Copyright 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
Contributed by Ludovic Meunier and Paul Zimmermann.
This file is part of the GNU MPFR Library.
The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"
#define EXP1 2.71828182845904523536 /* exp(1) */
static int mpfr_erf_0 (mpfr_ptr, mpfr_srcptr, double, mpfr_rnd_t);
int
mpfr_erf (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode)
{
mpfr_t xf;
int inex, large;
MPFR_SAVE_EXPO_DECL (expo);
MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", x, x, rnd_mode),
("y[%#R]=%R inexact=%d", y, y, inex));
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
{
if (MPFR_IS_NAN (x))
{
MPFR_SET_NAN (y);
MPFR_RET_NAN;
}
else if (MPFR_IS_INF (x))
return mpfr_set_si (y, MPFR_INT_SIGN (x), MPFR_RNDN);
else
{
MPFR_ASSERTD (MPFR_IS_ZERO (x));
return mpfr_set (y, x, MPFR_RNDN);
}
}
where x is large */
MPFR_SAVE_EXPO_MARK (expo);
with 1 - x^2/3 <= sqrt(Pi)*erf(x)/2/x <= 1 for x >= 0. This means that
if x^2/3 < 2^(-PREC(y)-1) we can decide of the correct rounding,
unless we have a worst-case for 2x/sqrt(Pi). */
if (MPFR_EXP(x) < - (mpfr_exp_t) (MPFR_PREC(y) / 2))
{
and 2x/sqrt(Pi) <= erf(x) <= 2x/sqrt(Pi) (1 - x^2/3) for x < 0.
In both cases |2x/sqrt(Pi) (1 - x^2/3)| <= |erf(x)| <= |2x/sqrt(Pi)|.
We will compute l and h such that l <= |2x/sqrt(Pi) (1 - x^2/3)|
and |2x/sqrt(Pi)| <= h. If l and h round to the same value to
precision PREC(y) and rounding rnd_mode, then we are done. */
mpfr_t l, h;
int ok, inex2;
mpfr_init2 (l, MPFR_PREC(y) + 17);
mpfr_init2 (h, MPFR_PREC(y) + 17);
mpfr_mul (l, x, x, MPFR_RNDU);
mpfr_div_ui (l, l, 3, MPFR_RNDU);
mpfr_ui_sub (l, 1, l, MPFR_RNDZ);
mpfr_const_pi (h, MPFR_RNDU);
mpfr_sqrt (h, h, MPFR_RNDU);
mpfr_div (l, l, h, MPFR_RNDZ);
mpfr_mul_2ui (l, l, 1, MPFR_RNDZ);
mpfr_mul (l, l, x, MPFR_RNDZ);
|2x/sqrt(Pi) (1 - x^2/3)| */
mpfr_const_pi (h, MPFR_RNDD);
mpfr_sqrt (h, h, MPFR_RNDD);
mpfr_div_2ui (h, h, 1, MPFR_RNDD);
mpfr_div (h, x, h, MPFR_IS_POS(x) ? MPFR_RNDU : MPFR_RNDD);
inex = mpfr_prec_round (l, MPFR_PREC(y), rnd_mode);
inex2 = mpfr_prec_round (h, MPFR_PREC(y), rnd_mode);
ok = SAME_SIGN (inex, inex2) && mpfr_cmp (l, h) == 0;
if (ok)
mpfr_set (y, h, rnd_mode);
mpfr_clear (l);
mpfr_clear (h);
if (ok)
goto end;
for x=-0.100E-2 with a target precision of 3 bits, since
the error term x^2/3 is not that small. */
}
mpfr_init2 (xf, 53);
mpfr_const_log2 (xf, MPFR_RNDU);
mpfr_div (xf, x, xf, MPFR_RNDZ);
bound of |x/log(2)| */
mpfr_mul (xf, xf, x, MPFR_RNDZ);
large = mpfr_cmp_ui (xf, MPFR_PREC (y) + 1) > 0;
mpfr_clear (xf);
and |erf(x) - 1| <= exp(-x^2) is true for any x >= 0, thus if
exp(-x^2) < 2^(-PREC(y)-1) the result is 1 or 1-epsilon.
