Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 2000, 2001,
2002, 2003, 2004, 2007 Free Software Foundation, Inc.
Written by Cygnus Support.
This file is part of BFD, the Binary File Descriptor library.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
MA 02110-1301, USA. */
relocation.
FIXME: This code should be rewritten to support the new COFF
linker. Basically, they need to deal with COFF relocs rather than
BFD generic relocs. They should store the relocs in some location
where coff_link_input_bfd can find them (and coff_link_input_bfd
should be changed to use this location rather than rereading the
file) (unless info->keep_memory is FALSE, in which case they should
free up the relocs after dealing with them). */
#include "sysdep.h"
#include "bfd.h"
#include "libbfd.h"
#include "bfdlink.h"
#include "genlink.h"
#include "coff/internal.h"
#include "libcoff.h"
bfd_vma
bfd_coff_reloc16_get_value (reloc, link_info, input_section)
arelent *reloc;
struct bfd_link_info *link_info;
asection *input_section;
{
bfd_vma value;
asymbol *symbol = *(reloc->sym_ptr_ptr);
base of the section. To relocate, we find where the section will
live in the output and add that in. */
if (bfd_is_und_section (symbol->section)
|| bfd_is_com_section (symbol->section))
{
struct bfd_link_hash_entry *h;
global linker hash table. FIXME: This should be changed when
we convert this stuff to use a specific final_link function
and change the interface to bfd_relax_section to not require
the generic symbols. */
h = bfd_wrapped_link_hash_lookup (input_section->owner, link_info,
bfd_asymbol_name (symbol),
FALSE, FALSE, TRUE);
if (h != (struct bfd_link_hash_entry *) NULL
&& (h->type == bfd_link_hash_defined
|| h->type == bfd_link_hash_defweak))
value = (h->u.def.value
+ h->u.def.section->output_section->vma
+ h->u.def.section->output_offset);
else if (h != (struct bfd_link_hash_entry *) NULL
&& h->type == bfd_link_hash_common)
value = h->u.c.size;
else if (h != (struct bfd_link_hash_entry *) NULL
&& h->type == bfd_link_hash_undefweak)
value = 0;
else
{
if (!((*link_info->callbacks->undefined_symbol)
(link_info, bfd_asymbol_name (symbol),
input_section->owner, input_section, reloc->address,
TRUE)))
abort ();
value = 0;
}
}
else
{
value = symbol->value
+ symbol->section->output_offset
+ symbol->section->output_section->vma;
}
value += reloc->addend;
return value;
}
void
bfd_perform_slip (abfd, slip, input_section, value)
bfd *abfd;
unsigned int slip;
asection *input_section;
bfd_vma value;
{
asymbol **s;
s = _bfd_generic_link_get_symbols (abfd);
BFD_ASSERT (s != (asymbol **) NULL);
what's happened. */
while (*s)
{
asymbol *p = *s;
if (p->section == input_section)
{
if (p->value > value)
{
p->value -= slip;
if (p->udata.p != NULL)
{
struct generic_link_hash_entry *h;
h = (struct generic_link_hash_entry *) p->udata.p;
BFD_ASSERT (h->root.type == bfd_link_hash_defined
|| h->root.type == bfd_link_hash_defweak);
h->root.u.def.value -= slip;
BFD_ASSERT (h->root.u.def.value == p->value);
}
}
}
s++;
}
}
bfd_boolean
bfd_coff_reloc16_relax_section (abfd, input_section, link_info, again)
bfd *abfd;
asection *input_section;
struct bfd_link_info *link_info;
bfd_boolean *again;
{
bfd *input_bfd = input_section->owner;
unsigned *shrinks;
unsigned shrink = 0;
long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
arelent **reloc_vector = NULL;
long reloc_count;
times (see discussion of the "shrinks" array below). */
*again = FALSE;
if (reloc_size < 0)
return FALSE;
reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
if (!reloc_vector && reloc_size > 0)
return FALSE;
reloc_count =
bfd_canonicalize_reloc (input_bfd, input_section, reloc_vector,
_bfd_generic_link_get_symbols (input_bfd));
if (reloc_count < 0)
{
free (reloc_vector);
return FALSE;
}
for that simplicity is we can only call this function once for
each section.
So, to get the best results within that limitation, we do multiple
relaxing passes over each section here. That involves keeping track
of the "shrink" at each reloc in the section. This allows us to
accurately determine the relative location of two relocs within
this section.
In theory, if we kept the "shrinks" array for each section for the
entire link, we could use the generic relaxing code in the linker
and get better results, particularly for jsr->bsr and 24->16 bit
memory reference relaxations. */
if (reloc_count > 0)
{
int another_pass = 0;
bfd_size_type amt;
The last element is used as an accumulator of shrinks. */
amt = reloc_count + 1;
amt *= sizeof (unsigned);
shrinks = (unsigned *) bfd_zmalloc (amt);
do
{
arelent **parent;
unsigned int i;
long j;
another_pass = 0;
for (i = 0, parent = reloc_vector; *parent; parent++, i++)
{
in this section and attempt to shrink it. */
shrink = bfd_coff_reloc16_estimate (abfd, input_section, *parent,
shrinks[i], link_info);
another pass. */
if (shrink != shrinks[i])
{
another_pass = 1;
for (j = i + 1; j <= reloc_count; j++)
shrinks[j] += shrink - shrinks[i];
}
}
}
while (another_pass);
shrink = shrinks[reloc_count];
free ((char *) shrinks);
}
input_section->rawsize = input_section->size;
input_section->size -= shrink;
free ((char *) reloc_vector);
return TRUE;
}
bfd_byte *
bfd_coff_reloc16_get_relocated_section_contents (in_abfd,
link_info,
link_order,
data,
relocatable,
symbols)
bfd *in_abfd;
struct bfd_link_info *link_info;
struct bfd_link_order *link_order;
bfd_byte *data;
bfd_boolean relocatable;
asymbol **symbols;
{
bfd *input_bfd = link_order->u.indirect.section->owner;
asection *input_section = link_order->u.indirect.section;
long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
arelent **reloc_vector;
long reloc_count;
bfd_size_type sz;
if (reloc_size < 0)
return NULL;
if (relocatable)
return bfd_generic_get_relocated_section_contents (in_abfd, link_info,
link_order,
data, relocatable,
symbols);
sz = input_section->rawsize ? input_section->rawsize : input_section->size;
if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
return NULL;
reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
if (!reloc_vector && reloc_size != 0)
return NULL;
reloc_count = bfd_canonicalize_reloc (input_bfd,
input_section,
reloc_vector,
symbols);
if (reloc_count < 0)
{
free (reloc_vector);
return NULL;
}
if (reloc_count > 0)
{
arelent **parent = reloc_vector;
arelent *reloc;
unsigned int dst_address = 0;
unsigned int src_address = 0;
unsigned int run;
unsigned int idx;
while (dst_address < link_order->size)
{
reloc = *parent;
if (reloc)
{
relocation, so we use the original address to work out the
run of non-relocated data. */
run = reloc->address - src_address;
parent++;
}
else
{
run = link_order->size - dst_address;
}
for (idx = 0; idx < run; idx++)
data[dst_address++] = data[src_address++];
if (reloc)
{
bfd_coff_reloc16_extra_cases (input_bfd, link_info, link_order,
reloc, data, &src_address,
&dst_address);
}
}
}
free ((char *) reloc_vector);
return data;
}