* M_APM - mapm_exp.c
*
* Copyright (C) 1999 - 2007 Michael C. Ring
*
* Permission to use, copy, and distribute this software and its
* documentation for any purpose with or without fee is hereby granted,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation.
*
* Permission to modify the software is granted. Permission to distribute
* the modified code is granted. Modifications are to be distributed by
* using the file 'license.txt' as a template to modify the file header.
* 'license.txt' is available in the official MAPM distribution.
*
* This software is provided "as is" without express or implied warranty.
*/
* $Id: mapm_exp.c,v 1.37 2007/12/03 01:36:00 mike Exp $
*
* This file contains the EXP function.
*
* $Log: mapm_exp.c,v $
* Revision 1.37 2007/12/03 01:36:00 mike
* Update license
*
* Revision 1.36 2004/06/02 00:29:03 mike
* simplify logic in compute_nn
*
* Revision 1.35 2004/05/29 18:29:44 mike
* move exp nn calculation into its own function
*
* Revision 1.34 2004/05/21 20:41:01 mike
* fix potential buffer overflow
*
* Revision 1.33 2004/02/18 02:46:45 mike
* fix comment
*
* Revision 1.32 2004/02/18 02:41:35 mike
* check to make sure 'nn' does not overflow
*
* Revision 1.31 2004/01/01 00:06:38 mike
* make a comment more clear
*
* Revision 1.30 2003/12/31 21:44:57 mike
* simplify logic in _exp
*
* Revision 1.29 2003/12/28 00:03:27 mike
* dont allow 'tmp7' to get too small prior to divide by 256
*
* Revision 1.28 2003/12/27 22:53:04 mike
* change 1024 to 512, if input is already small, call
* raw_exp directly and return
*
* Revision 1.27 2003/03/30 21:16:37 mike
* use global version of log(2) instead of local copy
*
* Revision 1.26 2002/11/03 22:30:18 mike
* Updated function parameters to use the modern style
*
* Revision 1.25 2001/08/06 22:07:00 mike
* round the 'nn' calculation to the nearest int
*
* Revision 1.24 2001/08/05 21:58:59 mike
* make 1 / log(2) constant shorter
*
* Revision 1.23 2001/07/16 19:10:23 mike
* add function M_free_all_exp
*
* Revision 1.22 2001/07/10 21:55:36 mike
* optimize raw_exp by using fewer digits as the
* subsequent terms get smaller
*
* Revision 1.21 2001/02/06 21:20:31 mike
* optimize 'nn' calculation (for the future)
*
* Revision 1.20 2001/02/05 21:55:12 mike
* minor optimization, use a multiply instead
* of a divide
*
* Revision 1.19 2000/08/22 21:34:41 mike
* increase local precision
*
* Revision 1.18 2000/05/18 22:05:22 mike
* move _pow to a separate file
*
* Revision 1.17 2000/05/04 23:21:01 mike
* use global var 256R
*
* Revision 1.16 2000/03/30 21:33:30 mike
* change termination of raw_exp to use ints, not MAPM numbers
*
* Revision 1.15 2000/02/05 22:59:46 mike
* adjust decimal places on calculation
*
* Revision 1.14 2000/02/04 20:45:21 mike
* re-compute log(2) on the fly if we need a more precise value
*
* Revision 1.13 2000/02/04 19:35:14 mike
* use just an approx log(2) for the integer divide
*
* Revision 1.12 2000/02/04 16:47:32 mike
* use the real algorithm for EXP
*
* Revision 1.11 1999/09/18 01:27:40 mike
* if X is 0 on the pow function, return 0 right away
*
* Revision 1.10 1999/06/19 20:54:07 mike
* changed local static MAPM to stack variables
*
* Revision 1.9 1999/06/01 22:37:44 mike
* adjust decimal places passed to raw function
*
* Revision 1.8 1999/06/01 01:44:03 mike
* change threshold from 1000 to 100 for 65536 divisor
*
* Revision 1.7 1999/06/01 01:03:31 mike
* vary 'q' instead of checking input against +/- 10 and +/- 40
*
* Revision 1.6 1999/05/15 01:54:27 mike
* add check for number of decimal places
*
* Revision 1.5 1999/05/15 01:09:49 mike
* minor tweak to POW decimal places
*
* Revision 1.4 1999/05/13 00:14:00 mike
* added more comments
*
* Revision 1.3 1999/05/12 23:39:05 mike
* change #places passed to sub functions
*
* Revision 1.2 1999/05/10 21:35:13 mike
* added some comments
*
* Revision 1.1 1999/05/10 20:56:31 mike
* Initial revision
*/
#include "m_apm_lc.h"
static M_APM MM_exp_log2R;
static M_APM MM_exp_512R;
static int MM_firsttime1 = TRUE;
void M_free_all_exp()
{
if (MM_firsttime1 == FALSE)
{
m_apm_free(MM_exp_log2R);
m_apm_free(MM_exp_512R);
MM_firsttime1 = TRUE;
}
}
void m_apm_exp(M_APM r, int places, M_APM x)
{
M_APM tmp7, tmp8, tmp9;
int dplaces, nn, ii;
if (MM_firsttime1)
{
MM_firsttime1 = FALSE;
MM_exp_log2R = m_apm_init();
MM_exp_512R = m_apm_init();
m_apm_set_string(MM_exp_log2R, "1.44269504089");
m_apm_set_string(MM_exp_512R, "1.953125E-3");
}
tmp7 = M_get_stack_var();
tmp8 = M_get_stack_var();
tmp9 = M_get_stack_var();
if (x->m_apm_sign == 0)
{
m_apm_copy(r, MM_One);
M_restore_stack(3);
return;
}
if (x->m_apm_exponent <= -3)
{
M_raw_exp(tmp9, (places + 6), x);
m_apm_round(r, places, tmp9);
M_restore_stack(3);
return;
}
From David H. Bailey's MPFUN Fortran package :
exp (t) = (1 + r + r^2 / 2! + r^3 / 3! + r^4 / 4! ...) ^ q * 2 ^ n
where q = 256, r = t' / q, t' = t - n Log(2) and where n is chosen so
that -0.5 Log(2) < t' <= 0.5 Log(2). Reducing t mod Log(2) and
dividing by 256 insures that -0.001 < r <= 0.001, which accelerates
convergence in the above series.
