* M_APM - mapmrsin.c
*
* Copyright (C) 1999 - 2007 Michael C. Ring
*
* Permission to use, copy, and distribute this software and its
* documentation for any purpose with or without fee is hereby granted,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation.
*
* Permission to modify the software is granted. Permission to distribute
* the modified code is granted. Modifications are to be distributed by
* using the file 'license.txt' as a template to modify the file header.
* 'license.txt' is available in the official MAPM distribution.
*
* This software is provided "as is" without express or implied warranty.
*/
* $Id: mapmrsin.c,v 1.8 2007/12/03 01:57:00 mike Exp $
*
* This file contains the basic series expansion functions for
* the SIN / COS functions.
*
* $Log: mapmrsin.c,v $
* Revision 1.8 2007/12/03 01:57:00 mike
* Update license
*
* Revision 1.7 2003/06/08 18:22:09 mike
* optimize the raw sin algorithm
*
* Revision 1.6 2002/11/03 21:58:27 mike
* Updated function parameters to use the modern style
*
* Revision 1.5 2001/07/10 22:14:43 mike
* optimize raw_sin & cos by using fewer digits
* as subsequent terms get smaller
*
* Revision 1.4 2000/03/30 21:53:48 mike
* change compare to terminate series expansion using ints instead
* of MAPM numbers
*
* Revision 1.3 1999/06/20 16:23:10 mike
* changed local static variables to MAPM stack variables
*
* Revision 1.2 1999/05/12 21:06:36 mike
* changed global var names
*
* Revision 1.1 1999/05/10 20:56:31 mike
* Initial revision
*/
#include "m_apm_lc.h"
x^3 x^5 x^7 x^9
sin(x) = x - --- + --- - --- + --- ...
3! 5! 7! 9!
*/
void M_raw_sin(M_APM rr, int places, M_APM xx)
{
M_APM sum, term, tmp2, tmp7, tmp8;
int tolerance, flag, local_precision, dplaces;
long m1, m2;
sum = M_get_stack_var();
term = M_get_stack_var();
tmp2 = M_get_stack_var();
tmp7 = M_get_stack_var();
tmp8 = M_get_stack_var();
m_apm_copy(sum, xx);
m_apm_copy(term, xx);
m_apm_multiply(tmp8, xx, xx);
m_apm_round(tmp2, (places + 6), tmp8);
dplaces = (places + 8) - xx->m_apm_exponent;
tolerance = xx->m_apm_exponent - (places + 4);
m1 = 2L;
flag = 0;
while (TRUE)
{
m_apm_multiply(tmp8, term, tmp2);
if ((tmp8->m_apm_exponent < tolerance) || (tmp8->m_apm_sign == 0))
break;
local_precision = dplaces + term->m_apm_exponent;
if (local_precision < 20)
local_precision = 20;
m2 = m1 * (m1 + 1);
m_apm_set_long(tmp7, m2);
m_apm_divide(term, local_precision, tmp8, tmp7);
if (flag == 0)
{
m_apm_subtract(tmp7, sum, term);
m_apm_copy(sum, tmp7);
}
else
{
m_apm_add(tmp7, sum, term);
m_apm_copy(sum, tmp7);
}
m1 += 2;
flag = 1 - flag;
}
m_apm_round(rr, places, sum);
M_restore_stack(5);
}
x^2 x^4 x^6 x^8
cos(x) = 1 - --- + --- - --- + --- ...
2! 4! 6! 8!
*/
void M_raw_cos(M_APM rr, int places, M_APM xx)
{
M_APM sum, term, tmp7, tmp8, tmp9;
int tolerance, flag, local_precision, prev_exp;
long m1, m2;
sum = M_get_stack_var();
term = M_get_stack_var();
tmp7 = M_get_stack_var();
tmp8 = M_get_stack_var();
tmp9 = M_get_stack_var();
m_apm_copy(sum, MM_One);
m_apm_copy(term, MM_One);
m_apm_multiply(tmp8, xx, xx);
m_apm_round(tmp9, (places + 6), tmp8);
local_precision = places + 8;
tolerance = -(places + 4);
prev_exp = 0;
m1 = 1L;
flag = 0;
while (TRUE)
{
m2 = m1 * (m1 + 1);
m_apm_set_long(tmp7, m2);
m_apm_multiply(tmp8, term, tmp9);
m_apm_divide(term, local_precision, tmp8, tmp7);
if (flag == 0)
{
m_apm_subtract(tmp7, sum, term);
m_apm_copy(sum, tmp7);
}
else
{
m_apm_add(tmp7, sum, term);
m_apm_copy(sum, tmp7);
}
if ((term->m_apm_exponent < tolerance) || (term->m_apm_sign == 0))
break;
if (m1 != 1L)
{
local_precision = local_precision + term->m_apm_exponent - prev_exp;
if (local_precision < 20)
local_precision = 20;
}
prev_exp = term->m_apm_exponent;
m1 += 2;
flag = 1 - flag;
}
m_apm_round(rr, places, sum);
M_restore_stack(5);
}