// Special functions -*- C++ -*-// Copyright (C) 2006, 2007, 2008// Free Software Foundation, Inc.//// This file is part of the GNU ISO C++ Library. This library is free// software; you can redistribute it and/or modify it under the// terms of the GNU General Public License as published by the// Free Software Foundation; either version 2, or (at your option)// any later version.//// This library is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the// GNU General Public License for more details.//// You should have received a copy of the GNU General Public License along// with this library; see the file COPYING. If not, write to the Free// Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,// USA.//// As a special exception, you may use this file as part of a free software// library without restriction. Specifically, if other files instantiate// templates or use macros or inline functions from this file, or you compile// this file and link it with other files to produce an executable, this// file does not by itself cause the resulting executable to be covered by// the GNU General Public License. This exception does not however// invalidate any other reasons why the executable file might be covered by// the GNU General Public License./** @file tr1/ell_integral.tcc* This is an internal header file, included by other library headers.* You should not attempt to use it directly.*///// ISO C++ 14882 TR1: 5.2 Special functions//// Written by Edward Smith-Rowland based on:// (1) B. C. Carlson Numer. Math. 33, 1 (1979)// (2) B. C. Carlson, Special Functions of Applied Mathematics (1977)// (3) The Gnu Scientific Library, http://www.gnu.org/software/gsl// (4) Numerical Recipes in C, 2nd ed, by W. H. Press, S. A. Teukolsky,// W. T. Vetterling, B. P. Flannery, Cambridge University Press// (1992), pp. 261-269#ifndef _GLIBCXX_TR1_ELL_INTEGRAL_TCC#define _GLIBCXX_TR1_ELL_INTEGRAL_TCC 1namespace std{namespace tr1{// [5.2] Special functions// Implementation-space details.namespace __detail{/*** @brief Return the Carlson elliptic function @f$ R_F(x,y,z) @f$* of the first kind.** The Carlson elliptic function of the first kind is defined by:* @f[* R_F(x,y,z) = \frac{1}{2} \int_0^\infty* \frac{dt}{(t + x)^{1/2}(t + y)^{1/2}(t + z)^{1/2}}* @f]** @param __x The first of three symmetric arguments.* @param __y The second of three symmetric arguments.* @param __z The third of three symmetric arguments.* @return The Carlson elliptic function of the first kind.*/template<typename _Tp>_Tp__ellint_rf(const _Tp __x, const _Tp __y, const _Tp __z){const _Tp __min = std::numeric_limits<_Tp>::min();const _Tp __max = std::numeric_limits<_Tp>::max();const _Tp __lolim = _Tp(5) * __min;const _Tp __uplim = __max / _Tp(5);if (__x < _Tp(0) || __y < _Tp(0) || __z < _Tp(0))std::__throw_domain_error(__N("Argument less than zero ""in __ellint_rf."));else if (__x + __y < __lolim || __x + __z < __lolim|| __y + __z < __lolim)std::__throw_domain_error(__N("Argument too small in __ellint_rf"));else{const _Tp __c0 = _Tp(1) / _Tp(4);const _Tp __c1 = _Tp(1) / _Tp(24);const _Tp __c2 = _Tp(1) / _Tp(10);const _Tp __c3 = _Tp(3) / _Tp(44);const _Tp __c4 = _Tp(1) / _Tp(14);_Tp __xn = __x;_Tp __yn = __y;_Tp __zn = __z;const _Tp __eps = std::numeric_limits<_Tp>::epsilon();const _Tp __errtol = std::pow(__eps, _Tp(1) / _Tp(6));_Tp __mu;_Tp __xndev, __yndev, __zndev;const unsigned int __max_iter = 100;for (unsigned int __iter = 0; __iter < __max_iter; ++__iter){__mu = (__xn + __yn + __zn) / _Tp(3);__xndev = 2 - (__mu + __xn) / __mu;__yndev = 2 - (__mu + __yn) / __mu;__zndev = 2 - (__mu + __zn) / __mu;_Tp __epsilon = std::max(std::abs(__xndev), std::abs(__yndev));__epsilon = std::max(__epsilon, std::abs(__zndev));if (__epsilon < __errtol)break;const _Tp __xnroot = std::sqrt(__xn);const _Tp __ynroot = std::sqrt(__yn);const _Tp __znroot = std::sqrt(__zn);const _Tp __lambda = __xnroot * (__ynroot + __znroot)+ __ynroot * __znroot;__xn = __c0 * (__xn + __lambda);__yn = __c0 * (__yn + __lambda);__zn = __c0 * (__zn + __lambda);}const _Tp __e2 = __xndev * __yndev - __zndev * __zndev;const _Tp __e3 = __xndev * __yndev * __zndev;const _Tp __s = _Tp(1) + (__c1 * __e2 - __c2 - __c3 * __e3) * __e2+ __c4 * __e3;return __s / std::sqrt(__mu);}}/*** @brief Return the complete elliptic integral of the first kind* @f$ K(k) @f$ by series expansion.** The complete elliptic integral of the first kind is defined as* @f[* K(k) = F(k,\pi/2) = \int_0^{\pi/2}\frac{d\theta}* {\sqrt{1 - k^2sin^2\theta}}* @f]** This routine is not bad as long as |k| is somewhat smaller than 1* but is not is good as the Carlson elliptic integral formulation.** @param __k The argument of the complete elliptic function.* @return The complete elliptic function of the first kind.*/template<typename _Tp>_Tp__comp_ellint_1_series(const _Tp __k){const _Tp __kk = __k * __k;_Tp __term = __kk / _Tp(4);_Tp __sum = _Tp(1) + __term;const unsigned int __max_iter = 1000;for (unsigned int __i = 2; __i < __max_iter; ++__i){__term *= (2 * __i - 1) * __kk / (2 * __i);if (__term < std::numeric_limits<_Tp>::epsilon())break;__sum += __term;}return __numeric_constants<_Tp>::__pi_2() * __sum;}/*** @brief Return the complete elliptic integral of the first kind* @f$ K(k) @f$ using the Carlson formulation.** The complete elliptic integral of the first kind is defined as* @f[* K(k) = F(k,\pi/2) = \int_0^{\pi/2}\frac{d\theta}* {\sqrt{1 - k^2 sin^2\theta}}* @f]* where @f$ F(k,\phi) @f$ is the incomplete elliptic integral of the* first kind.** @param __k The argument of the complete elliptic function.* @return The complete elliptic function of the first kind.*/template<typename _Tp>_Tp__comp_ellint_1(const _Tp __k){if (__isnan(__k))return std::numeric_limits<_Tp>::quiet_NaN();else if (std::abs(__k) >= _Tp(1))return std::numeric_limits<_Tp>::quiet_NaN();elsereturn __ellint_rf(_Tp(0), _Tp(1) - __k * __k, _Tp(1));}/*** @brief Return the incomplete elliptic integral of the first kind* @f$ F(k,\phi) @f$ using the Carlson formulation.