I use q = 512 and also limit how small 'r' can become. The 'r' used
here is limited in magnitude from 1.95E-4 < |r| < 1.35E-3. Forcing
'r' into a narrow range keeps the algorithm 'well behaved'.
( the range is [0.1 / 512] to [log(2) / 512] )
*/
if (M_exp_compute_nn(&nn, tmp7, x) != 0)
{
M_apm_log_error_msg(M_APM_RETURN,
"\'m_apm_exp\', Input too large, Overflow");
M_set_to_zero(r);
M_restore_stack(3);
return;
}
dplaces = places + 8;
M_check_log_places(dplaces);
m_apm_multiply(tmp8, tmp7, MM_lc_log2);
m_apm_subtract(tmp7, x, tmp8);
* guarantee that |tmp7| is between 0.1 and 0.9999999....
* (in practice, the upper limit only reaches log(2), 0.693... )
*/
while (TRUE)
{
if (tmp7->m_apm_sign != 0)
{
if (tmp7->m_apm_exponent == 0)
break;
}
if (tmp7->m_apm_sign >= 0)
{
nn++;
m_apm_subtract(tmp8, tmp7, MM_lc_log2);
m_apm_copy(tmp7, tmp8);
}
else
{
nn--;
m_apm_add(tmp8, tmp7, MM_lc_log2);
m_apm_copy(tmp7, tmp8);
}
}
m_apm_multiply(tmp9, tmp7, MM_exp_512R);
M_raw_exp(tmp8, dplaces, tmp9);
* raise result to the 512 power
*
* note : x ^ 512 = (((x ^ 2) ^ 2) ^ 2) ... 9 times
*/
ii = 9;
while (TRUE)
{
m_apm_multiply(tmp9, tmp8, tmp8);
m_apm_round(tmp8, dplaces, tmp9);
if (--ii == 0)
break;
}
m_apm_integer_pow(tmp7, dplaces, MM_Two, nn);
m_apm_multiply(tmp9, tmp7, tmp8);
m_apm_round(r, places, tmp9);
M_restore_stack(3);
}
compute int *n = round_to_nearest_int(a / log(2))
M_APM b = MAPM version of *n
returns 0: OK
-1, 1: failure
*/
int M_exp_compute_nn(int *n, M_APM b, M_APM a)
{
M_APM tmp0, tmp1;
void *vp;
char *cp, sbuf[48];
int kk;
*n = 0;
vp = NULL;
cp = sbuf;
tmp0 = M_get_stack_var();
tmp1 = M_get_stack_var();
m_apm_multiply(tmp1, a, MM_exp_log2R);
if (tmp1->m_apm_sign >= 0)
{
m_apm_add(tmp0, tmp1, MM_0_5);
m_apm_floor(tmp1, tmp0);
}
else
{
m_apm_subtract(tmp0, tmp1, MM_0_5);
m_apm_ceil(tmp1, tmp0);
}
kk = tmp1->m_apm_exponent;
if (kk >= 42)
{
if ((vp = (void *)MAPM_MALLOC((kk + 16) * sizeof(char))) == NULL)
{
M_apm_log_error_msg(M_APM_FATAL, "\'M_exp_compute_nn\', Out of memory");
}
cp = (char *)vp;
}
m_apm_to_integer_string(cp, tmp1);
*n = atoi(cp);
m_apm_set_long(b, (long)(*n));
kk = m_apm_compare(b, tmp1);
if (vp != NULL)
MAPM_FREE(vp);
M_restore_stack(2);
return(kk);
}
calculate the exponential function using the following series :
x^2 x^3 x^4 x^5
exp(x) == 1 + x + --- + --- + --- + --- ...
2! 3! 4! 5!
*/
void M_raw_exp(M_APM rr, int places, M_APM xx)
{
M_APM tmp0, digit, term;
int tolerance, local_precision, prev_exp;
long m1;
tmp0 = M_get_stack_var();
term = M_get_stack_var();
digit = M_get_stack_var();
local_precision = places + 8;
tolerance = -(places + 4);
prev_exp = 0;
m_apm_add(rr, MM_One, xx);
m_apm_copy(term, xx);
m1 = 2L;
while (TRUE)
{
m_apm_set_long(digit, m1);
m_apm_multiply(tmp0, term, xx);
m_apm_divide(term, local_precision, tmp0, digit);
m_apm_add(tmp0, rr, term);
m_apm_copy(rr, tmp0);
if ((term->m_apm_exponent < tolerance) || (term->m_apm_sign == 0))
break;
if (m1 != 2L)
{
local_precision = local_precision + term->m_apm_exponent - prev_exp;
if (local_precision < 20)
local_precision = 20;
}
prev_exp = term->m_apm_exponent;
m1++;
}
M_restore_stack(3);
}