in this case) to cater for relocs removed by
allocate_dynrelocs. If you squint, the non-shared test
here does indeed match the one in ..check_relocs, the
difference being that here we test DEF_DYNAMIC as well as
!DEF_REGULAR. All common syms end up with !DEF_REGULAR,
which is why we can't use just that test here.
Conversely, DEF_DYNAMIC can't be used in check_relocs as
there all files have not been loaded. */
if ((info->shared
&& (hh == NULL
|| ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
|| hh->eh.root.type != bfd_link_hash_undefweak)
&& (IS_ABSOLUTE_RELOC (r_type)
|| !SYMBOL_CALLS_LOCAL (info, &hh->eh)))
|| (!info->shared
&& hh != NULL
&& hh->eh.dynindx != -1
&& !hh->eh.non_got_ref
&& ((ELIMINATE_COPY_RELOCS
&& hh->eh.def_dynamic
&& !hh->eh.def_regular)
|| hh->eh.root.type == bfd_link_hash_undefweak
|| hh->eh.root.type == bfd_link_hash_undefined)))
{
Elf_Internal_Rela outrel;
bfd_boolean skip;
asection *sreloc;
bfd_byte *loc;
are copied into the output file to be resolved at run
time. */
outrel.r_addend = rela->r_addend;
outrel.r_offset =
_bfd_elf_section_offset (output_bfd, info, input_section,
rela->r_offset);
skip = (outrel.r_offset == (bfd_vma) -1
|| outrel.r_offset == (bfd_vma) -2);
outrel.r_offset += (input_section->output_offset
+ input_section->output_section->vma);
if (skip)
{
memset (&outrel, 0, sizeof (outrel));
}
else if (hh != NULL
&& hh->eh.dynindx != -1
&& (plabel
|| !IS_ABSOLUTE_RELOC (r_type)
|| !info->shared
|| !info->symbolic
|| !hh->eh.def_regular))
{
outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
}
else
{
int indx = 0;
outrel.r_addend += relocation;
dynamic linker so that functions have at most one
fptr. For this reason, we need to differentiate
between global and local plabels, which we do by
providing the function symbol for a global plabel
reloc, and no symbol for local plabels. */
if (! plabel
&& sym_sec != NULL
&& sym_sec->output_section != NULL
&& ! bfd_is_abs_section (sym_sec))
{
asection *osec;
osec = sym_sec->output_section;
indx = elf_section_data (osec)->dynindx;
if (indx == 0)
{
osec = htab->etab.text_index_section;
indx = elf_section_data (osec)->dynindx;
}
BFD_ASSERT (indx != 0);
against a section symbol, so subtract out the
output section's address but not the offset
of the input section in the output section. */
outrel.r_addend -= osec->vma;
}
outrel.r_info = ELF32_R_INFO (indx, r_type);
}
sreloc = elf_section_data (input_section)->sreloc;
if (sreloc == NULL)
abort ();
loc = sreloc->contents;
loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
}
break;
case R_PARISC_TLS_LDM21L:
case R_PARISC_TLS_LDM14R:
{
bfd_vma off;
off = htab->tls_ldm_got.offset;
if (off & 1)
off &= ~1;
else
{
Elf_Internal_Rela outrel;
bfd_byte *loc;
outrel.r_offset = (off
+ htab->sgot->output_section->vma
+ htab->sgot->output_offset);
outrel.r_addend = 0;
outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32);
loc = htab->srelgot->contents;
loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
htab->tls_ldm_got.offset |= 1;
}
relocation = (off
+ htab->sgot->output_offset
+ htab->sgot->output_section->vma);
break;
}
case R_PARISC_TLS_LDO21L:
case R_PARISC_TLS_LDO14R:
relocation -= dtpoff_base (info);
break;
case R_PARISC_TLS_GD21L:
case R_PARISC_TLS_GD14R:
case R_PARISC_TLS_IE21L:
case R_PARISC_TLS_IE14R:
{
bfd_vma off;
int indx;
char tls_type;
indx = 0;
if (hh != NULL)
{
bfd_boolean dyn;
dyn = htab->etab.dynamic_sections_created;
if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &hh->eh)
&& (!info->shared
|| !SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))
{
indx = hh->eh.dynindx;
}
off = hh->eh.got.offset;
tls_type = hh->tls_type;
}
else
{
off = local_got_offsets[r_symndx];
tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx];
}
if (tls_type == GOT_UNKNOWN)
abort ();
if ((off & 1) != 0)
off &= ~1;
else
{
bfd_boolean need_relocs = FALSE;