This rewrites as x^2/log(2) > p+1. */
if (MPFR_UNLIKELY (large))
{
mpfr_rnd_t rnd2 = MPFR_IS_POS (x) ? rnd_mode : MPFR_INVERT_RND(rnd_mode);
if (rnd2 == MPFR_RNDN || rnd2 == MPFR_RNDU || rnd2 == MPFR_RNDA)
{
inex = MPFR_INT_SIGN (x);
mpfr_set_si (y, inex, rnd2);
}
else
{
inex = -MPFR_INT_SIGN (x);
mpfr_setmax (y, 0);
MPFR_SET_SAME_SIGN (y, x);
}
}
else
{
double xf2;
xf2 = mpfr_get_d (x, MPFR_RNDN);
xf2 = xf2 * xf2;
inex = mpfr_erf_0 (y, x, xf2, rnd_mode);
}
end:
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_check_range (y, inex, rnd_mode);
}
static double
mul_2exp (double x, mpfr_exp_t e)
{
if (e > 0)
{
while (e--)
x *= 2.0;
}
else
{
while (e++)
x /= 2.0;
}
return x;
}
erf(x) = 2/sqrt(Pi) * sum((-1)^k*x^(2k+1)/k!/(2k+1), k=0..infinity)
Assumes x is neither NaN nor infinite nor zero.
Assumes also that e*x^2 <= n (target precision).
*/
static int
mpfr_erf_0 (mpfr_ptr res, mpfr_srcptr x, double xf2, mpfr_rnd_t rnd_mode)
{
mpfr_prec_t n, m;
mpfr_exp_t nuk, sigmak;
double tauk;
mpfr_t y, s, t, u;
unsigned int k;
int log2tauk;
int inex;
MPFR_ZIV_DECL (loop);
n = MPFR_PREC (res);
m = n + (mpfr_prec_t) (xf2 / LOG2) + 8 + MPFR_INT_CEIL_LOG2 (n);
mpfr_init2 (y, m);
mpfr_init2 (s, m);
mpfr_init2 (t, m);
mpfr_init2 (u, m);
MPFR_ZIV_INIT (loop, m);
for (;;)
{
mpfr_mul (y, x, x, MPFR_RNDU);
mpfr_set_ui (s, 1, MPFR_RNDN);
mpfr_set_ui (t, 1, MPFR_RNDN);
tauk = 0.0;
for (k = 1; ; k++)
{
mpfr_mul (t, y, t, MPFR_RNDU);
mpfr_div_ui (t, t, k, MPFR_RNDU);
mpfr_div_ui (u, t, 2 * k + 1, MPFR_RNDU);
sigmak = MPFR_GET_EXP (s);
if (k % 2)
mpfr_sub (s, s, u, MPFR_RNDN);
else
mpfr_add (s, s, u, MPFR_RNDN);
sigmak -= MPFR_GET_EXP(s);
nuk = MPFR_GET_EXP(u) - MPFR_GET_EXP(s);
if ((nuk < - (mpfr_exp_t) m) && ((double) k >= xf2))
break;
tauk = 0.5 + mul_2exp (tauk, sigmak)
+ mul_2exp (1.0 + 8.0 * (double) k, nuk);
}
mpfr_mul (s, x, s, MPFR_RNDU);
MPFR_SET_EXP (s, MPFR_GET_EXP (s) + 1);
mpfr_const_pi (t, MPFR_RNDZ);
mpfr_sqrt (t, t, MPFR_RNDZ);
mpfr_div (s, s, t, MPFR_RNDN);
tauk = 4.0 * tauk + 11.0;
log2tauk = __gmpfr_ceil_log2 (tauk);
if (MPFR_LIKELY (MPFR_CAN_ROUND (s, m - log2tauk, n, rnd_mode)))
break;
MPFR_ZIV_NEXT (loop, m);
mpfr_set_prec (y, m);
mpfr_set_prec (s, m);
mpfr_set_prec (t, m);
mpfr_set_prec (u, m);
}
MPFR_ZIV_FREE (loop);
inex = mpfr_set (res, s, rnd_mode);
mpfr_clear (y);
mpfr_clear (t);
mpfr_clear (u);
mpfr_clear (s);
return inex;
}