// Special functions -*- C++ -*-// Copyright (C) 2006, 2007, 2008// Free Software Foundation, Inc.//// This file is part of the GNU ISO C++ Library. This library is free// software; you can redistribute it and/or modify it under the// terms of the GNU General Public License as published by the// Free Software Foundation; either version 2, or (at your option)// any later version.//// This library is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the// GNU General Public License for more details.//// You should have received a copy of the GNU General Public License along// with this library; see the file COPYING. If not, write to the Free// Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,// USA.//// As a special exception, you may use this file as part of a free software// library without restriction. Specifically, if other files instantiate// templates or use macros or inline functions from this file, or you compile// this file and link it with other files to produce an executable, this// file does not by itself cause the resulting executable to be covered by// the GNU General Public License. This exception does not however// invalidate any other reasons why the executable file might be covered by// the GNU General Public License./** @file tr1/legendre_function.tcc* This is an internal header file, included by other library headers.* You should not attempt to use it directly.*///// ISO C++ 14882 TR1: 5.2 Special functions//// Written by Edward Smith-Rowland based on:// (1) Handbook of Mathematical Functions,// ed. Milton Abramowitz and Irene A. Stegun,// Dover Publications,// Section 8, pp. 331-341// (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl// (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,// W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),// 2nd ed, pp. 252-254#ifndef _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC#define _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC 1#include "special_function_util.h"namespace std{namespace tr1{// [5.2] Special functions// Implementation-space details.namespace __detail{/*** @brief Return the Legendre polynomial by recursion on order* @f$ l @f$.** The Legendre function of @f$ l @f$ and @f$ x @f$,* @f$ P_l(x) @f$, is defined by:* @f[* P_l(x) = \frac{1}{2^l l!}\frac{d^l}{dx^l}(x^2 - 1)^{l}* @f]** @param l The order of the Legendre polynomial. @f$l >= 0@f$.* @param x The argument of the Legendre polynomial. @f$|x| <= 1@f$.*/template<typename _Tp>_Tp__poly_legendre_p(const unsigned int __l, const _Tp __x){if ((__x < _Tp(-1)) || (__x > _Tp(+1)))std::__throw_domain_error(__N("Argument out of range"" in __poly_legendre_p."));else if (__isnan(__x))return std::numeric_limits<_Tp>::quiet_NaN();else if (__x == +_Tp(1))return +_Tp(1);else if (__x == -_Tp(1))return (__l % 2 == 1 ? -_Tp(1) : +_Tp(1));else{_Tp __p_lm2 = _Tp(1);if (__l == 0)return __p_lm2;_Tp __p_lm1 = __x;if (__l == 1)return __p_lm1;_Tp __p_l = 0;for (unsigned int __ll = 2; __ll <= __l; ++__ll){// This arrangement is supposed to be better for roundoff// protection, Arfken, 2nd Ed, Eq 12.17a.__p_l = _Tp(2) * __x * __p_lm1 - __p_lm2- (__x * __p_lm1 - __p_lm2) / _Tp(__ll);__p_lm2 = __p_lm1;__p_lm1 = __p_l;}return __p_l;}}/*** @brief Return the associated Legendre function by recursion* on @f$ l @f$.** The associated Legendre function is derived from the Legendre function* @f$ P_l(x) @f$ by the Rodrigues formula:* @f[* P_l^m(x) = (1 - x^2)^{m/2}\frac{d^m}{dx^m}P_l(x)* @f]** @param l The order of the associated Legendre function.* @f$ l >= 0 @f$.* @param m The order of the associated Legendre function.* @f$ m <= l @f$.* @param x The argument of the associated Legendre function.* @f$ |x| <= 1 @f$.