** The incomplete elliptic integral of the first kind is defined as* @f[* F(k,\phi) = \int_0^{\phi}\frac{d\theta}* {\sqrt{1 - k^2 sin^2\theta}}* @f]** @param __k The argument of the elliptic function.* @param __phi The integral limit argument of the elliptic function.* @return The elliptic function of the first kind.*/template<typename _Tp>_Tp__ellint_1(const _Tp __k, const _Tp __phi){if (__isnan(__k) || __isnan(__phi))return std::numeric_limits<_Tp>::quiet_NaN();else if (std::abs(__k) > _Tp(1))std::__throw_domain_error(__N("Bad argument in __ellint_1."));else{// Reduce phi to -pi/2 < phi < +pi/2.const int __n = std::floor(__phi / __numeric_constants<_Tp>::__pi()+ _Tp(0.5L));const _Tp __phi_red = __phi- __n * __numeric_constants<_Tp>::__pi();const _Tp __s = std::sin(__phi_red);const _Tp __c = std::cos(__phi_red);const _Tp __F = __s* __ellint_rf(__c * __c,_Tp(1) - __k * __k * __s * __s, _Tp(1));if (__n == 0)return __F;elsereturn __F + _Tp(2) * __n * __comp_ellint_1(__k);}}/*** @brief Return the complete elliptic integral of the second kind* @f$ E(k) @f$ by series expansion.** The complete elliptic integral of the second kind is defined as* @f[* E(k,\pi/2) = \int_0^{\pi/2}\sqrt{1 - k^2 sin^2\theta}* @f]** This routine is not bad as long as |k| is somewhat smaller than 1* but is not is good as the Carlson elliptic integral formulation.** @param __k The argument of the complete elliptic function.* @return The complete elliptic function of the second kind.*/template<typename _Tp>_Tp__comp_ellint_2_series(const _Tp __k){const _Tp __kk = __k * __k;_Tp __term = __kk;_Tp __sum = __term;const unsigned int __max_iter = 1000;for (unsigned int __i = 2; __i < __max_iter; ++__i){const _Tp __i2m = 2 * __i - 1;const _Tp __i2 = 2 * __i;__term *= __i2m * __i2m * __kk / (__i2 * __i2);if (__term < std::numeric_limits<_Tp>::epsilon())break;__sum += __term / __i2m;}return __numeric_constants<_Tp>::__pi_2() * (_Tp(1) - __sum);}/*** @brief Return the Carlson elliptic function of the second kind* @f$ R_D(x,y,z) = R_J(x,y,z,z) @f$ where* @f$ R_J(x,y,z,p) @f$ is the Carlson elliptic function* of the third kind.** The Carlson elliptic function of the second kind is defined by:* @f[* R_D(x,y,z) = \frac{3}{2} \int_0^\infty* \frac{dt}{(t + x)^{1/2}(t + y)^{1/2}(t + z)^{3/2}}* @f]** Based on Carlson's algorithms:* - B. C. Carlson Numer. Math. 33, 1 (1979)* - B. C. Carlson, Special Functions of Applied Mathematics (1977)* - Numerical Recipes in C, 2nd ed, pp. 261-269,* by Press, Teukolsky, Vetterling, Flannery (1992)** @param __x The first of two symmetric arguments.* @param __y The second of two symmetric arguments.* @param __z The third argument.* @return The Carlson elliptic function of the second kind.*/template<typename _Tp>_Tp__ellint_rd(const _Tp __x, const _Tp __y, const _Tp __z){const _Tp __eps = std::numeric_limits<_Tp>::epsilon();const _Tp __errtol = std::pow(__eps / _Tp(8), _Tp(1) / _Tp(6));const _Tp __min = std::numeric_limits<_Tp>::min();const _Tp __max = std::numeric_limits<_Tp>::max();const _Tp __lolim = _Tp(2) / std::pow(__max, _Tp(2) / _Tp(3));const _Tp __uplim = std::pow(_Tp(0.1L) * __errtol / __min, _Tp(2) / _Tp(3));if (__x < _Tp(0) || __y < _Tp(0))std::__throw_domain_error(__N("Argument less than zero ""in __ellint_rd."));else if (__x + __y < __lolim || __z < __lolim)std::__throw_domain_error(__N("Argument too small ""in __ellint_rd."));else{const _Tp __c0 = _Tp(1) / _Tp(4);const _Tp __c1 = _Tp(3) / _Tp(14);const _Tp __c2 = _Tp(1) / _Tp(6);const _Tp __c3 = _Tp(9) / _Tp(22);const _Tp __c4 = _Tp(3) / _Tp(26);_Tp __xn = __x;_Tp __yn = __y;_Tp __zn = __z;_Tp __sigma = _Tp(0);_Tp __power4 = _Tp(1);_Tp __mu;_Tp __xndev, __yndev, __zndev;const unsigned int __max_iter = 100;for (unsigned int __iter = 0; __iter < __max_iter; ++__iter){__mu = (__xn + __yn + _Tp(3) * __zn) / _Tp(5);__xndev = (__mu - __xn) / __mu;__yndev = (__mu - __yn) / __mu;__zndev = (__mu - __zn) / __mu;_Tp __epsilon = std::max(std::abs(__xndev), std::abs(__yndev));__epsilon = std::max(__epsilon, std::abs(__zndev));if (__epsilon < __errtol)break;_Tp __xnroot = std::sqrt(__xn);_Tp __ynroot = std::sqrt(__yn);_Tp __znroot = std::sqrt(__zn);_Tp __lambda = __xnroot * (__ynroot + __znroot)+ __ynroot * __znroot;__sigma += __power4 / (__znroot * (__zn + __lambda));__power4 *= __c0;__xn = __c0 * (__xn + __lambda);__yn = __c0 * (__yn + __lambda);__zn = __c0 * (__zn + __lambda);}_Tp __ea = __xndev * __yndev;_Tp __eb = __zndev * __zndev;_Tp __ec = __ea - __eb;_Tp __ed = __ea - _Tp(6) * __eb;_Tp __ef = __ed + __ec + __ec;_Tp __s1 = __ed * (-__c1 + __c3 * __ed/ _Tp(3) - _Tp(3) * __c4 * __zndev * __ef/ _Tp(2));_Tp __s2 = __zndev* (__c2 * __ef+ __zndev * (-__c3 * __ec - __zndev * __c4 - __ea));return _Tp(3) * __sigma + __power4 * (_Tp(1) + __s1 + __s2)/ (__mu * std::sqrt(__mu));}}/*** @brief Return the complete elliptic integral of the second kind* @f$ E(k) @f$ using the Carlson formulation.** The complete elliptic integral of the second kind is defined as* @f[* E(k,\pi/2) = \int_0^{\pi/2}\sqrt{1 - k^2 sin^2\theta}* @f]** @param __k The argument of the complete elliptic function.* @return The complete elliptic function of the second kind.*/template<typename _Tp>_Tp__comp_ellint_2(const _Tp __k){if (__isnan(__k))return std::numeric_limits<_Tp>::quiet_NaN();else if (std::abs(__k) == 1)return _Tp(1);else if (std::abs(__k) > _Tp(1))std::__throw_domain_error(__N("Bad argument in __comp_ellint_2."));else{const _Tp __kk = __k * __k;return __ellint_rf(_Tp(0), _Tp(1) - __kk, _Tp(1))- __kk * __ellint_rd(_Tp(0), _Tp(1) - __kk, _Tp(1)) / _Tp(3);}}/*** @brief Return the incomplete elliptic integral of the second kind* @f$ E(k,\phi) @f$ using the Carlson formulation.** The incomplete elliptic integral of the second kind is defined as* @f[* E(k,\phi) = \int_0^{\phi} \sqrt{1 - k^2 sin^2\theta}* @f]** @param __k The argument of the elliptic function.* @param __phi The integral limit argument of the elliptic function.* @return The elliptic function of the second kind.*/template<typename _Tp>_Tp__ellint_2(const _Tp __k, const _Tp __phi){if (__isnan(__k) || __isnan(__phi))return std::numeric_limits<_Tp>::quiet_NaN();else if (std::abs(__k) > _Tp(1))std::__throw_domain_error(__N("Bad argument in __ellint_2."));else{// Reduce phi to -pi/2 < phi < +pi/2.const int __n = std::floor(__phi / __numeric_constants<_Tp>::__pi()+ _Tp(0.5L));const _Tp __phi_red = __phi- __n * __numeric_constants<_Tp>::__pi();const _Tp __kk = __k * __k;const _Tp __s = std::sin(__phi_red);const _Tp __ss = __s * __s;const _Tp __sss = __ss * __s;const _Tp __c = std::cos(__phi_red);const _Tp __cc = __c * __c;const _Tp __E = __s* __ellint_rf(__cc, _Tp(1) - __kk * __ss, _Tp(1))- __kk * __sss* __ellint_rd(__cc, _Tp(1) - __kk * __ss, _Tp(1))/ _Tp(3);if (__n == 0)return __E;elsereturn __E + _Tp(2) * __n * __comp_ellint_2(__k);}}/*** @brief Return the Carlson elliptic function* @f$ R_C(x,y) = R_F(x,y,y) @f$ where @f$ R_F(x,y,z) @f$* is the Carlson elliptic function of the first kind.** The Carlson elliptic function is defined by:* @f[* R_C(x,y) = \frac{1}{2} \int_0^\infty* \frac{dt}{(t + x)^{1/2}(t + y)}* @f]** Based on Carlson's algorithms:* - B. C. Carlson Numer. Math. 33, 1 (1979)* - B. C. Carlson, Special Functions of Applied Mathematics (1977)* - Numerical Recipes in C, 2nd ed, pp. 261-269,* by Press, Teukolsky, Vetterling, Flannery (1992)** @param __x The first argument.* @param __y The second argument.* @return The Carlson elliptic function.*/template<typename _Tp>_Tp__ellint_rc(const _Tp __x, const _Tp __y){const _Tp __min = std::numeric_limits<_Tp>::min();const _Tp __max = std::numeric_limits<_Tp>::max();const _Tp __lolim = _Tp(5) * __min;const _Tp __uplim = __max / _Tp(5);if (__x < _Tp(0) || __y < _Tp(0) || __x + __y < __lolim)std::__throw_domain_error(__N("Argument less than zero ""in __ellint_rc."));else{const _Tp __c0 = _Tp(1) / _Tp(4);const _Tp __c1 = _Tp(1) / _Tp(7);const _Tp __c2 = _Tp(9) / _Tp(22);const _Tp __c3 = _Tp(3) / _Tp(10);const _Tp __c4 = _Tp(3) / _Tp(8);_Tp __xn = __x;_Tp __yn = __y;const _Tp __eps = std::numeric_limits<_Tp>::epsilon();const _Tp __errtol = std::pow(__eps / _Tp(30), _Tp(1) / _Tp(6));_Tp __mu;_Tp __sn;const unsigned int __max_iter = 100;for (unsigned int __iter = 0; __iter < __max_iter; ++__iter){__mu = (__xn + _Tp(2) * __yn) / _Tp(3);__sn = (__yn + __mu) / __mu - _Tp(2);if (std::abs(__sn) < __errtol)break;const _Tp __lambda = _Tp(2) * std::sqrt(__xn) * std::sqrt(__yn)+ __yn;__xn = __c0 * (__xn + __lambda);__yn = __c0 * (__yn + __lambda);}_Tp __s = __sn * __sn* (__c3 + __sn*(__c1 + __sn * (__c4 + __sn * __c2)));return (_Tp(1) + __s) / std::sqrt(__mu);}}/*** @brief Return the Carlson elliptic function @f$ R_J(x,y,z,p) @f$* of the third kind.** The Carlson elliptic function of the third kind is defined by:* @f[* R_J(x,y,z,p) = \frac{3}{2} \int_0^\infty* \frac{dt}{(t + x)^{1/2}(t + y)^{1/2}(t + z)^{1/2}(t + p)}* @f]** Based on Carlson's algorithms:* - B. C. Carlson Numer. Math. 33, 1 (1979)* - B. C. Carlson, Special Functions of Applied Mathematics (1977)* - Numerical Recipes in C, 2nd ed, pp. 261-269,* by Press, Teukolsky, Vetterling, Flannery (1992)** @param __x The first of three symmetric arguments.* @param __y The second of three symmetric arguments.* @param __z The third of three symmetric arguments.* @param __p The fourth argument.* @return The Carlson elliptic function of the fourth kind.*/template<typename _Tp>_Tp__ellint_rj(const _Tp __x, const _Tp __y, const _Tp __z, const _Tp __p){const _Tp __min = std::numeric_limits<_Tp>::min();const _Tp __max = std::numeric_limits<_Tp>::max();const _Tp __lolim = std::pow(_Tp(5) * __min, _Tp(1)/_Tp(3));const _Tp __uplim = _Tp(0.3L)* std::pow(_Tp(0.2L) * __max, _Tp(1)/_Tp(3));if (__x < _Tp(0) || __y < _Tp(0) || __z < _Tp(0))std::__throw_domain_error(__N("Argument less than zero ""in __ellint_rj."));else if (__x + __y < __lolim || __x + __z < __lolim|| __y + __z < __lolim || __p < __lolim)std::__throw_domain_error(__N("Argument too small ""in __ellint_rj"));else{const _Tp __c0 = _Tp(1) / _Tp(4);const _Tp __c1 = _Tp(3) / _Tp(14);const _Tp __c2 = _Tp(1) / _Tp(3);const _Tp __c3 = _Tp(3) / _Tp(22);const _Tp __c4 = _Tp(3) / _Tp(26);_Tp __xn = __x;_Tp __yn = __y;_Tp __zn = __z;_Tp __pn = __p;_Tp __sigma = _Tp(0);_Tp __power4 = _Tp(1);const _Tp __eps = std::numeric_limits<_Tp>::epsilon();const _Tp __errtol = std::pow(__eps / _Tp(8), _Tp(1) / _Tp(6));_Tp __lambda, __mu;_Tp __xndev, __yndev, __zndev, __pndev;const unsigned int __max_iter = 100;for (unsigned int __iter = 0; __iter < __max_iter; ++__iter){__mu = (__xn + __yn + __zn + _Tp(2) * __pn) / _Tp(5);__xndev = (__mu - __xn) / __mu;__yndev = (__mu - __yn) / __mu;__zndev = (__mu - __zn) / __mu;__pndev = (__mu - __pn) / __mu;_Tp __epsilon = std::max(std::abs(__xndev), std::abs(__yndev));__epsilon = std::max(__epsilon, std::abs(__zndev));__epsilon = std::max(__epsilon, std::abs(__pndev));if (__epsilon < __errtol)break;const _Tp __xnroot = std::sqrt(__xn);const _Tp __ynroot = std::sqrt(__yn);const _Tp __znroot = std::sqrt(__zn);const _Tp __lambda = __xnroot * (__ynroot + __znroot)+ __ynroot * __znroot;const _Tp __alpha1 = __pn * (__xnroot + __ynroot + __znroot)+ __xnroot * __ynroot * __znroot;const _Tp __alpha2 = __alpha1 * __alpha1;const _Tp __beta = __pn * (__pn + __lambda)* (__pn + __lambda);__sigma += __power4 * __ellint_rc(__alpha2, __beta);__power4 *= __c0;__xn = __c0 * (__xn + __lambda);__yn = __c0 * (__yn + __lambda);__zn = __c0 * (__zn + __lambda);__pn = __c0 * (__pn + __lambda);}_Tp __ea = __xndev * (__yndev + __zndev) + __yndev * __zndev;_Tp __eb = __xndev * __yndev * __zndev;_Tp __ec = __pndev * __pndev;_Tp __e2 = __ea - _Tp(3) * __ec;_Tp __e3 = __eb + _Tp(2) * __pndev * (__ea - __ec);_Tp __s1 = _Tp(1) + __e2 * (-__c1 + _Tp(3) * __c3 * __e2 / _Tp(4)- _Tp(3) * __c4 * __e3 / _Tp(2));_Tp __s2 = __eb * (__c2 / _Tp(2)+ __pndev * (-__c3 - __c3 + __pndev * __c4));_Tp __s3 = __pndev * __ea * (__c2 - __pndev * __c3)- __c2 * __pndev * __ec;return _Tp(3) * __sigma + __power4 * (__s1 + __s2 + __s3)/ (__mu * std::sqrt(__mu));}}/*** @brief Return the complete elliptic integral of the third kind* @f$ \Pi(k,\nu) = \Pi(k,\nu,\pi/2) @f$ using the* Carlson formulation.** The complete elliptic integral of the third kind is defined as* @f[* \Pi(k,\nu) = \int_0^{\pi/2}* \frac{d\theta}* {(1 - \nu \sin^2\theta)\sqrt{1 - k^2 \sin^2\theta}}* @f]** @param __k The argument of the elliptic function.* @param __nu The second argument of the elliptic function.* @return The complete elliptic function of the third kind.*/template<typename _Tp>_Tp__comp_ellint_3(const _Tp __k, const _Tp __nu){if (__isnan(__k) || __isnan(__nu))return std::numeric_limits<_Tp>::quiet_NaN();else if (__nu == _Tp(1))return std::numeric_limits<_Tp>::infinity();else if (std::abs(__k) > _Tp(1))std::__throw_domain_error(__N("Bad argument in __comp_ellint_3."));else{const _Tp __kk = __k * __k;return __ellint_rf(_Tp(0), _Tp(1) - __kk, _Tp(1))- __nu* __ellint_rj(_Tp(0), _Tp(1) - __kk, _Tp(1), _Tp(1) + __nu)/ _Tp(3);}}/*** @brief Return the incomplete elliptic integral of the third kind* @f$ \Pi(k,\nu,\phi) @f$ using the Carlson formulation.** The incomplete elliptic integral of the third kind is defined as* @f[* \Pi(k,\nu,\phi) = \int_0^{\phi}* \frac{d\theta}* {(1 - \nu \sin^2\theta)* \sqrt{1 - k^2 \sin^2\theta}}* @f]** @param __k The argument of the elliptic function.* @param __nu The second argument of the elliptic function.* @param __phi The integral limit argument of the elliptic function.* @return The elliptic function of the third kind.*/template<typename _Tp>_Tp__ellint_3(const _Tp __k, const _Tp __nu, const _Tp __phi){if (__isnan(__k) || __isnan(__nu) || __isnan(__phi))return std::numeric_limits<_Tp>::quiet_NaN();else if (std::abs(__k) > _Tp(1))std::__throw_domain_error(__N("Bad argument in __ellint_3."));else{// Reduce phi to -pi/2 < phi < +pi/2.const int __n = std::floor(__phi / __numeric_constants<_Tp>::__pi()+ _Tp(0.5L));const _Tp __phi_red = __phi- __n * __numeric_constants<_Tp>::__pi();const _Tp __kk = __k * __k;const _Tp __s = std::sin(__phi_red);const _Tp __ss = __s * __s;const _Tp __sss = __ss * __s;const _Tp __c = std::cos(__phi_red);const _Tp __cc = __c * __c;const _Tp __Pi = __s* __ellint_rf(__cc, _Tp(1) - __kk * __ss, _Tp(1))- __nu * __sss* __ellint_rj(__cc, _Tp(1) - __kk * __ss, _Tp(1),_Tp(1) + __nu * __ss) / _Tp(3);if (__n == 0)return __Pi;elsereturn __Pi + _Tp(2) * __n * __comp_ellint_3(__k, __nu);}}} // namespace std::tr1::__detail}}#endif // _GLIBCXX_TR1_ELL_INTEGRAL_TCC