* @brief Parallel implementation of std::random_shuffle().
* This file is a GNU parallel extension to the Standard C++ Library.
*/
#ifndef _GLIBCXX_PARALLEL_RANDOM_SHUFFLE_H
#define _GLIBCXX_PARALLEL_RANDOM_SHUFFLE_H 1
#include <limits>
#include <bits/stl_numeric.h>
#include <parallel/parallel.h>
#include <parallel/random_number.h>
namespace __gnu_parallel
{
*
* Since many variables of this type are allocated, it should be
* chosen as small as possible.
*/
typedef unsigned short bin_index;
__gnu_parallel::parallel_random_shuffle(). */
template<typename RandomAccessIterator>
struct DRandomShufflingGlobalData
{
typedef std::iterator_traits<RandomAccessIterator> traits_type;
typedef typename traits_type::value_type value_type;
typedef typename traits_type::difference_type difference_type;
RandomAccessIterator& source;
value_type** temporaries;
*
* Dimensions (num_threads + 1) x (num_bins + 1). */
difference_type** dist;
difference_type* starts;
corresponding bin. */
thread_index_t* bin_proc;
int num_bins;
int num_bits;
DRandomShufflingGlobalData(RandomAccessIterator& _source)
: source(_source) { }
};
__gnu_parallel::parallel_random_shuffle().
*/
template<typename RandomAccessIterator, typename RandomNumberGenerator>
struct DRSSorterPU
{
int num_threads;
bin_index bins_begin;
bin_index bins_end;
uint32 seed;
DRandomShufflingGlobalData<RandomAccessIterator>* sd;
};
* @param logp Logarithm (basis 2) of the upper range bound.
* @param rng Random number generator to use.
*/
template<typename RandomNumberGenerator>
inline int
random_number_pow2(int logp, RandomNumberGenerator& rng)
{ return rng.genrand_bits(logp); }
* @param pus Array of thread-local data records. */
template<typename RandomAccessIterator, typename RandomNumberGenerator>
void
parallel_random_shuffle_drs_pu(DRSSorterPU<RandomAccessIterator,
RandomNumberGenerator>* pus)
{
typedef std::iterator_traits<RandomAccessIterator> traits_type;
typedef typename traits_type::value_type value_type;
typedef typename traits_type::difference_type difference_type;
thread_index_t iam = omp_get_thread_num();
DRSSorterPU<RandomAccessIterator, RandomNumberGenerator>* d = &pus[iam];
DRandomShufflingGlobalData<RandomAccessIterator>* sd = d->sd;
difference_type length = sd->starts[iam + 1] - sd->starts[iam];
bin_index* oracles = new bin_index[length];
difference_type* dist = new difference_type[sd->num_bins + 1];
bin_index* bin_proc = new bin_index[sd->num_bins];
value_type** temporaries = new value_type*[d->num_threads];
for (bin_index b = 0; b < sd->num_bins + 1; ++b)
dist[b] = 0;
int num_bits = sd->num_bits;
random_number rng(d->seed);
for (difference_type i = 0; i < length; ++i)
{
bin_index oracle = random_number_pow2(num_bits, rng);
oracles[i] = oracle;
++(dist[oracle + 1]);
}
for (bin_index b = 0; b < sd->num_bins + 1; ++b)
sd->dist[b][iam + 1] = dist[b];
# pragma omp barrier
# pragma omp single
{
for (bin_index s = 0; s < sd->num_bins; ++s)
__gnu_sequential::partial_sum(sd->dist[s + 1],
sd->dist[s + 1] + d->num_threads + 1,
sd->dist[s + 1]);
}
# pragma omp barrier
sequence_index_t offset = 0, global_offset = 0;
for (bin_index s = 0; s < d->bins_begin; ++s)
global_offset += sd->dist[s + 1][d->num_threads];
# pragma omp barrier
for (bin_index s = d->bins_begin; s < d->bins_end; ++s)
{
for (int t = 0; t < d->num_threads + 1; ++t)
sd->dist[s + 1][t] += offset;
offset = sd->dist[s + 1][d->num_threads];
}
sd->temporaries[iam] = static_cast<value_type*>(
::operator new(sizeof(value_type) * offset));
# pragma omp barrier
for (bin_index b = 0; b < sd->num_bins + 1; ++b)
dist[b] = sd->dist[b][iam];
for (bin_index b = 0; b < sd->num_bins; ++b)
bin_proc[b] = sd->bin_proc[b];
for (thread_index_t t = 0; t < d->num_threads; ++t)
temporaries[t] = sd->temporaries[t];
RandomAccessIterator source = sd->source;
difference_type start = sd->starts[iam];
for (difference_type i = 0; i < length; ++i)
{
bin_index target_bin = oracles[i];
thread_index_t target_p = bin_proc[target_bin];
::new(&(temporaries[target_p][dist[target_bin + 1]++]))
value_type(*(source + i + start));
}
delete[] oracles;
delete[] dist;
delete[] bin_proc;
delete[] temporaries;
# pragma omp barrier
for (bin_index b = d->bins_begin; b < d->bins_end; ++b)
{
value_type* begin =
sd->temporaries[iam] +
((b == d->bins_begin) ? 0 : sd->dist[b][d->num_threads]),
* end =
sd->temporaries[iam] + sd->dist[b + 1][d->num_threads];
sequential_random_shuffle(begin, end, rng);
std::copy(begin, end, sd->source + global_offset +
((b == d->bins_begin) ? 0 : sd->dist[b][d->num_threads]));
}
::operator delete(sd->temporaries[iam]);
}
* @param x Integer to round up */
template<typename T>
T
round_up_to_pow2(T x)
{
if (x <= 1)
return 1;
else
return (T)1 << (__log2(x - 1) + 1);
}
* @param begin Begin iterator of sequence.
* @param end End iterator of sequence.
* @param n Length of sequence.
* @param num_threads Number of threads to use.
* @param rng Random number generator to use.
*/
template<typename RandomAccessIterator, typename RandomNumberGenerator>
void
parallel_random_shuffle_drs(RandomAccessIterator begin,
RandomAccessIterator end,
typename std::iterator_traits
<RandomAccessIterator>::difference_type n,
thread_index_t num_threads,
RandomNumberGenerator& rng)
{
typedef std::iterator_traits<RandomAccessIterator> traits_type;
typedef typename traits_type::value_type value_type;
typedef typename traits_type::difference_type difference_type;
_GLIBCXX_CALL(n)
const _Settings& __s = _Settings::get();
if (num_threads > n)
num_threads = static_cast<thread_index_t>(n);
bin_index num_bins, num_bins_cache;
#if _GLIBCXX_RANDOM_SHUFFLE_CONSIDER_L1
num_bins_cache = std::max<difference_type>(
1, n / (__s.L1_cache_size_lb / sizeof(value_type)));
num_bins_cache = round_up_to_pow2(num_bins_cache);
num_bins = std::min<difference_type>(n, num_bins_cache);
#if _GLIBCXX_RANDOM_SHUFFLE_CONSIDER_TLB
num_bins = std::min<difference_type>(__s.TLB_size / 2, num_bins);
#endif
num_bins = round_up_to_pow2(num_bins);
if (num_bins < num_bins_cache)
{
#endif
// Now try the L2 cache
// Must fit into L2
num_bins_cache = static_cast<bin_index>(std::max<difference_type>(
1, n / (__s.L2_cache_size / sizeof(value_type))));
num_bins_cache = round_up_to_pow2(num_bins_cache);
num_bins = static_cast<bin_index>(
std::min(n, static_cast<difference_type>(num_bins_cache)));
#if _GLIBCXX_RANDOM_SHUFFLE_CONSIDER_TLB
num_bins = std::min(
static_cast<difference_type>(__s.TLB_size / 2), num_bins);
#endif
num_bins = round_up_to_pow2(num_bins);
#if _GLIBCXX_RANDOM_SHUFFLE_CONSIDER_L1
}
#endif
num_threads = std::min<bin_index>(num_threads, num_bins);
if (num_threads <= 1)
return sequential_random_shuffle(begin, end, rng);
DRandomShufflingGlobalData<RandomAccessIterator> sd(begin);
DRSSorterPU<RandomAccessIterator, random_number >* pus;
difference_type* starts;
# pragma omp parallel num_threads(num_threads)
{
thread_index_t num_threads = omp_get_num_threads();
# pragma omp single
{
pus = new DRSSorterPU<RandomAccessIterator, random_number>
[num_threads];
sd.temporaries = new value_type*[num_threads];
sd.dist = new difference_type*[num_bins + 1];
sd.bin_proc = new thread_index_t[num_bins];
for (bin_index b = 0; b < num_bins + 1; ++b)
sd.dist[b] = new difference_type[num_threads + 1];
for (bin_index b = 0; b < (num_bins + 1); ++b)
{
sd.dist[0][0] = 0;
sd.dist[b][0] = 0;
}
starts = sd.starts = new difference_type[num_threads + 1];
int bin_cursor = 0;
sd.num_bins = num_bins;
sd.num_bits = __log2(num_bins);
difference_type chunk_length = n / num_threads,
split = n % num_threads, start = 0;
difference_type bin_chunk_length = num_bins / num_threads,
bin_split = num_bins % num_threads;
for (thread_index_t i = 0; i < num_threads; ++i)
{
starts[i] = start;
start += (i < split) ? (chunk_length + 1) : chunk_length;
int j = pus[i].bins_begin = bin_cursor;
bin_cursor += (i < bin_split) ?
(bin_chunk_length + 1) : bin_chunk_length;
pus[i].bins_end = bin_cursor;
for (; j < bin_cursor; ++j)
sd.bin_proc[j] = i;
pus[i].num_threads = num_threads;
pus[i].seed = rng(std::numeric_limits<uint32>::max());
pus[i].sd = &sd;
}
starts[num_threads] = start;
}
parallel_random_shuffle_drs_pu(pus);
}
delete[] starts;
delete[] sd.bin_proc;
for (int s = 0; s < (num_bins + 1); ++s)
delete[] sd.dist[s];
delete[] sd.dist;
delete[] sd.temporaries;
delete[] pus;
}
* @param begin Begin iterator of sequence.
* @param end End iterator of sequence.
* @param rng Random number generator to use.
*/
template<typename RandomAccessIterator, typename RandomNumberGenerator>
void
sequential_random_shuffle(RandomAccessIterator begin,
RandomAccessIterator end,
RandomNumberGenerator& rng)
{
typedef std::iterator_traits<RandomAccessIterator> traits_type;
typedef typename traits_type::value_type value_type;
typedef typename traits_type::difference_type difference_type;
difference_type n = end - begin;
const _Settings& __s = _Settings::get();
bin_index num_bins, num_bins_cache;
#if _GLIBCXX_RANDOM_SHUFFLE_CONSIDER_L1
num_bins_cache =
std::max<difference_type>
(1, n / (__s.L1_cache_size_lb / sizeof(value_type)));
num_bins_cache = round_up_to_pow2(num_bins_cache);
num_bins = std::min(n, (difference_type)num_bins_cache);
#if _GLIBCXX_RANDOM_SHUFFLE_CONSIDER_TLB
num_bins = std::min((difference_type)__s.TLB_size / 2, num_bins);
#endif
num_bins = round_up_to_pow2(num_bins);
if (num_bins < num_bins_cache)
{
#endif
// Now try the L2 cache, must fit into L2.
num_bins_cache =
static_cast<bin_index>(std::max<difference_type>(
1, n / (__s.L2_cache_size / sizeof(value_type))));
num_bins_cache = round_up_to_pow2(num_bins_cache);
num_bins = static_cast<bin_index>
(std::min(n, static_cast<difference_type>(num_bins_cache)));
#if _GLIBCXX_RANDOM_SHUFFLE_CONSIDER_TLB
num_bins =
std::min<difference_type>(__s.TLB_size / 2, num_bins);
#endif
num_bins = round_up_to_pow2(num_bins);
#if _GLIBCXX_RANDOM_SHUFFLE_CONSIDER_L1
}
#endif
int num_bits = __log2(num_bins);
if (num_bins > 1)
{
value_type* target = static_cast<value_type*>(
::operator new(sizeof(value_type) * n));
bin_index* oracles = new bin_index[n];
difference_type* dist0 = new difference_type[num_bins + 1],
* dist1 = new difference_type[num_bins + 1];
for (int b = 0; b < num_bins + 1; ++b)
dist0[b] = 0;
random_number bitrng(rng(0xFFFFFFFF));
for (difference_type i = 0; i < n; ++i)
{
bin_index oracle = random_number_pow2(num_bits, bitrng);
oracles[i] = oracle;
++(dist0[oracle + 1]);
}
__gnu_sequential::partial_sum(dist0, dist0 + num_bins + 1, dist0);
for (int b = 0; b < num_bins + 1; ++b)
dist1[b] = dist0[b];
for (difference_type i = 0; i < n; ++i)
::new(&(target[(dist0[oracles[i]])++])) value_type(*(begin + i));
for (int b = 0; b < num_bins; ++b)
{
sequential_random_shuffle(target + dist1[b],
target + dist1[b + 1],
rng);
}
std::copy(target, target + n, begin);
delete[] dist0;
delete[] dist1;
delete[] oracles;
::operator delete(target);
}
else
__gnu_sequential::random_shuffle(begin, end, rng);
}
* @param begin Begin iterator of sequence.
* @param end End iterator of sequence.
* @param rng Random number generator to use.
*/
template<typename RandomAccessIterator, typename RandomNumberGenerator>
inline void
parallel_random_shuffle(RandomAccessIterator begin,
RandomAccessIterator end,
RandomNumberGenerator rng = random_number())
{
typedef std::iterator_traits<RandomAccessIterator> traits_type;
typedef typename traits_type::difference_type difference_type;
difference_type n = end - begin;
parallel_random_shuffle_drs(begin, end, n, get_max_threads(), rng) ;
}
}
#endif