Elf_Internal_Rela outrel;
bfd_byte *loc = NULL;
int cur_off = off;
now, and emit any relocations. If both an IE GOT and a
GD GOT are necessary, we emit the GD first. */
if ((info->shared || indx != 0)
&& (hh == NULL
|| ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
|| hh->eh.root.type != bfd_link_hash_undefweak))
{
need_relocs = TRUE;
loc = htab->srelgot->contents;
loc += htab->srelgot->reloc_count * sizeof (Elf32_External_Rela);
}
if (tls_type & GOT_TLS_GD)
{
if (need_relocs)
{
outrel.r_offset = (cur_off
+ htab->sgot->output_section->vma
+ htab->sgot->output_offset);
outrel.r_info = ELF32_R_INFO (indx,R_PARISC_TLS_DTPMOD32);
outrel.r_addend = 0;
bfd_put_32 (output_bfd, 0, htab->sgot->contents + cur_off);
bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
htab->srelgot->reloc_count++;
loc += sizeof (Elf32_External_Rela);
if (indx == 0)
bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
htab->sgot->contents + cur_off + 4);
else
{
bfd_put_32 (output_bfd, 0,
htab->sgot->contents + cur_off + 4);
outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32);
outrel.r_offset += 4;
bfd_elf32_swap_reloca_out (output_bfd, &outrel,loc);
htab->srelgot->reloc_count++;
loc += sizeof (Elf32_External_Rela);
}
}
else
{
general dynamic reference, then we must be in a
static link or an executable link with the
symbol binding locally. Mark it as belonging
to module 1, the executable. */
bfd_put_32 (output_bfd, 1,
htab->sgot->contents + cur_off);
bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
htab->sgot->contents + cur_off + 4);
}
cur_off += 8;
}
if (tls_type & GOT_TLS_IE)
{
if (need_relocs)
{
outrel.r_offset = (cur_off
+ htab->sgot->output_section->vma
+ htab->sgot->output_offset);
outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_TPREL32);
if (indx == 0)
outrel.r_addend = relocation - dtpoff_base (info);
else
outrel.r_addend = 0;
bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
htab->srelgot->reloc_count++;
loc += sizeof (Elf32_External_Rela);
}
else
bfd_put_32 (output_bfd, tpoff (info, relocation),
htab->sgot->contents + cur_off);
cur_off += 4;
}
if (hh != NULL)
hh->eh.got.offset |= 1;
else
local_got_offsets[r_symndx] |= 1;
}
if ((tls_type & GOT_TLS_GD)
&& r_type != R_PARISC_TLS_GD21L
&& r_type != R_PARISC_TLS_GD14R)
off += 2 * GOT_ENTRY_SIZE;
relocation = (off
+ htab->sgot->output_offset
+ htab->sgot->output_section->vma);
break;
}
case R_PARISC_TLS_LE21L:
case R_PARISC_TLS_LE14R:
{
relocation = tpoff (info, relocation);
break;
}
break;
default:
break;
}
rstatus = final_link_relocate (input_section, contents, rela, relocation,
htab, sym_sec, hh, info);
if (rstatus == bfd_reloc_ok)
continue;
if (hh != NULL)
sym_name = hh_name (hh);
else
{
sym_name = bfd_elf_string_from_elf_section (input_bfd,
symtab_hdr->sh_link,
sym->st_name);
if (sym_name == NULL)
return FALSE;
if (*sym_name == '\0')
sym_name = bfd_section_name (input_bfd, sym_sec);
}
howto = elf_hppa_howto_table + r_type;
if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
{
if (rstatus == bfd_reloc_notsupported || !warned_undef)
{
(*_bfd_error_handler)
(_("%B(%A+0x%lx): cannot handle %s for %s"),
input_bfd,
input_section,
(long) rela->r_offset,
howto->name,
sym_name);
bfd_set_error (bfd_error_bad_value);
return FALSE;
}
}
else
{
if (!((*info->callbacks->reloc_overflow)
(info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
(bfd_vma) 0, input_bfd, input_section, rela->r_offset)))
return FALSE;
}
}
return TRUE;
}
dynamic sections here. */
static bfd_boolean
elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
struct bfd_link_info *info,
struct elf_link_hash_entry *eh,
Elf_Internal_Sym *sym)
{
struct elf32_hppa_link_hash_table *htab;
Elf_Internal_Rela rela;
bfd_byte *loc;
htab = hppa_link_hash_table (info);
if (eh->plt.offset != (bfd_vma) -1)
{
bfd_vma value;
if (eh->plt.offset & 1)
abort ();
it up.
The format of a plt entry is
<funcaddr>
<__gp>
*/
value = 0;
if (eh->root.type == bfd_link_hash_defined
|| eh->root.type == bfd_link_hash_defweak)
{
value = eh->root.u.def.value;
if (eh->root.u.def.section->output_section != NULL)
value += (eh->root.u.def.section->output_offset
+ eh->root.u.def.section->output_section->vma);
}
rela.r_offset = (eh->plt.offset
+ htab->splt->output_offset
+ htab->splt->output_section->vma);
if (eh->dynindx != -1)
{
rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
rela.r_addend = 0;
}
else
{
used by a plabel so must be kept in the .plt. */
rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
rela.r_addend = value;
}
loc = htab->srelplt->contents;
loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
bfd_elf32_swap_reloca_out (htab->splt->output_section->owner, &rela, loc);
if (!eh->def_regular)
{
the .plt section. Leave the value alone. */
sym->st_shndx = SHN_UNDEF;
}
}
if (eh->got.offset != (bfd_vma) -1
&& (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_GD) == 0
&& (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_IE) == 0)
{
up. */
rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
+ htab->sgot->output_offset
+ htab->sgot->output_section->vma);
locally or was forced to be local because of a version file,
we just want to emit a RELATIVE reloc. The entry in the
global offset table will already have been initialized in the
relocate_section function. */
if (info->shared
&& (info->symbolic || eh->dynindx == -1)
&& eh->def_regular)
{
rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
rela.r_addend = (eh->root.u.def.value
+ eh->root.u.def.section->output_offset
+ eh->root.u.def.section->output_section->vma);
}
else
{
if ((eh->got.offset & 1) != 0)
abort ();
bfd_put_32 (output_bfd, 0, htab->sgot->contents + (eh->got.offset & ~1));
rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
rela.r_addend = 0;
}
loc = htab->srelgot->contents;
loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
}
if (eh->needs_copy)
{
asection *sec;
if (! (eh->dynindx != -1
&& (eh->root.type == bfd_link_hash_defined
|| eh->root.type == bfd_link_hash_defweak)))
abort ();
sec = htab->srelbss;
rela.r_offset = (eh->root.u.def.value
+ eh->root.u.def.section->output_offset
+ eh->root.u.def.section->output_section->vma);
rela.r_addend = 0;
rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
}
if (eh_name (eh)[0] == '_'
&& (strcmp (eh_name (eh), "_DYNAMIC") == 0
|| eh == htab->etab.hgot))
{
sym->st_shndx = SHN_ABS;
}
return TRUE;
}
dynamic linker, before writing them out. */
static enum elf_reloc_type_class
elf32_hppa_reloc_type_class (const Elf_Internal_Rela *rela)
{
relative by the "if (ELF32_R_SYM (rela->r_info) == 0)"
check below. */
switch ((int) ELF32_R_TYPE (rela->r_info))
{
case R_PARISC_TLS_DTPMOD32:
case R_PARISC_TLS_DTPOFF32:
case R_PARISC_TLS_TPREL32:
return reloc_class_normal;
}
if (ELF32_R_SYM (rela->r_info) == 0)
return reloc_class_relative;
switch ((int) ELF32_R_TYPE (rela->r_info))
{
case R_PARISC_IPLT:
return reloc_class_plt;
case R_PARISC_COPY:
return reloc_class_copy;
default:
return reloc_class_normal;
}
}
static bfd_boolean
elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
struct bfd_link_info *info)
{
bfd *dynobj;
struct elf32_hppa_link_hash_table *htab;
asection *sdyn;
htab = hppa_link_hash_table (info);
dynobj = htab->etab.dynobj;
sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
if (htab->etab.dynamic_sections_created)
{
Elf32_External_Dyn *dyncon, *dynconend;
if (sdyn == NULL)
abort ();
dyncon = (Elf32_External_Dyn *) sdyn->contents;
dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
for (; dyncon < dynconend; dyncon++)
{
Elf_Internal_Dyn dyn;
asection *s;
bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
switch (dyn.d_tag)
{
default:
continue;
case DT_PLTGOT:
dyn.d_un.d_ptr = elf_gp (output_bfd);
break;
case DT_JMPREL:
s = htab->srelplt;
dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
break;
case DT_PLTRELSZ:
s = htab->srelplt;
dyn.d_un.d_val = s->size;
break;
case DT_RELASZ:
overall reloc count. */
s = htab->srelplt;
if (s == NULL)
continue;
dyn.d_un.d_val -= s->size;
break;
case DT_RELA:
If .rela.plt is the first .rela section, we adjust
DT_RELA to not include it. */
s = htab->srelplt;
if (s == NULL)
continue;
if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
continue;
dyn.d_un.d_ptr += s->size;
break;
}
bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
}
}
if (htab->sgot != NULL && htab->sgot->size != 0)
{
We use it to point to our dynamic section, if we have one. */
bfd_put_32 (output_bfd,
sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
htab->sgot->contents);
memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
elf_section_data (htab->sgot->output_section)
->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
}
if (htab->splt != NULL && htab->splt->size != 0)
{
elf_section_data (htab->splt->output_section)
->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
if (htab->need_plt_stub)
{
memcpy (htab->splt->contents
+ htab->splt->size - sizeof (plt_stub),
plt_stub, sizeof (plt_stub));
if ((htab->splt->output_offset
+ htab->splt->output_section->vma
+ htab->splt->size)
!= (htab->sgot->output_offset
+ htab->sgot->output_section->vma))
{
(*_bfd_error_handler)
(_(".got section not immediately after .plt section"));
return FALSE;
}
}
}
return TRUE;
}
symbol. */
static int
elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
{
if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
return STT_PARISC_MILLI;
else
return type;
}
#define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
#define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
#define bfd_elf32_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
#define elf_info_to_howto elf_hppa_info_to_howto
#define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
#define bfd_elf32_mkobject elf32_hppa_mkobject
#define bfd_elf32_bfd_final_link elf32_hppa_final_link
#define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
#define bfd_elf32_bfd_link_hash_table_free elf32_hppa_link_hash_table_free
#define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
#define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
#define elf_backend_check_relocs elf32_hppa_check_relocs
#define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
#define elf_backend_fake_sections elf_hppa_fake_sections
#define elf_backend_relocate_section elf32_hppa_relocate_section
#define elf_backend_hide_symbol elf32_hppa_hide_symbol
#define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
#define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
#define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
#define elf_backend_init_index_section _bfd_elf_init_1_index_section
#define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
#define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
#define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
#define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
#define elf_backend_object_p elf32_hppa_object_p
#define elf_backend_final_write_processing elf_hppa_final_write_processing
#define elf_backend_post_process_headers _bfd_elf_set_osabi
#define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
#define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
#define elf_backend_action_discarded elf_hppa_action_discarded
#define elf_backend_can_gc_sections 1
#define elf_backend_can_refcount 1
#define elf_backend_plt_alignment 2
#define elf_backend_want_got_plt 0
#define elf_backend_plt_readonly 0
#define elf_backend_want_plt_sym 0
#define elf_backend_got_header_size 8
#define elf_backend_rela_normal 1
#define TARGET_BIG_SYM bfd_elf32_hppa_vec
#define TARGET_BIG_NAME "elf32-hppa"
#define ELF_ARCH bfd_arch_hppa
#define ELF_MACHINE_CODE EM_PARISC
#define ELF_MAXPAGESIZE 0x1000
#define ELF_OSABI ELFOSABI_HPUX
#define elf32_bed elf32_hppa_hpux_bed
#include "elf32-target.h"
#undef TARGET_BIG_SYM
#define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
#undef TARGET_BIG_NAME
#define TARGET_BIG_NAME "elf32-hppa-linux"
#undef ELF_OSABI
#define ELF_OSABI ELFOSABI_LINUX
#undef elf32_bed
#define elf32_bed elf32_hppa_linux_bed
#include "elf32-target.h"
#undef TARGET_BIG_SYM
#define TARGET_BIG_SYM bfd_elf32_hppa_nbsd_vec
#undef TARGET_BIG_NAME
#define TARGET_BIG_NAME "elf32-hppa-netbsd"
#undef ELF_OSABI
#define ELF_OSABI ELFOSABI_NETBSD
#undef elf32_bed
#define elf32_bed elf32_hppa_netbsd_bed
#include "elf32-target.h"