*/template<typename _Tp>_Tp__assoc_legendre_p(const unsigned int __l, const unsigned int __m,const _Tp __x){if (__x < _Tp(-1) || __x > _Tp(+1))std::__throw_domain_error(__N("Argument out of range"" in __assoc_legendre_p."));else if (__m > __l)std::__throw_domain_error(__N("Degree out of range"" in __assoc_legendre_p."));else if (__isnan(__x))return std::numeric_limits<_Tp>::quiet_NaN();else if (__m == 0)return __poly_legendre_p(__l, __x);else{_Tp __p_mm = _Tp(1);if (__m > 0){// Two square roots seem more accurate more of the time// than just one._Tp __root = std::sqrt(_Tp(1) - __x) * std::sqrt(_Tp(1) + __x);_Tp __fact = _Tp(1);for (unsigned int __i = 1; __i <= __m; ++__i){__p_mm *= -__fact * __root;__fact += _Tp(2);}}if (__l == __m)return __p_mm;_Tp __p_mp1m = _Tp(2 * __m + 1) * __x * __p_mm;if (__l == __m + 1)return __p_mp1m;_Tp __p_lm2m = __p_mm;_Tp __P_lm1m = __p_mp1m;_Tp __p_lm = _Tp(0);for (unsigned int __j = __m + 2; __j <= __l; ++__j){__p_lm = (_Tp(2 * __j - 1) * __x * __P_lm1m- _Tp(__j + __m - 1) * __p_lm2m) / _Tp(__j - __m);__p_lm2m = __P_lm1m;__P_lm1m = __p_lm;}return __p_lm;}}/*** @brief Return the spherical associated Legendre function.** The spherical associated Legendre function of @f$ l @f$, @f$ m @f$,* and @f$ \theta @f$ is defined as @f$ Y_l^m(\theta,0) @f$ where* @f[* Y_l^m(\theta,\phi) = (-1)^m[\frac{(2l+1)}{4\pi}* \frac{(l-m)!}{(l+m)!}]* P_l^m(\cos\theta) \exp^{im\phi}* @f]* is the spherical harmonic function and @f$ P_l^m(x) @f$ is the* associated Legendre function.** This function differs from the associated Legendre function by* argument (@f$x = \cos(\theta)@f$) and by a normalization factor* but this factor is rather large for large @f$ l @f$ and @f$ m @f$* and so this function is stable for larger differences of @f$ l @f$* and @f$ m @f$.** @param l The order of the spherical associated Legendre function.* @f$ l >= 0 @f$.* @param m The order of the spherical associated Legendre function.* @f$ m <= l @f$.* @param theta The radian angle argument of the spherical associated* Legendre function.*/template <typename _Tp>_Tp__sph_legendre(const unsigned int __l, const unsigned int __m,const _Tp __theta){if (__isnan(__theta))return std::numeric_limits<_Tp>::quiet_NaN();const _Tp __x = std::cos(__theta);if (__l < __m){std::__throw_domain_error(__N("Bad argument ""in __sph_legendre."));}else if (__m == 0){_Tp __P = __poly_legendre_p(__l, __x);_Tp __fact = std::sqrt(_Tp(2 * __l + 1)/ (_Tp(4) * __numeric_constants<_Tp>::__pi()));__P *= __fact;return __P;}else if (__x == _Tp(1) || __x == -_Tp(1)){// m > 0 herereturn _Tp(0);}else{// m > 0 and |x| < 1 here// Starting value for recursion.// Y_m^m(x) = sqrt( (2m+1)/(4pi m) gamma(m+1/2)/gamma(m) )// (-1)^m (1-x^2)^(m/2) / pi^(1/4)const _Tp __sgn = ( __m % 2 == 1 ? -_Tp(1) : _Tp(1));const _Tp __y_mp1m_factor = __x * std::sqrt(_Tp(2 * __m + 3));#if _GLIBCXX_USE_C99_MATH_TR1const _Tp __lncirc = std::tr1::log1p(-__x * __x);#elseconst _Tp __lncirc = std::log(_Tp(1) - __x * __x);#endif// Gamma(m+1/2) / Gamma(m)#if _GLIBCXX_USE_C99_MATH_TR1const _Tp __lnpoch = std::tr1::lgamma(_Tp(__m + _Tp(0.5L)))- std::tr1::lgamma(_Tp(__m));#elseconst _Tp __lnpoch = __log_gamma(_Tp(__m + _Tp(0.5L)))- __log_gamma(_Tp(__m));#endifconst _Tp __lnpre_val =-_Tp(0.25L) * __numeric_constants<_Tp>::__lnpi()+ _Tp(0.5L) * (__lnpoch + __m * __lncirc);_Tp __sr = std::sqrt((_Tp(2) + _Tp(1) / __m)/ (_Tp(4) * __numeric_constants<_Tp>::__pi()));_Tp __y_mm = __sgn * __sr * std::exp(__lnpre_val);_Tp __y_mp1m = __y_mp1m_factor * __y_mm;if (__l == __m){return __y_mm;}else if (__l == __m + 1){return __y_mp1m;}else{_Tp __y_lm = _Tp(0);// Compute Y_l^m, l > m+1, upward recursion on l.for ( int __ll = __m + 2; __ll <= __l; ++__ll){const _Tp __rat1 = _Tp(__ll - __m) / _Tp(__ll + __m);const _Tp __rat2 = _Tp(__ll - __m - 1) / _Tp(__ll + __m - 1);const _Tp __fact1 = std::sqrt(__rat1 * _Tp(2 * __ll + 1)* _Tp(2 * __ll - 1));const _Tp __fact2 = std::sqrt(__rat1 * __rat2 * _Tp(2 * __ll + 1)/ _Tp(2 * __ll - 3));__y_lm = (__x * __y_mp1m * __fact1- (__ll + __m - 1) * __y_mm * __fact2) / _Tp(__ll - __m);__y_mm = __y_mp1m;__y_mp1m = __y_lm;}return __y_lm;}}}} // namespace std::tr1::__detail}}#endif // _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC