tree representation into the GIMPLE form.
Copyright (C) 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
Major work done by Sebastian Pop <s.pop@laposte.net>,
Diego Novillo <dnovillo@redhat.com> and Jason Merrill <jason@redhat.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "rtl.h"
#include "varray.h"
#include "tree-gimple.h"
#include "tree-inline.h"
#include "diagnostic.h"
#include "langhooks.h"
#include "langhooks-def.h"
#include "tree-flow.h"
#include "cgraph.h"
#include "timevar.h"
#include "except.h"
#include "hashtab.h"
#include "flags.h"
#include "real.h"
#include "function.h"
#include "output.h"
#include "expr.h"
#include "ggc.h"
#include "toplev.h"
#include "target.h"
static struct gimplify_ctx
{
tree current_bind_expr;
tree temps;
tree conditional_cleanups;
tree exit_label;
tree return_temp;
VEC(tree,heap) *case_labels;
htab_t temp_htab;
int conditions;
bool save_stack;
bool into_ssa;
} *gimplify_ctxp;
the same scalar expression are evaluated into the same temporary. */
typedef struct gimple_temp_hash_elt
{
tree val;
tree temp;
} elt_t;
static enum gimplify_status gimplify_compound_expr (tree *, tree *, bool);
#ifdef ENABLE_CHECKING
static bool cpt_same_type (tree a, tree b);
#endif
static hashval_t
gimple_tree_hash (const void *p)
{
tree t = ((const elt_t *) p)->val;
return iterative_hash_expr (t, 0);
}
static int
gimple_tree_eq (const void *p1, const void *p2)
{
tree t1 = ((const elt_t *) p1)->val;
tree t2 = ((const elt_t *) p2)->val;
enum tree_code code = TREE_CODE (t1);
if (TREE_CODE (t2) != code
|| TREE_TYPE (t1) != TREE_TYPE (t2))
return 0;
if (!operand_equal_p (t1, t2, 0))
return 0;
results are nondeterminate, and we fail bootstrap comparison. */
gcc_assert (gimple_tree_hash (p1) == gimple_tree_hash (p2));
return 1;
}
void
push_gimplify_context (void)
{
gcc_assert (!gimplify_ctxp);
gimplify_ctxp
= (struct gimplify_ctx *) xcalloc (1, sizeof (struct gimplify_ctx));
if (optimize)
gimplify_ctxp->temp_htab
= htab_create (1000, gimple_tree_hash, gimple_tree_eq, free);
else
gimplify_ctxp->temp_htab = NULL;
}
put the temporaries into the outer BIND_EXPR. Otherwise, put them
in the unexpanded_var_list. */
void
pop_gimplify_context (tree body)
{
tree t;
gcc_assert (gimplify_ctxp && !gimplify_ctxp->current_bind_expr);
for (t = gimplify_ctxp->temps; t ; t = TREE_CHAIN (t))
DECL_GIMPLE_FORMAL_TEMP_P (t) = 0;
if (body)
declare_tmp_vars (gimplify_ctxp->temps, body);
else
record_vars (gimplify_ctxp->temps);
#if 0
if (!quiet_flag && optimize)
fprintf (stderr, " collisions: %f ",
htab_collisions (gimplify_ctxp->temp_htab));
#endif
if (optimize)
htab_delete (gimplify_ctxp->temp_htab);
free (gimplify_ctxp);
gimplify_ctxp = NULL;
}
static void
gimple_push_bind_expr (tree bind)
{
TREE_CHAIN (bind) = gimplify_ctxp->current_bind_expr;
gimplify_ctxp->current_bind_expr = bind;
}
static void
gimple_pop_bind_expr (void)
{
gimplify_ctxp->current_bind_expr
= TREE_CHAIN (gimplify_ctxp->current_bind_expr);
}
tree
gimple_current_bind_expr (void)
{
return gimplify_ctxp->current_bind_expr;
}
CLEANUP_POINT_EXPR. This info is used by gimple_push_cleanup. */
static bool
gimple_conditional_context (void)
{
return gimplify_ctxp->conditions > 0;
}
static void
gimple_push_condition (void)
{
#ifdef ENABLE_CHECKING
if (gimplify_ctxp->conditions == 0)
gcc_assert (!gimplify_ctxp->conditional_cleanups);
#endif
++(gimplify_ctxp->conditions);
}
now, add any conditional cleanups we've seen to the prequeue. */
static void
gimple_pop_condition (tree *pre_p)
{
int conds = --(gimplify_ctxp->conditions);
gcc_assert (conds >= 0);
if (conds == 0)
{
append_to_statement_list (gimplify_ctxp->conditional_cleanups, pre_p);
gimplify_ctxp->conditional_cleanups = NULL_TREE;
}
}
static void
append_to_statement_list_1 (tree t, tree *list_p)
{
tree list = *list_p;
tree_stmt_iterator i;
if (!list)
{
if (t && TREE_CODE (t) == STATEMENT_LIST)
{
*list_p = t;
return;
}
*list_p = list = alloc_stmt_list ();
}
i = tsi_last (list);
tsi_link_after (&i, t, TSI_CONTINUE_LINKING);
}
If T is an expression with no effects, it is ignored. */
void
append_to_statement_list (tree t, tree *list_p)
{
if (t && TREE_SIDE_EFFECTS (t))
append_to_statement_list_1 (t, list_p);
}
void
append_to_statement_list_force (tree t, tree *list_p)
{
if (t != NULL_TREE)
append_to_statement_list_1 (t, list_p);
}
void
gimplify_and_add (tree t, tree *list_p)
{
gimplify_stmt (&t);
append_to_statement_list (t, list_p);
}
length LEN. Rather than having to know the names used by all of
our front ends, we strip off an ending of a period followed by
up to five characters. (Java uses ".class".) */
static inline void
remove_suffix (char *name, int len)
{
int i;
for (i = 2; i < 8 && len > i; i++)
{
if (name[len - i] == '.')
{
name[len - i] = '\0';
break;
}
}
}
context. Returns the newly created label. */
tree
create_artificial_label (void)
{
tree lab = build_decl (LABEL_DECL, NULL_TREE, void_type_node);
DECL_ARTIFICIAL (lab) = 1;
DECL_IGNORED_P (lab) = 1;
DECL_CONTEXT (lab) = current_function_decl;
return lab;
}
static tree
find_single_pointer_decl_1 (tree *tp, int *walk_subtrees ATTRIBUTE_UNUSED,
void *data)
{
tree *pdecl = (tree *) data;
if (DECL_P (*tp) && POINTER_TYPE_P (TREE_TYPE (*tp)))
{
if (*pdecl)
{
than NULL_TREE to unwind from walk_tree signalling that
we have a duplicate. */
return *tp;
}
*pdecl = *tp;
}
return NULL_TREE;
}
If there are zero or more than one such DECLs, return NULL. */
static tree
find_single_pointer_decl (tree t)
{
tree decl = NULL_TREE;
if (walk_tree (&t, find_single_pointer_decl_1, &decl, NULL))
{
walk_tree to return a non-zero value, to indicate that it
found more than one pointer DECL. */
return NULL_TREE;
}
return decl;
}
static GTY(()) unsigned int tmp_var_id_num;
tree
create_tmp_var_name (const char *prefix)
{
char *tmp_name;
if (prefix)
{
char *preftmp = ASTRDUP (prefix);
remove_suffix (preftmp, strlen (preftmp));
prefix = preftmp;
}
ASM_FORMAT_PRIVATE_NAME (tmp_name, prefix ? prefix : "T", tmp_var_id_num++);
return get_identifier (tmp_name);
}
Does NOT push it into the current binding. */
tree
create_tmp_var_raw (tree type, const char *prefix)
{
tree tmp_var;
tree new_type;
new_type = build_type_variant (type, 0, 0);
TYPE_ATTRIBUTES (new_type) = TYPE_ATTRIBUTES (type);
tmp_var = build_decl (VAR_DECL, prefix ? create_tmp_var_name (prefix) : NULL,
type);
DECL_ARTIFICIAL (tmp_var) = 1;
DECL_IGNORED_P (tmp_var) = 1;
TREE_READONLY (tmp_var) = 0;
DECL_EXTERNAL (tmp_var) = 0;
TREE_STATIC (tmp_var) = 0;
TREE_USED (tmp_var) = 1;
return tmp_var;
}
variable into the current binding. Further, assume that this is called
only from gimplification or optimization, at which point the creation of
certain types are bugs. */
tree
create_tmp_var (tree type, const char *prefix)
{
tree tmp_var;
incomplete, or of variable size. */
gcc_assert (!TREE_ADDRESSABLE (type)
&& COMPLETE_TYPE_P (type)
&& TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST);
tmp_var = create_tmp_var_raw (type, prefix);
gimple_add_tmp_var (tmp_var);
return tmp_var;
}
to prefix a temporary that is being assigned the value of the tree.
I.E. given <temp> = &A, return A. */
const char *
get_name (tree t)
{
tree stripped_decl;
stripped_decl = t;
STRIP_NOPS (stripped_decl);
if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
else
{
switch (TREE_CODE (stripped_decl))
{
case ADDR_EXPR:
return get_name (TREE_OPERAND (stripped_decl, 0));
break;
default:
return NULL;
}
}
}
lookup_tmp_var; nobody else should call this function. */
static inline tree
create_tmp_from_val (tree val)
{
return create_tmp_var (TYPE_MAIN_VARIANT (TREE_TYPE (val)), get_name (val));
}
an existing expression temporary. */
static tree
lookup_tmp_var (tree val, bool is_formal)
{
tree ret;
won't allocate any variable that is used in more than one basic
block, which means it will go into memory, causing much extra
work in reload and final and poorer code generation, outweighing
the extra memory allocation here. */
if (!optimize || !is_formal || TREE_SIDE_EFFECTS (val))
ret = create_tmp_from_val (val);
else
{
elt_t elt, *elt_p;
void **slot;
elt.val = val;
slot = htab_find_slot (gimplify_ctxp->temp_htab, (void *)&elt, INSERT);
if (*slot == NULL)
{
elt_p = xmalloc (sizeof (*elt_p));
elt_p->val = val;
elt_p->temp = ret = create_tmp_from_val (val);
*slot = (void *) elt_p;
}
else
{
elt_p = (elt_t *) *slot;
ret = elt_p->temp;
}
}
if (is_formal)
DECL_GIMPLE_FORMAL_TEMP_P (ret) = 1;
return ret;
}
in gimplify_expr. Only use this function if:
1) The value of the unfactored expression represented by VAL will not
change between the initialization and use of the temporary, and
2) The temporary will not be otherwise modified.
For instance, #1 means that this is inappropriate for SAVE_EXPR temps,
and #2 means it is inappropriate for && temps.
For other cases, use get_initialized_tmp_var instead. */
static tree
internal_get_tmp_var (tree val, tree *pre_p, tree *post_p, bool is_formal)
{
tree t, mod;
gimplify_expr (&val, pre_p, post_p, is_gimple_formal_tmp_rhs, fb_rvalue);
t = lookup_tmp_var (val, is_formal);
if (is_formal)
{
tree u = find_single_pointer_decl (val);
if (u && TREE_CODE (u) == VAR_DECL && DECL_BASED_ON_RESTRICT_P (u))
u = DECL_GET_RESTRICT_BASE (u);
if (u && TYPE_RESTRICT (TREE_TYPE (u)))
{
if (DECL_BASED_ON_RESTRICT_P (t))
gcc_assert (u == DECL_GET_RESTRICT_BASE (t));
else
{
DECL_BASED_ON_RESTRICT_P (t) = 1;
SET_DECL_RESTRICT_BASE (t, u);
}
}
}
if (TREE_CODE (TREE_TYPE (t)) == COMPLEX_TYPE)
DECL_COMPLEX_GIMPLE_REG_P (t) = 1;
mod = build2 (INIT_EXPR, TREE_TYPE (t), t, val);
if (EXPR_HAS_LOCATION (val))
SET_EXPR_LOCUS (mod, EXPR_LOCUS (val));
else
SET_EXPR_LOCATION (mod, input_location);
gimplify_and_add (mod, pre_p);
given our temporary an ssa name. Find and return it. */
if (gimplify_ctxp->into_ssa)
t = TREE_OPERAND (mod, 0);
return t;
}
tree
get_formal_tmp_var (tree val, tree *pre_p)
{
return internal_get_tmp_var (val, pre_p, NULL, true);
}
are as in gimplify_expr. */
tree
get_initialized_tmp_var (tree val, tree *pre_p, tree *post_p)
{
return internal_get_tmp_var (val, pre_p, post_p, false);
}
void
declare_tmp_vars (tree vars, tree scope)
{
tree last = vars;
if (last)
{
tree temps;
braces. So drill down until we find an actual scope. */
while (TREE_CODE (scope) == COMPOUND_EXPR)
scope = TREE_OPERAND (scope, 0);
gcc_assert (TREE_CODE (scope) == BIND_EXPR);
temps = nreverse (last);
TREE_CHAIN (last) = BIND_EXPR_VARS (scope);
BIND_EXPR_VARS (scope) = temps;
}
}
void
gimple_add_tmp_var (tree tmp)
{
gcc_assert (!TREE_CHAIN (tmp) && !DECL_SEEN_IN_BIND_EXPR_P (tmp));
DECL_CONTEXT (tmp) = current_function_decl;
DECL_SEEN_IN_BIND_EXPR_P (tmp) = 1;
if (gimplify_ctxp)
{
TREE_CHAIN (tmp) = gimplify_ctxp->temps;
gimplify_ctxp->temps = tmp;
}
else if (cfun)
record_vars (tmp);
else
declare_tmp_vars (tmp, DECL_SAVED_TREE (current_function_decl));
}
static bool
should_carry_locus_p (tree stmt)
{
emit one for the break label, since it doesn't actually correspond
to the beginning of the loop/switch. */
if (TREE_CODE (stmt) == LABEL_EXPR)
return false;
if (!TREE_SIDE_EFFECTS (stmt))
return false;
return true;
}
static void
annotate_one_with_locus (tree t, location_t locus)
{
if (EXPR_P (t) && ! EXPR_HAS_LOCATION (t) && should_carry_locus_p (t))
SET_EXPR_LOCATION (t, locus);
}
void
annotate_all_with_locus (tree *stmt_p, location_t locus)
{
tree_stmt_iterator i;
if (!*stmt_p)
return;
for (i = tsi_start (*stmt_p); !tsi_end_p (i); tsi_next (&i))
{
tree t = tsi_stmt (i);
see nested chaining constructs anymore. */
gcc_assert (TREE_CODE (t) != STATEMENT_LIST
&& TREE_CODE (t) != COMPOUND_EXPR);
annotate_one_with_locus (t, locus);
}
}
These nodes model computations that should only be done once. If we
were to unshare something like SAVE_EXPR(i++), the gimplification
process would create wrong code. */
static tree
mostly_copy_tree_r (tree *tp, int *walk_subtrees, void *data)
{
enum tree_code code = TREE_CODE (*tp);
if (TREE_CODE_CLASS (code) == tcc_type
|| TREE_CODE_CLASS (code) == tcc_declaration
|| TREE_CODE_CLASS (code) == tcc_constant
|| code == SAVE_EXPR || code == TARGET_EXPR
but we also can't just die when we see it because of non-expression
uses. So just avert our eyes and cross our fingers. Silly Java. */
|| code == BLOCK)
*walk_subtrees = 0;
else
{
gcc_assert (code != BIND_EXPR);
copy_tree_r (tp, walk_subtrees, data);
}
return NULL_TREE;
}
*TP. If *TP has been visited already (i.e., TREE_VISITED (*TP) == 1),
then *TP is deep copied by calling copy_tree_r.
This unshares the same trees as copy_tree_r with the exception of
SAVE_EXPR nodes. These nodes model computations that should only be
done once. If we were to unshare something like SAVE_EXPR(i++), the
gimplification process would create wrong code. */
static tree
copy_if_shared_r (tree *tp, int *walk_subtrees ATTRIBUTE_UNUSED,
void *data ATTRIBUTE_UNUSED)
{
tree t = *tp;
enum tree_code code = TREE_CODE (t);
types and the bounds of types. Mark them as visited so we properly
unmark their subtrees on the unmark pass. If we've already seen them,
don't look down further. */
if (TREE_CODE_CLASS (code) == tcc_type
|| TREE_CODE_CLASS (code) == tcc_declaration
|| TREE_CODE_CLASS (code) == tcc_constant)
{
if (TREE_VISITED (t))
*walk_subtrees = 0;
else
TREE_VISITED (t) = 1;
}
any deeper. */
else if (TREE_VISITED (t))
{
walk_tree (tp, mostly_copy_tree_r, NULL, NULL);
*walk_subtrees = 0;
}
else
TREE_VISITED (t) = 1;
return NULL_TREE;
}
static tree
unmark_visited_r (tree *tp, int *walk_subtrees ATTRIBUTE_UNUSED,
void *data ATTRIBUTE_UNUSED)
{
if (TREE_VISITED (*tp))
TREE_VISITED (*tp) = 0;
else
*walk_subtrees = 0;
return NULL_TREE;
}
bodies of any nested functions if we are unsharing the entire body of
FNDECL. */
static void
unshare_body (tree *body_p, tree fndecl)
{
struct cgraph_node *cgn = cgraph_node (fndecl);
walk_tree (body_p, copy_if_shared_r, NULL, NULL);
if (body_p == &DECL_SAVED_TREE (fndecl))
for (cgn = cgn->nested; cgn; cgn = cgn->next_nested)
unshare_body (&DECL_SAVED_TREE (cgn->decl), cgn->decl);
}
static void
unvisit_body (tree *body_p, tree fndecl)
{
struct cgraph_node *cgn = cgraph_node (fndecl);
walk_tree (body_p, unmark_visited_r, NULL, NULL);
if (body_p == &DECL_SAVED_TREE (fndecl))
for (cgn = cgn->nested; cgn; cgn = cgn->next_nested)
unvisit_body (&DECL_SAVED_TREE (cgn->decl), cgn->decl);
}
static void
unshare_all_trees (tree t)
{
walk_tree (&t, copy_if_shared_r, NULL, NULL);
walk_tree (&t, unmark_visited_r, NULL, NULL);
}
stored expressions which span multiple functions, such as BINFO_VTABLE,
as the normal unsharing process can't tell that they're shared. */
tree
unshare_expr (tree expr)
{
walk_tree (&expr, mostly_copy_tree_r, NULL, NULL);
return expr;
}
specification. */
tree
gimple_build_eh_filter (tree body, tree allowed, tree failure)
{
tree t;
t = build (EH_FILTER_EXPR, void_type_node, allowed, NULL_TREE);
append_to_statement_list (failure, &EH_FILTER_FAILURE (t));
t = build (TRY_CATCH_EXPR, void_type_node, NULL_TREE, t);
append_to_statement_list (body, &TREE_OPERAND (t, 0));
return t;
}
contain statements and have a value. Assign its value to a temporary
and give it void_type_node. Returns the temporary, or NULL_TREE if
WRAPPER was already void. */
tree
voidify_wrapper_expr (tree wrapper, tree temp)
{
if (!VOID_TYPE_P (TREE_TYPE (wrapper)))
{
tree *p, sub = wrapper;
restart:
switch (TREE_CODE (sub))
{
case BIND_EXPR:
p = &BIND_EXPR_BODY (sub);
break;
default:
p = &TREE_OPERAND (sub, 0);
break;
}
if (TREE_CODE (*p) == STATEMENT_LIST)
{
tree_stmt_iterator i = tsi_last (*p);
p = tsi_end_p (i) ? NULL : tsi_stmt_ptr (i);
}
else
{
for (; TREE_CODE (*p) == COMPOUND_EXPR; p = &TREE_OPERAND (*p, 1))
{
TREE_SIDE_EFFECTS (*p) = 1;
TREE_TYPE (*p) = void_type_node;
}
}
if (p == NULL || IS_EMPTY_STMT (*p))
;
else if (TREE_CODE (*p) == TRY_FINALLY_EXPR
|| TREE_CODE (*p) == TRY_CATCH_EXPR)
{
sub = *p;
goto restart;
}
else if (TREE_CODE (*p) == INIT_EXPR
|| TREE_CODE (*p) == TARGET_EXPR)
temp = TREE_OPERAND (*p, 0);
outside the wrapper. */
else if (TREE_CODE (*p) == INDIRECT_REF)
{
tree ptr = TREE_OPERAND (*p, 0);
temp = create_tmp_var (TREE_TYPE (ptr), "retval");
*p = build (MODIFY_EXPR, TREE_TYPE (ptr), temp, ptr);
temp = build1 (INDIRECT_REF, TREE_TYPE (TREE_TYPE (temp)), temp);
have TREE_SIDE_EFFECTS set. That is no longer accurate. */
TREE_SIDE_EFFECTS (wrapper) = 1;
}
else
{
if (!temp)
temp = create_tmp_var (TREE_TYPE (wrapper), "retval");
*p = build (MODIFY_EXPR, TREE_TYPE (temp), temp, *p);
TREE_SIDE_EFFECTS (wrapper) = 1;
}
TREE_TYPE (wrapper) = void_type_node;
return temp;
}
return NULL_TREE;
}
a temporary through which they communicate. */
static void
build_stack_save_restore (tree *save, tree *restore)
{
tree save_call, tmp_var;
save_call =
build_function_call_expr (implicit_built_in_decls[BUILT_IN_STACK_SAVE],
NULL_TREE);
tmp_var = create_tmp_var (ptr_type_node, "saved_stack");
*save = build (MODIFY_EXPR, ptr_type_node, tmp_var, save_call);
*restore =
build_function_call_expr (implicit_built_in_decls[BUILT_IN_STACK_RESTORE],
tree_cons (NULL_TREE, tmp_var, NULL_TREE));
}
static enum gimplify_status
gimplify_bind_expr (tree *expr_p, tree temp, tree *pre_p)
{
tree bind_expr = *expr_p;
bool old_save_stack = gimplify_ctxp->save_stack;
tree t;
temp = voidify_wrapper_expr (bind_expr, temp);
for (t = BIND_EXPR_VARS (bind_expr); t ; t = TREE_CHAIN (t))
{
if (TREE_CODE (t) == VAR_DECL)
DECL_SEEN_IN_BIND_EXPR_P (t) = 1;
for promotion to gimple registers. We'll transform their uses
as we find them. */
if (TREE_CODE (TREE_TYPE (t)) == COMPLEX_TYPE
&& !TREE_THIS_VOLATILE (t)
&& (TREE_CODE (t) == VAR_DECL && !DECL_HARD_REGISTER (t))
&& !needs_to_live_in_memory (t))
DECL_COMPLEX_GIMPLE_REG_P (t) = 1;
}
gimple_push_bind_expr (bind_expr);
gimplify_ctxp->save_stack = false;
gimplify_to_stmt_list (&BIND_EXPR_BODY (bind_expr));
if (gimplify_ctxp->save_stack)
{
tree stack_save, stack_restore;
block to achieve this. Note that mudflap depends on the
format of the emitted code: see mx_register_decls(). */
build_stack_save_restore (&stack_save, &stack_restore);
t = build (TRY_FINALLY_EXPR, void_type_node,
BIND_EXPR_BODY (bind_expr), NULL_TREE);
append_to_statement_list (stack_restore, &TREE_OPERAND (t, 1));
BIND_EXPR_BODY (bind_expr) = NULL_TREE;
append_to_statement_list (stack_save, &BIND_EXPR_BODY (bind_expr));
append_to_statement_list (t, &BIND_EXPR_BODY (bind_expr));
}
gimplify_ctxp->save_stack = old_save_stack;
gimple_pop_bind_expr ();
if (temp)
{
*expr_p = temp;
append_to_statement_list (bind_expr, pre_p);
return GS_OK;
}
else
return GS_ALL_DONE;
}
GIMPLE value, it is assigned to a new temporary and the statement is
re-written to return the temporary.
PRE_P points to the list where side effects that must happen before
STMT should be stored. */
static enum gimplify_status
gimplify_return_expr (tree stmt, tree *pre_p)
{
tree ret_expr = TREE_OPERAND (stmt, 0);
tree result_decl, result;
if (!ret_expr || TREE_CODE (ret_expr) == RESULT_DECL
|| ret_expr == error_mark_node)
return GS_ALL_DONE;
if (VOID_TYPE_P (TREE_TYPE (TREE_TYPE (current_function_decl))))
result_decl = NULL_TREE;
else
{
result_decl = TREE_OPERAND (ret_expr, 0);
if (TREE_CODE (result_decl) == INDIRECT_REF)
result_decl = TREE_OPERAND (result_decl, 0);
gcc_assert ((TREE_CODE (ret_expr) == MODIFY_EXPR
|| TREE_CODE (ret_expr) == INIT_EXPR)
&& TREE_CODE (result_decl) == RESULT_DECL);
}
Recall that aggregate_value_p is FALSE for any aggregate type that is
returned in registers. If we're returning values in registers, then
we don't want to extend the lifetime of the RESULT_DECL, particularly
across another call. In addition, for those aggregates for which
hard_function_value generates a PARALLEL, we'll die during normal
expansion of structure assignments; there's special code in expand_return
to handle this case that does not exist in expand_expr. */
if (!result_decl
|| aggregate_value_p (result_decl, TREE_TYPE (current_function_decl)))
result = result_decl;
else if (gimplify_ctxp->return_temp)
result = gimplify_ctxp->return_temp;
else
{
result = create_tmp_var (TREE_TYPE (result_decl), NULL);
we can wind up warning about an uninitialized value for this. Due
to how this variable is constructed and initialized, this is never
true. Give up and never warn. */
TREE_NO_WARNING (result) = 1;
gimplify_ctxp->return_temp = result;
}
Then gimplify the whole thing. */
if (result != result_decl)
TREE_OPERAND (ret_expr, 0) = result;
gimplify_and_add (TREE_OPERAND (stmt, 0), pre_p);
Otherwise we need a simple copy. This should already be gimple. */
if (result == result_decl)
ret_expr = result;
else
ret_expr = build (MODIFY_EXPR, TREE_TYPE (result), result_decl, result);
TREE_OPERAND (stmt, 0) = ret_expr;
return GS_ALL_DONE;
}
and initialization explicit. */
static enum gimplify_status
gimplify_decl_expr (tree *stmt_p)
{
tree stmt = *stmt_p;
tree decl = DECL_EXPR_DECL (stmt);
*stmt_p = NULL_TREE;
if (TREE_TYPE (decl) == error_mark_node)
return GS_ERROR;
if ((TREE_CODE (decl) == TYPE_DECL
|| TREE_CODE (decl) == VAR_DECL)
&& !TYPE_SIZES_GIMPLIFIED (TREE_TYPE (decl)))
gimplify_type_sizes (TREE_TYPE (decl), stmt_p);
if (TREE_CODE (decl) == VAR_DECL && !DECL_EXTERNAL (decl))
{
tree init = DECL_INITIAL (decl);
if (TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
{
for deferred expansion. Note that mudflap depends on the format
of the emitted code: see mx_register_decls(). */
tree t, args, addr, ptr_type;
gimplify_one_sizepos (&DECL_SIZE (decl), stmt_p);
gimplify_one_sizepos (&DECL_SIZE_UNIT (decl), stmt_p);
replaced by indirection. Setting DECL_VALUE_EXPR does two
things: First, it lets the rest of the gimplifier know what
replacement to use. Second, it lets the debug info know
where to find the value. */
ptr_type = build_pointer_type (TREE_TYPE (decl));
addr = create_tmp_var (ptr_type, get_name (decl));
DECL_IGNORED_P (addr) = 0;
t = build_fold_indirect_ref (addr);
SET_DECL_VALUE_EXPR (decl, t);
DECL_HAS_VALUE_EXPR_P (decl) = 1;
args = tree_cons (NULL, DECL_SIZE_UNIT (decl), NULL);
t = built_in_decls[BUILT_IN_ALLOCA];
t = build_function_call_expr (t, args);
t = fold_convert (ptr_type, t);
t = build2 (MODIFY_EXPR, void_type_node, addr, t);
gimplify_and_add (t, stmt_p);
enclosing BIND_EXPR is exited. */
gimplify_ctxp->save_stack = true;
}
if (init && init != error_mark_node)
{
if (!TREE_STATIC (decl))
{
DECL_INITIAL (decl) = NULL_TREE;
init = build2 (INIT_EXPR, void_type_node, decl, init);
gimplify_and_add (init, stmt_p);
}
else
as they may contain a label address. */
walk_tree (&init, force_labels_r, NULL, NULL);
}
list of temps. FIXME it seems a bit of a kludge to say that
anonymous artificial vars aren't pushed, but everything else is. */
if (DECL_ARTIFICIAL (decl) && DECL_NAME (decl) == NULL_TREE)
gimple_add_tmp_var (decl);
}
return GS_ALL_DONE;
}
and replacing the LOOP_EXPR with goto, but if the loop contains an
EXIT_EXPR, we need to append a label for it to jump to. */
static enum gimplify_status
gimplify_loop_expr (tree *expr_p, tree *pre_p)
{
tree saved_label = gimplify_ctxp->exit_label;
tree start_label = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
tree jump_stmt = build_and_jump (&LABEL_EXPR_LABEL (start_label));
append_to_statement_list (start_label, pre_p);
gimplify_ctxp->exit_label = NULL_TREE;
gimplify_and_add (LOOP_EXPR_BODY (*expr_p), pre_p);
if (gimplify_ctxp->exit_label)
{
append_to_statement_list (jump_stmt, pre_p);
*expr_p = build1 (LABEL_EXPR, void_type_node, gimplify_ctxp->exit_label);
}
else
*expr_p = jump_stmt;
gimplify_ctxp->exit_label = saved_label;
return GS_ALL_DONE;
}
made sure that case ranges do not overlap, it is enough to only compare
the CASE_LOW values of each case label. */
static int
compare_case_labels (const void *p1, const void *p2)
{
tree case1 = *(tree *)p1;
tree case2 = *(tree *)p2;
return tree_int_cst_compare (CASE_LOW (case1), CASE_LOW (case2));
}
void
sort_case_labels (tree label_vec)
{
size_t len = TREE_VEC_LENGTH (label_vec);
tree default_case = TREE_VEC_ELT (label_vec, len - 1);
if (CASE_LOW (default_case))
{
size_t i;
but it is not. */
for (i = 0; i < len; ++i)
{
tree t = TREE_VEC_ELT (label_vec, i);
if (!CASE_LOW (t))
{
default_case = t;
TREE_VEC_ELT (label_vec, i) = TREE_VEC_ELT (label_vec, len - 1);
TREE_VEC_ELT (label_vec, len - 1) = default_case;
break;
}
}
}
qsort (&TREE_VEC_ELT (label_vec, 0), len - 1, sizeof (tree),
compare_case_labels);
}
branch to. */
static enum gimplify_status
gimplify_switch_expr (tree *expr_p, tree *pre_p)
{
tree switch_expr = *expr_p;
enum gimplify_status ret;
ret = gimplify_expr (&SWITCH_COND (switch_expr), pre_p, NULL,
is_gimple_val, fb_rvalue);
if (SWITCH_BODY (switch_expr))
{
VEC(tree,heap) *labels, *saved_labels;
tree label_vec, default_case = NULL_TREE;
size_t i, len;
be bothered to null out the body too. */
gcc_assert (!SWITCH_LABELS (switch_expr));
saved_labels = gimplify_ctxp->case_labels;
gimplify_ctxp->case_labels = VEC_alloc (tree, heap, 8);
gimplify_to_stmt_list (&SWITCH_BODY (switch_expr));
labels = gimplify_ctxp->case_labels;
gimplify_ctxp->case_labels = saved_labels;
len = VEC_length (tree, labels);
for (i = 0; i < len; ++i)
{
tree t = VEC_index (tree, labels, i);
if (!CASE_LOW (t))
{
default_case = t;
VEC_replace (tree, labels, i, VEC_index (tree, labels, len - 1));
len--;
break;
}
}
label_vec = make_tree_vec (len + 1);
SWITCH_LABELS (*expr_p) = label_vec;
append_to_statement_list (switch_expr, pre_p);
if (! default_case)
{
around the switch body. */
default_case = build (CASE_LABEL_EXPR, void_type_node, NULL_TREE,
NULL_TREE, create_artificial_label ());
append_to_statement_list (SWITCH_BODY (switch_expr), pre_p);
*expr_p = build (LABEL_EXPR, void_type_node,
CASE_LABEL (default_case));
}
else
*expr_p = SWITCH_BODY (switch_expr);
for (i = 0; i < len; ++i)
TREE_VEC_ELT (label_vec, i) = VEC_index (tree, labels, i);
TREE_VEC_ELT (label_vec, len) = default_case;
VEC_free (tree, heap, labels);
sort_case_labels (label_vec);
SWITCH_BODY (switch_expr) = NULL;
}
else
gcc_assert (SWITCH_LABELS (switch_expr));
return ret;
}
static enum gimplify_status
gimplify_case_label_expr (tree *expr_p)
{
tree expr = *expr_p;
gcc_assert (gimplify_ctxp->case_labels);
VEC_safe_push (tree, heap, gimplify_ctxp->case_labels, expr);
*expr_p = build (LABEL_EXPR, void_type_node, CASE_LABEL (expr));
return GS_ALL_DONE;
}
if necessary. */
tree
build_and_jump (tree *label_p)
{
if (label_p == NULL)
return NULL_TREE;
if (*label_p == NULL_TREE)
{
tree label = create_artificial_label ();
*label_p = label;
}
return build1 (GOTO_EXPR, void_type_node, *label_p);
}
This also involves building a label to jump to and communicating it to
gimplify_loop_expr through gimplify_ctxp->exit_label. */
static enum gimplify_status
gimplify_exit_expr (tree *expr_p)
{
tree cond = TREE_OPERAND (*expr_p, 0);
tree expr;
expr = build_and_jump (&gimplify_ctxp->exit_label);
expr = build (COND_EXPR, void_type_node, cond, expr, NULL_TREE);
*expr_p = expr;
return GS_OK;
}
as being forced. To be called for DECL_INITIAL of static variables. */
tree
force_labels_r (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
{
if (TYPE_P (*tp))
*walk_subtrees = 0;
if (TREE_CODE (*tp) == LABEL_DECL)
FORCED_LABEL (*tp) = 1;
return NULL_TREE;
}
different from its canonical type, wrap the whole thing inside a
NOP_EXPR and force the type of the COMPONENT_REF to be the canonical
type.
The canonical type of a COMPONENT_REF is the type of the field being
referenced--unless the field is a bit-field which can be read directly
in a smaller mode, in which case the canonical type is the
sign-appropriate type corresponding to that mode. */
static void
canonicalize_component_ref (tree *expr_p)
{
tree expr = *expr_p;
tree type;
gcc_assert (TREE_CODE (expr) == COMPONENT_REF);
if (INTEGRAL_TYPE_P (TREE_TYPE (expr)))
type = TREE_TYPE (get_unwidened (expr, NULL_TREE));
else
type = TREE_TYPE (TREE_OPERAND (expr, 1));
if (TREE_TYPE (expr) != type)
{
tree old_type = TREE_TYPE (expr);
TREE_TYPE (expr) = type;
expr = build1 (NOP_EXPR, old_type, expr);
*expr_p = expr;
}
}
to foo, embed that change in the ADDR_EXPR by converting
T array[U];
(T *)&array
==>
&array[L]
where L is the lower bound. For simplicity, only do this for constant
lower bound. */
static void
canonicalize_addr_expr (tree *expr_p)
{
tree expr = *expr_p;
tree ctype = TREE_TYPE (expr);
tree addr_expr = TREE_OPERAND (expr, 0);
tree atype = TREE_TYPE (addr_expr);
tree dctype, datype, ddatype, otype, obj_expr;
if (!POINTER_TYPE_P (ctype) || !POINTER_TYPE_P (atype))
return;
datype = TREE_TYPE (atype);
if (TREE_CODE (datype) != ARRAY_TYPE)
return;
dctype = TREE_TYPE (ctype);
ddatype = TREE_TYPE (datype);
if (!lang_hooks.types_compatible_p (ddatype, dctype))
return;
obj_expr = TREE_OPERAND (addr_expr, 0);
otype = TREE_TYPE (obj_expr);
if (!lang_hooks.types_compatible_p (otype, datype))
return;
if (!TYPE_SIZE_UNIT (dctype)
|| TREE_CODE (TYPE_SIZE_UNIT (dctype)) != INTEGER_CST
|| !TYPE_DOMAIN (datype) || !TYPE_MIN_VALUE (TYPE_DOMAIN (datype))
|| TREE_CODE (TYPE_MIN_VALUE (TYPE_DOMAIN (datype))) != INTEGER_CST)
return;
*expr_p = build4 (ARRAY_REF, dctype, obj_expr,
TYPE_MIN_VALUE (TYPE_DOMAIN (datype)),
TYPE_MIN_VALUE (TYPE_DOMAIN (datype)),
size_binop (EXACT_DIV_EXPR, TYPE_SIZE_UNIT (dctype),
size_int (TYPE_ALIGN_UNIT (dctype))));
*expr_p = build1 (ADDR_EXPR, ctype, *expr_p);
}
underneath as appropriate. */
static enum gimplify_status
gimplify_conversion (tree *expr_p)
{
gcc_assert (TREE_CODE (*expr_p) == NOP_EXPR
|| TREE_CODE (*expr_p) == CONVERT_EXPR);
STRIP_SIGN_NOPS (TREE_OPERAND (*expr_p, 0));
if (tree_ssa_useless_type_conversion (*expr_p))
*expr_p = TREE_OPERAND (*expr_p, 0);
then canonicalize some constructs. */
if (TREE_CODE (*expr_p) == NOP_EXPR || TREE_CODE (*expr_p) == CONVERT_EXPR)
{
tree sub = TREE_OPERAND (*expr_p, 0);
expression, then canonicalize its type now in order to expose more
redundant conversions. */
if (TREE_CODE (sub) == COMPONENT_REF)
canonicalize_component_ref (&TREE_OPERAND (*expr_p, 0));
to a pointer to foo, embed that change in the ADDR_EXPR. */
else if (TREE_CODE (sub) == ADDR_EXPR)
canonicalize_addr_expr (expr_p);
}
return GS_OK;
}
DECL_VALUE_EXPR, and it's worth re-examining things. */
static enum gimplify_status
gimplify_var_or_parm_decl (tree *expr_p)
{
tree decl = *expr_p;
outer BIND_EXPR, then it's probably the result of a duplicate
declaration, for which we've already issued an error. It would
be really nice if the front end wouldn't leak these at all.
Currently the only known culprit is C++ destructors, as seen
in g++.old-deja/g++.jason/binding.C. */
if (TREE_CODE (decl) == VAR_DECL
&& !DECL_SEEN_IN_BIND_EXPR_P (decl)
&& !TREE_STATIC (decl) && !DECL_EXTERNAL (decl)
&& decl_function_context (decl) == current_function_decl)
{
gcc_assert (errorcount || sorrycount);
return GS_ERROR;
}
if (DECL_HAS_VALUE_EXPR_P (decl))
{
*expr_p = unshare_expr (DECL_VALUE_EXPR (decl));
return GS_OK;
}
return GS_ALL_DONE;
}
node pointed to by EXPR_P.
compound_lval
: min_lval '[' val ']'
| min_lval '.' ID
| compound_lval '[' val ']'
| compound_lval '.' ID
This is not part of the original SIMPLE definition, which separates
array and member references, but it seems reasonable to handle them
together. Also, this way we don't run into problems with union
aliasing; gcc requires that for accesses through a union to alias, the
union reference must be explicit, which was not always the case when we
were splitting up array and member refs.
PRE_P points to the list where side effects that must happen before
*EXPR_P should be stored.
POST_P points to the list where side effects that must happen after
*EXPR_P should be stored. */
static enum gimplify_status
gimplify_compound_lval (tree *expr_p, tree *pre_p,
tree *post_p, fallback_t fallback)
{
tree *p;
VEC(tree,heap) *stack;
enum gimplify_status ret = GS_OK, tret;
int i;
order from inner to outer. */
stack = VEC_alloc (tree, heap, 10);
for (p = expr_p; ; p = &TREE_OPERAND (*p, 0))
{
restart:
if (TREE_CODE (*p) == INDIRECT_REF)
*p = fold_indirect_ref (*p);
if (handled_component_p (*p))
;
additional COMPONENT_REFs. */
else if ((TREE_CODE (*p) == VAR_DECL || TREE_CODE (*p) == PARM_DECL)
&& gimplify_var_or_parm_decl (p) == GS_OK)
goto restart;
else
break;
VEC_safe_push (tree, heap, stack, *p);
}
gcc_assert (VEC_length (tree, stack));
and P points to the innermost expression.
Java requires that we elaborated nodes in source order. That
means we must gimplify the inner expression followed by each of
the indices, in order. But we can't gimplify the inner
expression until we deal with any variable bounds, sizes, or
positions in order to deal with PLACEHOLDER_EXPRs.
So we do this in three steps. First we deal with the annotations
for any variables in the components, then we gimplify the base,
then we gimplify any indices, from left to right. */
for (i = VEC_length (tree, stack) - 1; i >= 0; i--)
{
tree t = VEC_index (tree, stack, i);
if (TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
{
the ARRAY_REF. If these values are set, they have already been
gimplified. */
if (!TREE_OPERAND (t, 2))
{
tree low = unshare_expr (array_ref_low_bound (t));
if (!is_gimple_min_invariant (low))
{
TREE_OPERAND (t, 2) = low;
tret = gimplify_expr (&TREE_OPERAND (t, 2), pre_p, post_p,
is_gimple_formal_tmp_reg, fb_rvalue);
ret = MIN (ret, tret);
}
}
if (!TREE_OPERAND (t, 3))
{
tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (t, 0)));
tree elmt_size = unshare_expr (array_ref_element_size (t));
tree factor = size_int (TYPE_ALIGN_UNIT (elmt_type));
type (above). */
elmt_size = size_binop (EXACT_DIV_EXPR, elmt_size, factor);
if (!is_gimple_min_invariant (elmt_size))
{
TREE_OPERAND (t, 3) = elmt_size;
tret = gimplify_expr (&TREE_OPERAND (t, 3), pre_p, post_p,
is_gimple_formal_tmp_reg, fb_rvalue);
ret = MIN (ret, tret);
}
}
}
else if (TREE_CODE (t) == COMPONENT_REF)
{
if (!TREE_OPERAND (t, 2))
{
tree offset = unshare_expr (component_ref_field_offset (t));
tree field = TREE_OPERAND (t, 1);
tree factor
= size_int (DECL_OFFSET_ALIGN (field) / BITS_PER_UNIT);
offset = size_binop (EXACT_DIV_EXPR, offset, factor);
if (!is_gimple_min_invariant (offset))
{
TREE_OPERAND (t, 2) = offset;
tret = gimplify_expr (&TREE_OPERAND (t, 2), pre_p, post_p,
is_gimple_formal_tmp_reg, fb_rvalue);
ret = MIN (ret, tret);
}
}
}
}
so as to match the min_lval predicate. Failure to do so may result
in the creation of large aggregate temporaries. */
tret = gimplify_expr (p, pre_p, post_p, is_gimple_min_lval,
fallback | fb_lvalue);
ret = MIN (ret, tret);
loop we also remove any useless conversions. */
for (; VEC_length (tree, stack) > 0; )
{
tree t = VEC_pop (tree, stack);
if (TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
{
Temporary fix for gcc.c-torture/execute/20040313-1.c.
Gimplify non-constant array indices into a temporary
variable.
FIXME - The real fix is to gimplify post-modify
expressions into a minimal gimple lvalue. However, that
exposes bugs in alias analysis. The alias analyzer does
not handle &PTR->FIELD very well. Will fix after the
branch is merged into mainline (dnovillo 2004-05-03). */
if (!is_gimple_min_invariant (TREE_OPERAND (t, 1)))
{
tret = gimplify_expr (&TREE_OPERAND (t, 1), pre_p, post_p,
is_gimple_formal_tmp_reg, fb_rvalue);
ret = MIN (ret, tret);
}
}
else if (TREE_CODE (t) == BIT_FIELD_REF)
{
tret = gimplify_expr (&TREE_OPERAND (t, 1), pre_p, post_p,
is_gimple_val, fb_rvalue);
ret = MIN (ret, tret);
tret = gimplify_expr (&TREE_OPERAND (t, 2), pre_p, post_p,
is_gimple_val, fb_rvalue);
ret = MIN (ret, tret);
}
STRIP_USELESS_TYPE_CONVERSION (TREE_OPERAND (t, 0));
set which would have caused all the outer expressions in EXPR_P
leading to P to also have had TREE_SIDE_EFFECTS set. */
recalculate_side_effects (t);
}
tret = gimplify_expr (p, pre_p, post_p, is_gimple_min_lval, fallback);
ret = MIN (ret, tret);
if ((fallback & fb_rvalue) && TREE_CODE (*expr_p) == COMPONENT_REF)
{
canonicalize_component_ref (expr_p);
ret = MIN (ret, GS_OK);
}
VEC_free (tree, heap, stack);
return ret;
}
(++, --, +=, -=).
PRE_P points to the list where side effects that must happen before
*EXPR_P should be stored.
POST_P points to the list where side effects that must happen after
*EXPR_P should be stored.
WANT_VALUE is nonzero iff we want to use the value of this expression
in another expression. */
static enum gimplify_status
gimplify_self_mod_expr (tree *expr_p, tree *pre_p, tree *post_p,
bool want_value)
{
enum tree_code code;
tree lhs, lvalue, rhs, t1, post = NULL, *orig_post_p = post_p;
bool postfix;
enum tree_code arith_code;
enum gimplify_status ret;
code = TREE_CODE (*expr_p);
gcc_assert (code == POSTINCREMENT_EXPR || code == POSTDECREMENT_EXPR
|| code == PREINCREMENT_EXPR || code == PREDECREMENT_EXPR);
if (code == POSTINCREMENT_EXPR || code == POSTDECREMENT_EXPR)
postfix = want_value;
else
postfix = false;
are executed after side effects from this expression. */
if (postfix)
post_p = &post;
if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
arith_code = PLUS_EXPR;
else
arith_code = MINUS_EXPR;
lvalue = TREE_OPERAND (*expr_p, 0);
ret = gimplify_expr (&lvalue, pre_p, post_p, is_gimple_lvalue, fb_lvalue);
if (ret == GS_ERROR)
return ret;
lhs = lvalue;
rhs = TREE_OPERAND (*expr_p, 1);
that as the result value and in the postqueue operation. */
if (postfix)
{
ret = gimplify_expr (&lhs, pre_p, post_p, is_gimple_val, fb_rvalue);
if (ret == GS_ERROR)
return ret;
}
t1 = build (arith_code, TREE_TYPE (*expr_p), lhs, rhs);
t1 = build (MODIFY_EXPR, TREE_TYPE (lvalue), lvalue, t1);
if (postfix)
{
gimplify_and_add (t1, orig_post_p);
append_to_statement_list (post, orig_post_p);
*expr_p = lhs;
return GS_ALL_DONE;
}
else
{
*expr_p = t1;
return GS_OK;
}
}
static void
maybe_with_size_expr (tree *expr_p)
{
tree expr = *expr_p;
tree type = TREE_TYPE (expr);
tree size;
anything. */
if (TREE_CODE (expr) == WITH_SIZE_EXPR
|| type == error_mark_node)
return;
size = TYPE_SIZE_UNIT (type);
if (!size || TREE_CODE (size) == INTEGER_CST)
return;
size = unshare_expr (size);
size = SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, expr);
*expr_p = build2 (WITH_SIZE_EXPR, type, expr, size);
}
static enum gimplify_status
gimplify_arg (tree *expr_p, tree *pre_p)
{
bool (*test) (tree);
fallback_t fb;
extra overhead of copying large aggregates out of even larger
aggregates into temporaries only to copy the temporaries to
the argument list. Make optimizers happy by pulling out to
temporaries those types that fit in registers. */
if (is_gimple_reg_type (TREE_TYPE (*expr_p)))
test = is_gimple_val, fb = fb_rvalue;
else
test = is_gimple_lvalue, fb = fb_either;
maybe_with_size_expr (expr_p);
the argument list must occur before the actual call. So, when
gimplifying arguments, force gimplify_expr to use an internal
post queue which is then appended to the end of PRE_P. */
return gimplify_expr (expr_p, pre_p, NULL, test, fb);
}
list where side effects that must happen before *EXPR_P should be stored.
WANT_VALUE is true if the result of the call is desired. */
static enum gimplify_status
gimplify_call_expr (tree *expr_p, tree *pre_p, bool want_value)
{
tree decl;
tree arglist;
enum gimplify_status ret;
gcc_assert (TREE_CODE (*expr_p) == CALL_EXPR);
every call_expr be annotated with file and line. */
if (! EXPR_HAS_LOCATION (*expr_p))
SET_EXPR_LOCATION (*expr_p, input_location);
Builtin function calls may be transformed into different
(and more efficient) builtin function calls under certain
circumstances. Unfortunately, gimplification can muck things
up enough that the builtin expanders are not aware that certain
transformations are still valid.
So we attempt transformation/gimplification of the call before
we gimplify the CALL_EXPR. At this time we do not manage to
transform all calls in the same manner as the expanders do, but
we do transform most of them. */
decl = get_callee_fndecl (*expr_p);
if (decl && DECL_BUILT_IN (decl))
{
tree arglist = TREE_OPERAND (*expr_p, 1);
tree new = fold_builtin (decl, arglist, !want_value);
if (new && new != *expr_p)
{
same value, but in a more efficient way. Return and try
again. */
*expr_p = new;
return GS_OK;
}
if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL
&& DECL_FUNCTION_CODE (decl) == BUILT_IN_VA_START)
{
if (!arglist || !TREE_CHAIN (arglist))
{
error ("too few arguments to function %<va_start%>");
*expr_p = build_empty_stmt ();
return GS_OK;
}
if (fold_builtin_next_arg (TREE_CHAIN (arglist)))
{
*expr_p = build_empty_stmt ();
return GS_OK;
}
to be the plain PARM_DECL. */
return gimplify_arg (&TREE_VALUE (TREE_OPERAND (*expr_p, 1)), pre_p);
}
}
the calling expression must occur before the actual call. Force
gimplify_expr to use an internal post queue. */
ret = gimplify_expr (&TREE_OPERAND (*expr_p, 0), pre_p, NULL,
is_gimple_call_addr, fb_rvalue);
if (PUSH_ARGS_REVERSED)
TREE_OPERAND (*expr_p, 1) = nreverse (TREE_OPERAND (*expr_p, 1));
for (arglist = TREE_OPERAND (*expr_p, 1); arglist;
arglist = TREE_CHAIN (arglist))
{
enum gimplify_status t;
t = gimplify_arg (&TREE_VALUE (arglist), pre_p);
if (t == GS_ERROR)
ret = GS_ERROR;
}
if (PUSH_ARGS_REVERSED)
TREE_OPERAND (*expr_p, 1) = nreverse (TREE_OPERAND (*expr_p, 1));
if (ret != GS_ERROR)
{
decl = get_callee_fndecl (*expr_p);
if (decl && DECL_BUILT_IN (decl))
{
tree arglist = TREE_OPERAND (*expr_p, 1);
tree new = fold_builtin (decl, arglist, !want_value);
if (new && new != *expr_p)
{
same value, but in a more efficient way. Return and try
again. */
*expr_p = new;
return GS_OK;
}
}
}
decl. This allows us to eliminate redundant or useless
calls to "const" functions. */
if (TREE_CODE (*expr_p) == CALL_EXPR
&& (call_expr_flags (*expr_p) & (ECF_CONST | ECF_PURE)))
TREE_SIDE_EFFECTS (*expr_p) = 0;
return ret;
}
rewriting it into multiple COND_EXPRs, and possibly GOTO_EXPRs.
TRUE_LABEL_P and FALSE_LABEL_P point to the labels to jump to if the
condition is true or false, respectively. If null, we should generate
our own to skip over the evaluation of this specific expression.
This function is the tree equivalent of do_jump.
shortcut_cond_r should only be called by shortcut_cond_expr. */
static tree
shortcut_cond_r (tree pred, tree *true_label_p, tree *false_label_p)
{
tree local_label = NULL_TREE;
tree t, expr = NULL;
retain the shortcut semantics. Just insert the gotos here;
shortcut_cond_expr will append the real blocks later. */
if (TREE_CODE (pred) == TRUTH_ANDIF_EXPR)
{
if (a); else goto no;
if (b) goto yes; else goto no;
(no:) */
if (false_label_p == NULL)
false_label_p = &local_label;
t = shortcut_cond_r (TREE_OPERAND (pred, 0), NULL, false_label_p);
append_to_statement_list (t, &expr);
t = shortcut_cond_r (TREE_OPERAND (pred, 1), true_label_p,
false_label_p);
append_to_statement_list (t, &expr);
}
else if (TREE_CODE (pred) == TRUTH_ORIF_EXPR)
{
if (a) goto yes;
if (b) goto yes; else goto no;
(yes:) */
if (true_label_p == NULL)
true_label_p = &local_label;
t = shortcut_cond_r (TREE_OPERAND (pred, 0), true_label_p, NULL);
append_to_statement_list (t, &expr);
t = shortcut_cond_r (TREE_OPERAND (pred, 1), true_label_p,
false_label_p);
append_to_statement_list (t, &expr);
}
else if (TREE_CODE (pred) == COND_EXPR)
{
if (a)
if (b) goto yes; else goto no;
else
if (c) goto yes; else goto no; */
expr = build (COND_EXPR, void_type_node, TREE_OPERAND (pred, 0),
shortcut_cond_r (TREE_OPERAND (pred, 1), true_label_p,
false_label_p),
shortcut_cond_r (TREE_OPERAND (pred, 2), true_label_p,
false_label_p));
}
else
{
expr = build (COND_EXPR, void_type_node, pred,
build_and_jump (true_label_p),
build_and_jump (false_label_p));
}
if (local_label)
{
t = build1 (LABEL_EXPR, void_type_node, local_label);
append_to_statement_list (t, &expr);
}
return expr;
}
static tree
shortcut_cond_expr (tree expr)
{
tree pred = TREE_OPERAND (expr, 0);
tree then_ = TREE_OPERAND (expr, 1);
tree else_ = TREE_OPERAND (expr, 2);
tree true_label, false_label, end_label, t;
tree *true_label_p;
tree *false_label_p;
bool emit_end, emit_false, jump_over_else;
bool then_se = then_ && TREE_SIDE_EFFECTS (then_);
bool else_se = else_ && TREE_SIDE_EFFECTS (else_);
if (!else_se)
{
while (TREE_CODE (pred) == TRUTH_ANDIF_EXPR)
{
TREE_OPERAND (expr, 0) = TREE_OPERAND (pred, 1);
then_ = shortcut_cond_expr (expr);
then_se = then_ && TREE_SIDE_EFFECTS (then_);
pred = TREE_OPERAND (pred, 0);
expr = build (COND_EXPR, void_type_node, pred, then_, NULL_TREE);
}
}
if (!then_se)
{
if (a || b); else d
into
if (a); else if (b); else d. */
while (TREE_CODE (pred) == TRUTH_ORIF_EXPR)
{
TREE_OPERAND (expr, 0) = TREE_OPERAND (pred, 1);
else_ = shortcut_cond_expr (expr);
else_se = else_ && TREE_SIDE_EFFECTS (else_);
pred = TREE_OPERAND (pred, 0);
expr = build (COND_EXPR, void_type_node, pred, NULL_TREE, else_);
}
}
if (TREE_CODE (pred) != TRUTH_ANDIF_EXPR
&& TREE_CODE (pred) != TRUTH_ORIF_EXPR)
return expr;
if (a) c; else d;
to
if (a); else goto no;
c; goto end;
no: d; end:
and recursively gimplify the condition. */
true_label = false_label = end_label = NULL_TREE;
generate jumps to jumps. */
if (then_
&& TREE_CODE (then_) == GOTO_EXPR
&& TREE_CODE (GOTO_DESTINATION (then_)) == LABEL_DECL)
{
true_label = GOTO_DESTINATION (then_);
then_ = NULL;
then_se = false;
}
if (else_
&& TREE_CODE (else_) == GOTO_EXPR
&& TREE_CODE (GOTO_DESTINATION (else_)) == LABEL_DECL)
{
false_label = GOTO_DESTINATION (else_);
else_ = NULL;
else_se = false;
}
if (true_label)
true_label_p = &true_label;
else
true_label_p = NULL;
if (false_label || else_se)
false_label_p = &false_label;
else
false_label_p = NULL;
if (!then_se && !else_se)
return shortcut_cond_r (pred, true_label_p, false_label_p);
if (else_se)
expr = expr_last (else_);
else if (then_se)
expr = expr_last (then_);
else
expr = NULL;
if (expr && TREE_CODE (expr) == LABEL_EXPR)
end_label = LABEL_EXPR_LABEL (expr);
if the condition is false. */
if (!false_label_p)
false_label_p = &end_label;
emit_end = (end_label == NULL_TREE);
emit_false = (false_label == NULL_TREE);
then clause may fall through. Otherwise we can wind up with a
useless jump and a useless label at the end of gimplified code,
which will cause us to think that this conditional as a whole
falls through even if it doesn't. If we then inline a function
which ends with such a condition, that can cause us to issue an
inappropriate warning about control reaching the end of a
non-void function. */
jump_over_else = block_may_fallthru (then_);
pred = shortcut_cond_r (pred, true_label_p, false_label_p);
expr = NULL;
append_to_statement_list (pred, &expr);
append_to_statement_list (then_, &expr);
if (else_se)
{
if (jump_over_else)
{
t = build_and_jump (&end_label);
append_to_statement_list (t, &expr);
}
if (emit_false)
{
t = build1 (LABEL_EXPR, void_type_node, false_label);
append_to_statement_list (t, &expr);
}
append_to_statement_list (else_, &expr);
}
if (emit_end && end_label)
{
t = build1 (LABEL_EXPR, void_type_node, end_label);
append_to_statement_list (t, &expr);
}
return expr;
}
static tree
gimple_boolify (tree expr)
{
tree type = TREE_TYPE (expr);
if (TREE_CODE (type) == BOOLEAN_TYPE)
return expr;
switch (TREE_CODE (expr))
{
case TRUTH_AND_EXPR:
case TRUTH_OR_EXPR:
case TRUTH_XOR_EXPR:
case TRUTH_ANDIF_EXPR:
case TRUTH_ORIF_EXPR:
TREE_OPERAND (expr, 1) = gimple_boolify (TREE_OPERAND (expr, 1));
case TRUTH_NOT_EXPR:
TREE_OPERAND (expr, 0) = gimple_boolify (TREE_OPERAND (expr, 0));
case EQ_EXPR: case NE_EXPR:
case LE_EXPR: case GE_EXPR: case LT_EXPR: case GT_EXPR:
TREE_TYPE (expr) = boolean_type_node;
return expr;
default:
might need to be converted to the appropriate mode. */
return convert (boolean_type_node, expr);
}
}
into
if (p) if (p)
t1 = a; a;
else or else
t1 = b; b;
t1;
The second form is used when *EXPR_P is of type void.
TARGET is the tree for T1 above.
PRE_P points to the list where side effects that must happen before
*EXPR_P should be stored. */
static enum gimplify_status
gimplify_cond_expr (tree *expr_p, tree *pre_p, fallback_t fallback)
{
tree expr = *expr_p;
tree tmp, tmp2, type;
enum gimplify_status ret;
type = TREE_TYPE (expr);
the arms. */
if (! VOID_TYPE_P (type))
{
tree result;
if ((fallback & fb_lvalue) == 0)
{
result = tmp2 = tmp = create_tmp_var (TREE_TYPE (expr), "iftmp");
ret = GS_ALL_DONE;
}
else
{
tree type = build_pointer_type (TREE_TYPE (expr));
if (TREE_TYPE (TREE_OPERAND (expr, 1)) != void_type_node)
TREE_OPERAND (expr, 1) =
build_fold_addr_expr (TREE_OPERAND (expr, 1));
if (TREE_TYPE (TREE_OPERAND (expr, 2)) != void_type_node)
TREE_OPERAND (expr, 2) =
build_fold_addr_expr (TREE_OPERAND (expr, 2));
tmp2 = tmp = create_tmp_var (type, "iftmp");
expr = build (COND_EXPR, void_type_node, TREE_OPERAND (expr, 0),
TREE_OPERAND (expr, 1), TREE_OPERAND (expr, 2));
result = build_fold_indirect_ref (tmp);
ret = GS_ALL_DONE;
}
if this branch is void; in C++ it can be, if it's a throw. */
if (TREE_TYPE (TREE_OPERAND (expr, 1)) != void_type_node)
TREE_OPERAND (expr, 1)
= build (MODIFY_EXPR, void_type_node, tmp, TREE_OPERAND (expr, 1));
if (TREE_TYPE (TREE_OPERAND (expr, 2)) != void_type_node)
TREE_OPERAND (expr, 2)
= build (MODIFY_EXPR, void_type_node, tmp2, TREE_OPERAND (expr, 2));
TREE_TYPE (expr) = void_type_node;
recalculate_side_effects (expr);
gimplify_and_add (expr, pre_p);
*expr_p = result;
return ret;
}
TREE_OPERAND (expr, 0) = gimple_boolify (TREE_OPERAND (expr, 0));
if (TREE_CODE (TREE_OPERAND (expr, 0)) == TRUTH_ANDIF_EXPR
|| TREE_CODE (TREE_OPERAND (expr, 0)) == TRUTH_ORIF_EXPR)
{
expr = shortcut_cond_expr (expr);
if (expr != *expr_p)
{
*expr_p = expr;
form properly, as cleanups might cause the target labels to be
wrapped in a TRY_FINALLY_EXPR. To prevent that, we need to
set up a conditional context. */
gimple_push_condition ();
gimplify_stmt (expr_p);
gimple_pop_condition (pre_p);
return GS_ALL_DONE;
}
}
ret = gimplify_expr (&TREE_OPERAND (expr, 0), pre_p, NULL,
is_gimple_condexpr, fb_rvalue);
gimple_push_condition ();
gimplify_to_stmt_list (&TREE_OPERAND (expr, 1));
gimplify_to_stmt_list (&TREE_OPERAND (expr, 2));
recalculate_side_effects (expr);
gimple_pop_condition (pre_p);
if (ret == GS_ERROR)
;
else if (TREE_SIDE_EFFECTS (TREE_OPERAND (expr, 1)))
ret = GS_ALL_DONE;
else if (TREE_SIDE_EFFECTS (TREE_OPERAND (expr, 2)))
{
TREE_OPERAND (expr, 0) = invert_truthvalue (TREE_OPERAND (expr, 0));
ret = gimplify_expr (&TREE_OPERAND (expr, 0), pre_p, NULL,
is_gimple_condexpr, fb_rvalue);
tmp = TREE_OPERAND (expr, 1);
TREE_OPERAND (expr, 1) = TREE_OPERAND (expr, 2);
TREE_OPERAND (expr, 2) = tmp;
}
else
expr = TREE_OPERAND (expr, 0);
*expr_p = expr;
return ret;
}
a call to __builtin_memcpy. */
static enum gimplify_status
gimplify_modify_expr_to_memcpy (tree *expr_p, tree size, bool want_value)
{
tree args, t, to, to_ptr, from;
to = TREE_OPERAND (*expr_p, 0);
from = TREE_OPERAND (*expr_p, 1);
args = tree_cons (NULL, size, NULL);
t = build_fold_addr_expr (from);
args = tree_cons (NULL, t, args);
to_ptr = build_fold_addr_expr (to);
args = tree_cons (NULL, to_ptr, args);
t = implicit_built_in_decls[BUILT_IN_MEMCPY];
t = build_function_call_expr (t, args);
if (want_value)
{
t = build1 (NOP_EXPR, TREE_TYPE (to_ptr), t);
t = build1 (INDIRECT_REF, TREE_TYPE (to), t);
}
*expr_p = t;
return GS_OK;
}
a call to __builtin_memset. In this case we know that the RHS is
a CONSTRUCTOR with an empty element list. */
static enum gimplify_status
gimplify_modify_expr_to_memset (tree *expr_p, tree size, bool want_value)
{
tree args, t, to, to_ptr;
to = TREE_OPERAND (*expr_p, 0);
args = tree_cons (NULL, size, NULL);
args = tree_cons (NULL, integer_zero_node, args);
to_ptr = build_fold_addr_expr (to);
args = tree_cons (NULL, to_ptr, args);
t = implicit_built_in_decls[BUILT_IN_MEMSET];
t = build_function_call_expr (t, args);
if (want_value)
{
t = build1 (NOP_EXPR, TREE_TYPE (to_ptr), t);
t = build1 (INDIRECT_REF, TREE_TYPE (to), t);
}
*expr_p = t;
return GS_OK;
}
determine, cautiously, if a CONSTRUCTOR overlaps the lhs of an
assignment. Returns non-null if we detect a potential overlap. */
struct gimplify_init_ctor_preeval_data
{
have to assume the lhs is indirect. */
tree lhs_base_decl;
int lhs_alias_set;
};
static tree
gimplify_init_ctor_preeval_1 (tree *tp, int *walk_subtrees, void *xdata)
{
struct gimplify_init_ctor_preeval_data *data
= (struct gimplify_init_ctor_preeval_data *) xdata;
tree t = *tp;
if (data->lhs_base_decl == t)
return t;
potential overlap with the lhs. The only bits of information we
have to go on at this point are addressability and alias sets. */
if (TREE_CODE (t) == INDIRECT_REF
&& (!data->lhs_base_decl || TREE_ADDRESSABLE (data->lhs_base_decl))
&& alias_sets_conflict_p (data->lhs_alias_set, get_alias_set (t)))
return t;
if (IS_TYPE_OR_DECL_P (t))
*walk_subtrees = 0;
return NULL;
}
force values that overlap with the lhs (as described by *DATA)
into temporaries. */
static void
gimplify_init_ctor_preeval (tree *expr_p, tree *pre_p, tree *post_p,
struct gimplify_init_ctor_preeval_data *data)
{
enum gimplify_status one;
But ensure it doesn't have any side-effects since a SAVE_EXPR is
invariant but has side effects and might contain a reference to
the object we're initializing. */
if (TREE_INVARIANT (*expr_p) && !TREE_SIDE_EFFECTS (*expr_p))
return;
if (TREE_ADDRESSABLE (TREE_TYPE (*expr_p)))
return;
if (TREE_CODE (*expr_p) == CONSTRUCTOR)
{
unsigned HOST_WIDE_INT ix;
constructor_elt *ce;
VEC(constructor_elt,gc) *v = CONSTRUCTOR_ELTS (*expr_p);
for (ix = 0; VEC_iterate (constructor_elt, v, ix, ce); ix++)
gimplify_init_ctor_preeval (&ce->value, pre_p, post_p, data);
return;
}
if (type_contains_placeholder_p (TREE_TYPE (*expr_p)))
return;
of a MODIFY_EXPR. Given that we know the lhs is an aggregate, we know
the gimplifier will consider this a store to memory. Doing this
gimplification now means that we won't have to deal with complicated
language-specific trees, nor trees like SAVE_EXPR that can induce
exponential search behavior. */
one = gimplify_expr (expr_p, pre_p, post_p, is_gimple_mem_rhs, fb_rvalue);
if (one == GS_ERROR)
{
*expr_p = NULL;
return;
}
with the lhs, since "a = { .x=a }" doesn't make sense. This will
always be true for all scalars, since is_gimple_mem_rhs insists on a
temporary variable for them. */
if (DECL_P (*expr_p))
return;
overlap since we can't make a temporary for it. */
if (TREE_CODE (TYPE_SIZE (TREE_TYPE (*expr_p))) != INTEGER_CST)
return;
if (!walk_tree (expr_p, gimplify_init_ctor_preeval_1, data, NULL))
return;
*expr_p = get_formal_tmp_var (*expr_p, pre_p);
}
a RANGE_EXPR in a CONSTRUCTOR for an array.
var = lower;
loop_entry:
object[var] = value;
if (var == upper)
goto loop_exit;
var = var + 1;
goto loop_entry;
loop_exit:
We increment var _after_ the loop exit check because we might otherwise
fail if upper == TYPE_MAX_VALUE (type for upper).
Note that we never have to deal with SAVE_EXPRs here, because this has
already been taken care of for us, in gimplify_init_ctor_preeval(). */
static void gimplify_init_ctor_eval (tree, VEC(constructor_elt,gc) *,
tree *, bool);
static void
gimplify_init_ctor_eval_range (tree object, tree lower, tree upper,
tree value, tree array_elt_type,
tree *pre_p, bool cleared)
{
tree loop_entry_label, loop_exit_label;
tree var, var_type, cref;
loop_entry_label = create_artificial_label ();
loop_exit_label = create_artificial_label ();
var_type = TREE_TYPE (upper);
var = create_tmp_var (var_type, NULL);
append_to_statement_list (build2 (MODIFY_EXPR, var_type, var, lower), pre_p);
append_to_statement_list (build1 (LABEL_EXPR,
void_type_node,
loop_entry_label),
pre_p);
cref = build4 (ARRAY_REF, array_elt_type, unshare_expr (object),
var, NULL_TREE, NULL_TREE);
the store. Otherwise just assign value to the reference. */
if (TREE_CODE (value) == CONSTRUCTOR)
gimplify_init_ctor_eval if the value is a constructor. */
gimplify_init_ctor_eval (cref, CONSTRUCTOR_ELTS (value),
pre_p, cleared);
else
append_to_statement_list (build2 (MODIFY_EXPR, TREE_TYPE (cref),
cref, value),
pre_p);
gimplify_and_add (build3 (COND_EXPR, void_type_node,
build2 (EQ_EXPR, boolean_type_node,
var, upper),
build1 (GOTO_EXPR,
void_type_node,
loop_exit_label),
NULL_TREE),
pre_p);
append_to_statement_list (build2 (MODIFY_EXPR, var_type, var,
build2 (PLUS_EXPR, var_type, var,
fold_convert (var_type,
integer_one_node))),
pre_p);
append_to_statement_list (build1 (GOTO_EXPR,
void_type_node,
loop_entry_label),
pre_p);
append_to_statement_list (build1 (LABEL_EXPR,
void_type_node,
loop_exit_label),
pre_p);
}
static bool
zero_sized_field_decl (tree fdecl)
{
if (TREE_CODE (fdecl) == FIELD_DECL && DECL_SIZE (fdecl)
&& integer_zerop (DECL_SIZE (fdecl)))
return true;
return false;
}
static bool
zero_sized_type (tree type)
{
if (AGGREGATE_TYPE_P (type) && TYPE_SIZE (type)
&& integer_zerop (TYPE_SIZE (type)))
return true;
return false;
}
MODIFY_EXPRs for a CONSTRUCTOR. OBJECT is the LHS against which the
assignments should happen. ELTS is the CONSTRUCTOR_ELTS of the
CONSTRUCTOR. CLEARED is true if the entire LHS object has been
zeroed first. */
static void
gimplify_init_ctor_eval (tree object, VEC(constructor_elt,gc) *elts,
tree *pre_p, bool cleared)
{
tree array_elt_type = NULL;
unsigned HOST_WIDE_INT ix;
tree purpose, value;
if (TREE_CODE (TREE_TYPE (object)) == ARRAY_TYPE)
array_elt_type = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (object)));
FOR_EACH_CONSTRUCTOR_ELT (elts, ix, purpose, value)
{
tree cref, init;
if (value == NULL)
continue;
if (cleared && initializer_zerop (value))
continue;
so we don't have to figure out what's missing ourselves. */
gcc_assert (purpose);
happen with calls to functions returning a zero-sized type, which
we shouldn't discard. As a number of downstream passes don't
expect sets of zero-sized fields, we rely on the gimplification of
the MODIFY_EXPR we make below to drop the assignment statement. */
if (! TREE_SIDE_EFFECTS (value) && zero_sized_field_decl (purpose))
continue;
whole range. */
if (TREE_CODE (purpose) == RANGE_EXPR)
{
tree lower = TREE_OPERAND (purpose, 0);
tree upper = TREE_OPERAND (purpose, 1);
upper was the index. */
if (simple_cst_equal (lower, upper))
purpose = upper;
else
{
gimplify_init_ctor_eval_range (object, lower, upper, value,
array_elt_type, pre_p, cleared);
continue;
}
}
if (array_elt_type)
{
cref = build (ARRAY_REF, array_elt_type, unshare_expr (object),
purpose, NULL_TREE, NULL_TREE);
}
else
{
gcc_assert (TREE_CODE (purpose) == FIELD_DECL);
cref = build (COMPONENT_REF, TREE_TYPE (purpose),
unshare_expr (object), purpose, NULL_TREE);
}
if (TREE_CODE (value) == CONSTRUCTOR
&& TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE)
gimplify_init_ctor_eval (cref, CONSTRUCTOR_ELTS (value),
pre_p, cleared);
else
{
init = build2 (INIT_EXPR, TREE_TYPE (cref), cref, value);
gimplify_and_add (init, pre_p);
}
}
}
CONSTRUCTOR used as an initializer into separate MODIFY_EXPRs.
Note that we still need to clear any elements that don't have explicit
initializers, so if not all elements are initialized we keep the
original MODIFY_EXPR, we just remove all of the constructor elements. */
static enum gimplify_status
gimplify_init_constructor (tree *expr_p, tree *pre_p,
tree *post_p, bool want_value)
{
tree object;
tree ctor = TREE_OPERAND (*expr_p, 1);
tree type = TREE_TYPE (ctor);
enum gimplify_status ret;
VEC(constructor_elt,gc) *elts;
if (TREE_CODE (ctor) != CONSTRUCTOR)
return GS_UNHANDLED;
ret = gimplify_expr (&TREE_OPERAND (*expr_p, 0), pre_p, post_p,
is_gimple_lvalue, fb_lvalue);
if (ret == GS_ERROR)
return ret;
object = TREE_OPERAND (*expr_p, 0);
elts = CONSTRUCTOR_ELTS (ctor);
ret = GS_ALL_DONE;
switch (TREE_CODE (type))
{
case RECORD_TYPE:
case UNION_TYPE:
case QUAL_UNION_TYPE:
case ARRAY_TYPE:
{
struct gimplify_init_ctor_preeval_data preeval_data;
HOST_WIDE_INT num_type_elements, num_ctor_elements;
HOST_WIDE_INT num_nonzero_elements, num_nonconstant_elements;
bool cleared;
individual elements. The exception is that a CONSTRUCTOR node
with no elements indicates zero-initialization of the whole. */
if (VEC_empty (constructor_elt, elts))
break;
categorize_ctor_elements (ctor, &num_nonzero_elements,
&num_nonconstant_elements,
&num_ctor_elements, &cleared);
should never be a lose to promote the variable to be static. */
if (num_nonconstant_elements == 0
&& num_nonzero_elements > 1
&& TREE_READONLY (object)
&& TREE_CODE (object) == VAR_DECL)
{
DECL_INITIAL (object) = ctor;
TREE_STATIC (object) = 1;
if (!DECL_NAME (object))
DECL_NAME (object) = create_tmp_var_name ("C");
walk_tree (&DECL_INITIAL (object), force_labels_r, NULL, NULL);
assembler name, and even when it does, it looks a FE private
data structures to figure out what that number should be,
which are not set for this variable. I suppose this is
important for local statics for inline functions, which aren't
"local" in the object file sense. So in order to get a unique
TU-local symbol, we must invoke the lhd version now. */
lhd_set_decl_assembler_name (object);
*expr_p = NULL_TREE;
break;
}
those that are not address constants (and thus *must* be
computed at runtime), then partition the constructor into
constant and non-constant parts. Block copy the constant
parts in, then generate code for the non-constant parts. */
num_type_elements = count_type_elements (type, true);
for a constant-sized object, assume clearing is needed.
Don't do this for variable-sized objects, as store_constructor
will ignore the clearing of variable-sized objects. */
if (num_type_elements < 0 && int_size_in_bytes (type) >= 0)
cleared = true;
else if (num_type_elements - num_nonzero_elements > CLEAR_RATIO
&& num_nonzero_elements < num_type_elements/4)
cleared = true;
in the initializer, we should simply set them to zero. Except
we'd need to *find* the elements that are not present, and that
requires trickery to avoid quadratic compile-time behavior in
large cases or excessive memory use in small cases. */
else if (num_ctor_elements < num_type_elements)
cleared = true;
are valid address constants, then the entire initializer can
be dropped to memory, and then memcpy'd out. Don't do this
for sparse arrays, though, as it's more efficient to follow
the standard CONSTRUCTOR behavior of memset followed by
individual element initialization. */
if (num_nonconstant_elements == 0 && !cleared)
{
HOST_WIDE_INT size = int_size_in_bytes (type);
unsigned int align;
from the C++ front end. This seems wrong, but attempt
to work around it for now. */
if (size < 0)
{
size = int_size_in_bytes (TREE_TYPE (object));
if (size >= 0)
TREE_TYPE (ctor) = type = TREE_TYPE (object);
}
if (DECL_P (object))
align = DECL_ALIGN (object);
else
align = TYPE_ALIGN (type);
if (size > 0 && !can_move_by_pieces (size, align))
{
tree new = create_tmp_var_raw (type, "C");
gimple_add_tmp_var (new);
TREE_STATIC (new) = 1;
TREE_READONLY (new) = 1;
DECL_INITIAL (new) = ctor;
if (align > DECL_ALIGN (new))
{
DECL_ALIGN (new) = align;
DECL_USER_ALIGN (new) = 1;
}
walk_tree (&DECL_INITIAL (new), force_labels_r, NULL, NULL);
TREE_OPERAND (*expr_p, 1) = new;
we still may have processing to do on the LHS. So
pretend we didn't do anything here to let that happen. */
return GS_UNHANDLED;
}
}
if (cleared)
{
Note that we still have to gimplify, in order to handle the
case of variable sized types. Avoid shared tree structures. */
CONSTRUCTOR_ELTS (ctor) = NULL;
object = unshare_expr (object);
gimplify_stmt (expr_p);
append_to_statement_list (*expr_p, pre_p);
}
elements in the constructor, add assignments to the individual
scalar fields of the object. */
if (!cleared || num_nonzero_elements > 0)
{
preeval_data.lhs_base_decl = get_base_address (object);
if (!DECL_P (preeval_data.lhs_base_decl))
preeval_data.lhs_base_decl = NULL;
preeval_data.lhs_alias_set = get_alias_set (object);
gimplify_init_ctor_preeval (&TREE_OPERAND (*expr_p, 1),
pre_p, post_p, &preeval_data);
gimplify_init_ctor_eval (object, elts, pre_p, cleared);
}
*expr_p = NULL_TREE;
}
break;
case COMPLEX_TYPE:
{
tree r, i;
gcc_assert (VEC_length (constructor_elt, elts) == 2);
r = VEC_index (constructor_elt, elts, 0)->value;
i = VEC_index (constructor_elt, elts, 1)->value;
if (r == NULL || i == NULL)
{
tree zero = convert (TREE_TYPE (type), integer_zero_node);
if (r == NULL)
r = zero;
if (i == NULL)
i = zero;
}
represent creation of a complex value. */
if (TREE_CONSTANT (r) && TREE_CONSTANT (i))
{
ctor = build_complex (type, r, i);
TREE_OPERAND (*expr_p, 1) = ctor;
}
else
{
ctor = build (COMPLEX_EXPR, type, r, i);
TREE_OPERAND (*expr_p, 1) = ctor;
ret = gimplify_expr (&TREE_OPERAND (*expr_p, 1), pre_p, post_p,
rhs_predicate_for (TREE_OPERAND (*expr_p, 0)),
fb_rvalue);
}
}
break;
case VECTOR_TYPE:
{
unsigned HOST_WIDE_INT ix;
constructor_elt *ce;
if (TREE_CONSTANT (ctor))
{
bool constant_p = true;
tree value;
elements (e.g. { 1.0/0.0 - 1.0/0.0, 0.0 }) and those don't
belong into VECTOR_CST nodes. */
FOR_EACH_CONSTRUCTOR_VALUE (elts, ix, value)
if (!CONSTANT_CLASS_P (value))
{
constant_p = false;
break;
}
if (constant_p)
{
TREE_OPERAND (*expr_p, 1) = build_vector_from_ctor (type, elts);
break;
}
}
compilation as a general initializer. */
for (ix = 0; VEC_iterate (constructor_elt, elts, ix, ce); ix++)
{
enum gimplify_status tret;
tret = gimplify_expr (&ce->value, pre_p, post_p,
is_gimple_val, fb_rvalue);
if (tret == GS_ERROR)
ret = GS_ERROR;
}
}
break;
default:
gcc_unreachable ();
}
if (ret == GS_ERROR)
return GS_ERROR;
else if (want_value)
{
append_to_statement_list (*expr_p, pre_p);
*expr_p = object;
return GS_OK;
}
else
return GS_ALL_DONE;
}
indirection through OP0, or NULL_TREE if no simplification is
possible. This may only be applied to a rhs of an expression.
Note that the resulting type may be different from the type pointed
to in the sense that it is still compatible from the langhooks
point of view. */
static tree
fold_indirect_ref_rhs (tree t)
{
tree type = TREE_TYPE (TREE_TYPE (t));
tree sub = t;
tree subtype;
STRIP_USELESS_TYPE_CONVERSION (sub);
subtype = TREE_TYPE (sub);
if (!POINTER_TYPE_P (subtype))
return NULL_TREE;
if (TREE_CODE (sub) == ADDR_EXPR)
{
tree op = TREE_OPERAND (sub, 0);
tree optype = TREE_TYPE (op);
if (lang_hooks.types_compatible_p (type, optype))
return op;
else if (TREE_CODE (optype) == ARRAY_TYPE
&& lang_hooks.types_compatible_p (type, TREE_TYPE (optype)))
{
tree type_domain = TYPE_DOMAIN (optype);
tree min_val = size_zero_node;
if (type_domain && TYPE_MIN_VALUE (type_domain))
min_val = TYPE_MIN_VALUE (type_domain);
return build4 (ARRAY_REF, type, op, min_val, NULL_TREE, NULL_TREE);
}
}
if (TREE_CODE (TREE_TYPE (subtype)) == ARRAY_TYPE
&& lang_hooks.types_compatible_p (type, TREE_TYPE (TREE_TYPE (subtype))))
{
tree type_domain;
tree min_val = size_zero_node;
tree osub = sub;
sub = fold_indirect_ref_rhs (sub);
if (! sub)
sub = build1 (INDIRECT_REF, TREE_TYPE (subtype), osub);
type_domain = TYPE_DOMAIN (TREE_TYPE (sub));
if (type_domain && TYPE_MIN_VALUE (type_domain))
min_val = TYPE_MIN_VALUE (type_domain);
return build4 (ARRAY_REF, type, sub, min_val, NULL_TREE, NULL_TREE);
}
return NULL_TREE;
}
based on the code of the RHS. We loop for as long as something changes. */
static enum gimplify_status
gimplify_modify_expr_rhs (tree *expr_p, tree *from_p, tree *to_p, tree *pre_p,
tree *post_p, bool want_value)
{
enum gimplify_status ret = GS_OK;
while (ret != GS_UNHANDLED)
switch (TREE_CODE (*from_p))
{
case INDIRECT_REF:
{
*(const A*)(A*)&x
where the type of "x" is a (possibly cv-qualified variant
of "A"), treat the entire expression as identical to "x".
This kind of code arises in C++ when an object is bound
to a const reference, and if "x" is a TARGET_EXPR we want
to take advantage of the optimization below. */
tree t = fold_indirect_ref_rhs (TREE_OPERAND (*from_p, 0));
if (t)
{
*from_p = t;
ret = GS_OK;
}
else
ret = GS_UNHANDLED;
break;
}
case TARGET_EXPR:
{
TARGET_EXPR and initialize it directly, if possible. This can't
be done if the initializer is void, since that implies that the
temporary is set in some non-trivial way.
??? What about code that pulls out the temp and uses it
elsewhere? I think that such code never uses the TARGET_EXPR as
an initializer. If I'm wrong, we'll die because the temp won't
have any RTL. In that case, I guess we'll need to replace
references somehow. */
tree init = TARGET_EXPR_INITIAL (*from_p);
if (!VOID_TYPE_P (TREE_TYPE (init)))
{
*from_p = init;
ret = GS_OK;
}
else
ret = GS_UNHANDLED;
}
break;
case COMPOUND_EXPR:
caught. */
gimplify_compound_expr (from_p, pre_p, true);
ret = GS_OK;
break;
case CONSTRUCTOR:
individual MODIFY_EXPRs. */
return gimplify_init_constructor (expr_p, pre_p, post_p, want_value);
case COND_EXPR:
down into the branches. This is mandatory for ADDRESSABLE types,
since we cannot generate temporaries for such, but it saves a
copy in other cases as well. */
if (!is_gimple_reg_type (TREE_TYPE (*from_p)))
{
enum tree_code code = TREE_CODE (*expr_p);
tree cond = *from_p;
tree result = *to_p;
ret = gimplify_expr (&result, pre_p, post_p,
is_gimple_min_lval, fb_lvalue);
if (ret != GS_ERROR)
ret = GS_OK;
if (TREE_TYPE (TREE_OPERAND (cond, 1)) != void_type_node)
TREE_OPERAND (cond, 1)
= build2 (code, void_type_node, result,
TREE_OPERAND (cond, 1));
if (TREE_TYPE (TREE_OPERAND (cond, 2)) != void_type_node)
TREE_OPERAND (cond, 2)
= build2 (code, void_type_node, unshare_expr (result),
TREE_OPERAND (cond, 2));
TREE_TYPE (cond) = void_type_node;
recalculate_side_effects (cond);
if (want_value)
{
gimplify_and_add (cond, pre_p);
*expr_p = unshare_expr (result);
}
else
*expr_p = cond;
return ret;
}
else
ret = GS_UNHANDLED;
break;
case CALL_EXPR:
return slot so that we don't generate a temporary. */
if (!CALL_EXPR_RETURN_SLOT_OPT (*from_p)
&& aggregate_value_p (*from_p, *from_p))
{
bool use_target;
if (!(rhs_predicate_for (*to_p))(*from_p))
use_target = false;
else if (TREE_CODE (*to_p) == RESULT_DECL
&& DECL_NAME (*to_p) == NULL_TREE
&& needs_to_live_in_memory (*to_p))
use_target = true;
else if (is_gimple_reg_type (TREE_TYPE (*to_p))
|| (DECL_P (*to_p) && DECL_REGISTER (*to_p)))
use_target = false;
else if (TREE_CODE (*to_p) == VAR_DECL
&& DECL_GIMPLE_FORMAL_TEMP_P (*to_p))
don't want to take their addresses. */
use_target = false;
else if (TREE_CODE (*expr_p) == INIT_EXPR)
initialized. */
use_target = true;
else if (!is_gimple_non_addressable (*to_p))
if its address escapes, and the called function uses the
NRV optimization, a conforming program could see *to_p
change before the called function returns; see c++/19317.
When optimizing, the return_slot pass marks more functions
as safe after we have escape info. */
use_target = false;
else
use_target = true;
if (use_target)
{
CALL_EXPR_RETURN_SLOT_OPT (*from_p) = 1;
lang_hooks.mark_addressable (*to_p);
}
}
ret = GS_UNHANDLED;
break;
default:
ret = GS_UNHANDLED;
break;
}
return ret;
}
a MODIFY_EXPR with a lhs of a REAL/IMAGPART_EXPR of a variable with
DECL_COMPLEX_GIMPLE_REG_P set. */
static enum gimplify_status
gimplify_modify_expr_complex_part (tree *expr_p, tree *pre_p, bool want_value)
{
enum tree_code code, ocode;
tree lhs, rhs, new_rhs, other, realpart, imagpart;
lhs = TREE_OPERAND (*expr_p, 0);
rhs = TREE_OPERAND (*expr_p, 1);
code = TREE_CODE (lhs);
lhs = TREE_OPERAND (lhs, 0);
ocode = code == REALPART_EXPR ? IMAGPART_EXPR : REALPART_EXPR;
other = build1 (ocode, TREE_TYPE (rhs), lhs);
other = get_formal_tmp_var (other, pre_p);
realpart = code == REALPART_EXPR ? rhs : other;
imagpart = code == REALPART_EXPR ? other : rhs;
if (TREE_CONSTANT (realpart) && TREE_CONSTANT (imagpart))
new_rhs = build_complex (TREE_TYPE (lhs), realpart, imagpart);
else
new_rhs = build2 (COMPLEX_EXPR, TREE_TYPE (lhs), realpart, imagpart);
TREE_OPERAND (*expr_p, 0) = lhs;
TREE_OPERAND (*expr_p, 1) = new_rhs;
if (want_value)
{
append_to_statement_list (*expr_p, pre_p);
*expr_p = rhs;
}
return GS_ALL_DONE;
}
modify_expr
: varname '=' rhs
| '*' ID '=' rhs
PRE_P points to the list where side effects that must happen before
*EXPR_P should be stored.
POST_P points to the list where side effects that must happen after
*EXPR_P should be stored.
WANT_VALUE is nonzero iff we want to use the value of this expression
in another expression. */
static enum gimplify_status
gimplify_modify_expr (tree *expr_p, tree *pre_p, tree *post_p, bool want_value)
{
tree *from_p = &TREE_OPERAND (*expr_p, 1);
tree *to_p = &TREE_OPERAND (*expr_p, 0);
enum gimplify_status ret = GS_UNHANDLED;
gcc_assert (TREE_CODE (*expr_p) == MODIFY_EXPR
|| TREE_CODE (*expr_p) == INIT_EXPR);
as statements and throw away the assignment. */
if (zero_sized_type (TREE_TYPE (*from_p)))
{
gimplify_stmt (from_p);
gimplify_stmt (to_p);
append_to_statement_list (*from_p, pre_p);
append_to_statement_list (*to_p, pre_p);
*expr_p = NULL_TREE;
return GS_ALL_DONE;
}
ret = gimplify_modify_expr_rhs (expr_p, from_p, to_p, pre_p, post_p,
want_value);
if (ret != GS_UNHANDLED)
return ret;
of the copy into a WITH_SIZE_EXPR. Note that we need to do this
before gimplifying any of the operands so that we can resolve any
PLACEHOLDER_EXPRs in the size. Also note that the RTL expander uses
the size of the expression to be copied, not of the destination, so
that is what we must here. */
maybe_with_size_expr (from_p);
ret = gimplify_expr (to_p, pre_p, post_p, is_gimple_lvalue, fb_lvalue);
if (ret == GS_ERROR)
return ret;
ret = gimplify_expr (from_p, pre_p, post_p,
rhs_predicate_for (*to_p), fb_rvalue);
if (ret == GS_ERROR)
return ret;
ret = gimplify_modify_expr_rhs (expr_p, from_p, to_p, pre_p, post_p,
want_value);
if (ret != GS_UNHANDLED)
return ret;
not involve a call), then we can make things a bit more straightforward
by converting the assignment to memcpy or memset. */
if (TREE_CODE (*from_p) == WITH_SIZE_EXPR)
{
tree from = TREE_OPERAND (*from_p, 0);
tree size = TREE_OPERAND (*from_p, 1);
if (TREE_CODE (from) == CONSTRUCTOR)
return gimplify_modify_expr_to_memset (expr_p, size, want_value);
if (is_gimple_addressable (from))
{
*from_p = from;
return gimplify_modify_expr_to_memcpy (expr_p, size, want_value);
}
}
total stores. This allows us to use real instead of virtual operands
for these variables, which improves optimization. */
if ((TREE_CODE (*to_p) == REALPART_EXPR
|| TREE_CODE (*to_p) == IMAGPART_EXPR)
&& is_gimple_reg (TREE_OPERAND (*to_p, 0)))
return gimplify_modify_expr_complex_part (expr_p, pre_p, want_value);
if (gimplify_ctxp->into_ssa && is_gimple_reg (*to_p))
{
we're probably modified it twice. Not good. */
gcc_assert (TREE_CODE (*to_p) != SSA_NAME);
*to_p = make_ssa_name (*to_p, *expr_p);
}
if (want_value)
{
append_to_statement_list (*expr_p, pre_p);
*expr_p = *to_p;
return GS_OK;
}
return GS_ALL_DONE;
}
with a call to BUILT_IN_MEMCMP. */
static enum gimplify_status
gimplify_variable_sized_compare (tree *expr_p)
{
tree op0 = TREE_OPERAND (*expr_p, 0);
tree op1 = TREE_OPERAND (*expr_p, 1);
tree args, t, dest;
t = TYPE_SIZE_UNIT (TREE_TYPE (op0));
t = unshare_expr (t);
t = SUBSTITUTE_PLACEHOLDER_IN_EXPR (t, op0);
args = tree_cons (NULL, t, NULL);
t = build_fold_addr_expr (op1);
args = tree_cons (NULL, t, args);
dest = build_fold_addr_expr (op0);
args = tree_cons (NULL, dest, args);
t = implicit_built_in_decls[BUILT_IN_MEMCMP];
t = build_function_call_expr (t, args);
*expr_p
= build (TREE_CODE (*expr_p), TREE_TYPE (*expr_p), t, integer_zero_node);
return GS_OK;
}
points to the expression to gimplify.
Expressions of the form 'a && b' are gimplified to:
a && b ? true : false
gimplify_cond_expr will do the rest.
PRE_P points to the list where side effects that must happen before
*EXPR_P should be stored. */
static enum gimplify_status
gimplify_boolean_expr (tree *expr_p)
{
tree type = TREE_TYPE (*expr_p);
*expr_p = build (COND_EXPR, type, *expr_p,
convert (type, boolean_true_node),
convert (type, boolean_false_node));
return GS_OK;
}
expression and re-writes the original expression with the last
expression of the sequence in GIMPLE form.
PRE_P points to the list where the side effects for all the
expressions in the sequence will be emitted.
WANT_VALUE is true when the result of the last COMPOUND_EXPR is used. */
invocations of gimplify_expr. Would probably save on creations
of statement_list nodes. */
static enum gimplify_status
gimplify_compound_expr (tree *expr_p, tree *pre_p, bool want_value)
{
tree t = *expr_p;
do
{
tree *sub_p = &TREE_OPERAND (t, 0);
if (TREE_CODE (*sub_p) == COMPOUND_EXPR)
gimplify_compound_expr (sub_p, pre_p, false);
else
gimplify_stmt (sub_p);
append_to_statement_list (*sub_p, pre_p);
t = TREE_OPERAND (t, 1);
}
while (TREE_CODE (t) == COMPOUND_EXPR);
*expr_p = t;
if (want_value)
return GS_OK;
else
{
gimplify_stmt (expr_p);
return GS_ALL_DONE;
}
}
enlightened front-end, or by shortcut_cond_expr. */
static enum gimplify_status
gimplify_statement_list (tree *expr_p)
{
tree_stmt_iterator i = tsi_start (*expr_p);
while (!tsi_end_p (i))
{
tree t;
gimplify_stmt (tsi_stmt_ptr (i));
t = tsi_stmt (i);
if (t == NULL)
tsi_delink (&i);
else if (TREE_CODE (t) == STATEMENT_LIST)
{
tsi_link_before (&i, t, TSI_SAME_STMT);
tsi_delink (&i);
}
else
tsi_next (&i);
}
return GS_ALL_DONE;
}
gimplify. After gimplification, EXPR_P will point to a new temporary
that holds the original value of the SAVE_EXPR node.
PRE_P points to the list where side effects that must happen before
*EXPR_P should be stored. */
static enum gimplify_status
gimplify_save_expr (tree *expr_p, tree *pre_p, tree *post_p)
{
enum gimplify_status ret = GS_ALL_DONE;
tree val;
gcc_assert (TREE_CODE (*expr_p) == SAVE_EXPR);
val = TREE_OPERAND (*expr_p, 0);
if (!SAVE_EXPR_RESOLVED_P (*expr_p))
{
generated by the Java frontend for class initialization. It is
being executed only for its side-effects. */
if (TREE_TYPE (val) == void_type_node)
{
ret = gimplify_expr (&TREE_OPERAND (*expr_p, 0), pre_p, post_p,
is_gimple_stmt, fb_none);
append_to_statement_list (TREE_OPERAND (*expr_p, 0), pre_p);
val = NULL;
}
else
val = get_initialized_tmp_var (val, pre_p, post_p);
TREE_OPERAND (*expr_p, 0) = val;
SAVE_EXPR_RESOLVED_P (*expr_p) = 1;
}
*expr_p = val;
return ret;
}
unary_expr
: ...
| '&' varname
...
PRE_P points to the list where side effects that must happen before
*EXPR_P should be stored.
POST_P points to the list where side effects that must happen after
*EXPR_P should be stored. */
static enum gimplify_status
gimplify_addr_expr (tree *expr_p, tree *pre_p, tree *post_p)
{
tree expr = *expr_p;
tree op0 = TREE_OPERAND (expr, 0);
enum gimplify_status ret;
switch (TREE_CODE (op0))
{
case INDIRECT_REF:
case MISALIGNED_INDIRECT_REF:
do_indirect_ref:
While the front end folds away '&*ptr' into 'ptr', these
expressions may be generated internally by the compiler (e.g.,
builtins like __builtin_va_end). */
ADDR_EXPR means we can't always discard the pair. */
cv-qualification conversions, so make sure we add them if
needed. */
{
tree op00 = TREE_OPERAND (op0, 0);
tree t_expr = TREE_TYPE (expr);
tree t_op00 = TREE_TYPE (op00);
if (!lang_hooks.types_compatible_p (t_expr, t_op00))
{
#ifdef ENABLE_CHECKING
tree t_op0 = TREE_TYPE (op0);
gcc_assert (POINTER_TYPE_P (t_expr)
&& cpt_same_type (TREE_CODE (t_op0) == ARRAY_TYPE
? TREE_TYPE (t_op0) : t_op0,
TREE_TYPE (t_expr))
&& POINTER_TYPE_P (t_op00)
&& cpt_same_type (t_op0, TREE_TYPE (t_op00)));
#endif
op00 = fold_convert (TREE_TYPE (expr), op00);
}
*expr_p = op00;
ret = GS_OK;
}
break;
case VIEW_CONVERT_EXPR:
this ADDR_EXPR.
??? The interactions of VIEW_CONVERT_EXPR and aliasing is not at
all clear. The impact of this transformation is even less clear. */
guarantees that the ADDR_EXPR and its operand will remain of the
same type. */
if (tree_ssa_useless_type_conversion (TREE_OPERAND (op0, 0)))
op0 = TREE_OPERAND (op0, 0);
*expr_p = fold_convert (TREE_TYPE (expr),
build_fold_addr_expr (TREE_OPERAND (op0, 0)));
ret = GS_OK;
break;
default:
the address of a call that returns a struct; see
gcc.dg/c99-array-lval-1.c. The gimplifier will correctly make
the implied temporary explicit. */
ret = gimplify_expr (&TREE_OPERAND (expr, 0), pre_p, post_p,
is_gimple_addressable, fb_either);
if (ret != GS_ERROR)
{
op0 = TREE_OPERAND (expr, 0);
may have made a new INDIRECT_REF. */
if (TREE_CODE (op0) == INDIRECT_REF)
goto do_indirect_ref;
is set properly. */
recompute_tree_invarant_for_addr_expr (expr);
lang_hooks.mark_addressable (TREE_OPERAND (expr, 0));
}
break;
}
return ret;
}
value; output operands should be a gimple lvalue. */
static enum gimplify_status
gimplify_asm_expr (tree *expr_p, tree *pre_p, tree *post_p)
{
tree expr = *expr_p;
int noutputs = list_length (ASM_OUTPUTS (expr));
const char **oconstraints
= (const char **) alloca ((noutputs) * sizeof (const char *));
int i;
tree link;
const char *constraint;
bool allows_mem, allows_reg, is_inout;
enum gimplify_status ret, tret;
ret = GS_ALL_DONE;
for (i = 0, link = ASM_OUTPUTS (expr); link; ++i, link = TREE_CHAIN (link))
{
size_t constraint_len;
oconstraints[i] = constraint
= TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
constraint_len = strlen (constraint);
if (constraint_len == 0)
continue;
parse_output_constraint (&constraint, i, 0, 0,
&allows_mem, &allows_reg, &is_inout);
if (!allows_reg && allows_mem)
lang_hooks.mark_addressable (TREE_VALUE (link));
tret = gimplify_expr (&TREE_VALUE (link), pre_p, post_p,
is_inout ? is_gimple_min_lval : is_gimple_lvalue,
fb_lvalue | fb_mayfail);
if (tret == GS_ERROR)
{
error ("invalid lvalue in asm output %d", i);
ret = tret;
}
if (is_inout)
{
flexibility, split it into separate input and output
operands. */
tree input;
char buf[10];
char *p = xstrdup (constraint);
p[0] = '=';
TREE_VALUE (TREE_PURPOSE (link)) = build_string (constraint_len, p);
if (allows_reg)
{
sprintf (buf, "%d", i);
handle each of them individually. Those that allow register
will be replaced with operand number, the others will stay
unchanged. */
if (strchr (p, ',') != NULL)
{
size_t len = 0, buflen = strlen (buf);
char *beg, *end, *str, *dst;
for (beg = p + 1;;)
{
end = strchr (beg, ',');
if (end == NULL)
end = strchr (beg, '\0');
if ((size_t) (end - beg) < buflen)
len += buflen + 1;
else
len += end - beg + 1;
if (*end)
beg = end + 1;
else
break;
}
str = alloca (len);
for (beg = p + 1, dst = str;;)
{
const char *tem;
bool mem_p, reg_p, inout_p;
end = strchr (beg, ',');
if (end)
*end = '\0';
beg[-1] = '=';
tem = beg - 1;
parse_output_constraint (&tem, i, 0, 0,
&mem_p, ®_p, &inout_p);
if (dst != str)
*dst++ = ',';
if (reg_p)
{
memcpy (dst, buf, buflen);
dst += buflen;
}
else
{
if (end)
len = end - beg;
else
len = strlen (beg);
memcpy (dst, beg, len);
dst += len;
}
if (end)
beg = end + 1;
else
break;
}
*dst = '\0';
input = build_string (dst - str, str);
}
else
input = build_string (strlen (buf), buf);
}
else
input = build_string (constraint_len - 1, constraint + 1);
free (p);
input = build_tree_list (build_tree_list (NULL_TREE, input),
unshare_expr (TREE_VALUE (link)));
ASM_INPUTS (expr) = chainon (ASM_INPUTS (expr), input);
}
}
for (link = ASM_INPUTS (expr); link; ++i, link = TREE_CHAIN (link))
{
constraint
= TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
parse_input_constraint (&constraint, 0, 0, noutputs, 0,
oconstraints, &allows_mem, &allows_reg);
if (!allows_reg && allows_mem)
{
tret = gimplify_expr (&TREE_VALUE (link), pre_p, post_p,
is_gimple_lvalue, fb_lvalue | fb_mayfail);
lang_hooks.mark_addressable (TREE_VALUE (link));
if (tret == GS_ERROR)
{
error ("memory input %d is not directly addressable", i);
ret = tret;
}
}
else
{
tret = gimplify_expr (&TREE_VALUE (link), pre_p, post_p,
is_gimple_asm_val, fb_rvalue);
if (tret == GS_ERROR)
ret = tret;
}
}
return ret;
}
WITH_CLEANUP_EXPRs to the prequeue as we encounter cleanups while
gimplifying the body, and converting them to TRY_FINALLY_EXPRs when we
return to this function.
FIXME should we complexify the prequeue handling instead? Or use flags
for all the cleanups and let the optimizer tighten them up? The current
code seems pretty fragile; it will break on a cleanup within any
non-conditional nesting. But any such nesting would be broken, anyway;
we can't write a TRY_FINALLY_EXPR that starts inside a nesting construct
and continues out of it. We can do that at the RTL level, though, so
having an optimizer to tighten up try/finally regions would be a Good
Thing. */
static enum gimplify_status
gimplify_cleanup_point_expr (tree *expr_p, tree *pre_p)
{
tree_stmt_iterator iter;
tree body;
tree temp = voidify_wrapper_expr (*expr_p, NULL);
CLEANUP_POINT_EXPR and the cleanup. So save and reset the count and
any cleanups collected outside the CLEANUP_POINT_EXPR. */
int old_conds = gimplify_ctxp->conditions;
tree old_cleanups = gimplify_ctxp->conditional_cleanups;
gimplify_ctxp->conditions = 0;
gimplify_ctxp->conditional_cleanups = NULL_TREE;
body = TREE_OPERAND (*expr_p, 0);
gimplify_to_stmt_list (&body);
gimplify_ctxp->conditions = old_conds;
gimplify_ctxp->conditional_cleanups = old_cleanups;
for (iter = tsi_start (body); !tsi_end_p (iter); )
{
tree *wce_p = tsi_stmt_ptr (iter);
tree wce = *wce_p;
if (TREE_CODE (wce) == WITH_CLEANUP_EXPR)
{
if (tsi_one_before_end_p (iter))
{
tsi_link_before (&iter, TREE_OPERAND (wce, 0), TSI_SAME_STMT);
tsi_delink (&iter);
break;
}
else
{
tree sl, tfe;
enum tree_code code;
if (CLEANUP_EH_ONLY (wce))
code = TRY_CATCH_EXPR;
else
code = TRY_FINALLY_EXPR;
sl = tsi_split_statement_list_after (&iter);
tfe = build (code, void_type_node, sl, NULL_TREE);
append_to_statement_list (TREE_OPERAND (wce, 0),
&TREE_OPERAND (tfe, 1));
*wce_p = tfe;
iter = tsi_start (sl);
}
}
else
tsi_next (&iter);
}
if (temp)
{
*expr_p = temp;
append_to_statement_list (body, pre_p);
return GS_OK;
}
else
{
*expr_p = body;
return GS_ALL_DONE;
}
}
is the cleanup action required. */
static void
gimple_push_cleanup (tree var, tree cleanup, bool eh_only, tree *pre_p)
{
tree wce;
confusion when trying to resolve the WITH_CLEANUP_EXPR. */
if (errorcount || sorrycount)
return;
if (gimple_conditional_context ())
{
want to run the cleanup if we actually ran the initialization that
necessitates it, but we want to run it after the end of the
conditional context. So we wrap the try/finally around the
condition and use a flag to determine whether or not to actually
run the destructor. Thus
test ? f(A()) : 0
becomes (approximately)
flag = 0;
try {
if (test) { A::A(temp); flag = 1; val = f(temp); }
else { val = 0; }
} finally {
if (flag) A::~A(temp);
}
val
*/
tree flag = create_tmp_var (boolean_type_node, "cleanup");
tree ffalse = build (MODIFY_EXPR, void_type_node, flag,
boolean_false_node);
tree ftrue = build (MODIFY_EXPR, void_type_node, flag,
boolean_true_node);
cleanup = build (COND_EXPR, void_type_node, flag, cleanup, NULL);
wce = build (WITH_CLEANUP_EXPR, void_type_node, cleanup);
append_to_statement_list (ffalse, &gimplify_ctxp->conditional_cleanups);
append_to_statement_list (wce, &gimplify_ctxp->conditional_cleanups);
append_to_statement_list (ftrue, pre_p);
threading cannot redirect, the temporary (VAR) will appear
to be used uninitialized. Don't warn. */
TREE_NO_WARNING (var) = 1;
}
else
{
wce = build (WITH_CLEANUP_EXPR, void_type_node, cleanup);
CLEANUP_EH_ONLY (wce) = eh_only;
append_to_statement_list (wce, pre_p);
}
gimplify_stmt (&TREE_OPERAND (wce, 0));
}
static enum gimplify_status
gimplify_target_expr (tree *expr_p, tree *pre_p, tree *post_p)
{
tree targ = *expr_p;
tree temp = TARGET_EXPR_SLOT (targ);
tree init = TARGET_EXPR_INITIAL (targ);
enum gimplify_status ret;
if (init)
{
to the temps list. */
gimple_add_tmp_var (temp);
expression is supposed to initialize the slot. */
if (VOID_TYPE_P (TREE_TYPE (init)))
ret = gimplify_expr (&init, pre_p, post_p, is_gimple_stmt, fb_none);
else
{
ret = GS_OK;
if (TREE_CODE (init) == BIND_EXPR)
gimplify_bind_expr (&init, temp, pre_p);
if (init != temp)
{
init = build2 (INIT_EXPR, void_type_node, temp, init);
ret = gimplify_expr (&init, pre_p, post_p, is_gimple_stmt,
fb_none);
}
}
if (ret == GS_ERROR)
return GS_ERROR;
append_to_statement_list (init, pre_p);
if (TARGET_EXPR_CLEANUP (targ))
{
gimplify_stmt (&TARGET_EXPR_CLEANUP (targ));
gimple_push_cleanup (temp, TARGET_EXPR_CLEANUP (targ),
CLEANUP_EH_ONLY (targ), pre_p);
}
TREE_OPERAND (targ, 3) = init;
TARGET_EXPR_INITIAL (targ) = NULL_TREE;
}
else
gcc_assert (DECL_SEEN_IN_BIND_EXPR_P (temp));
*expr_p = temp;
return GS_OK;
}
means replacing it with a suitably gimple STATEMENT_LIST. */
void
gimplify_stmt (tree *stmt_p)
{
gimplify_expr (stmt_p, NULL, NULL, is_gimple_stmt, fb_none);
}
void
gimplify_to_stmt_list (tree *stmt_p)
{
gimplify_stmt (stmt_p);
if (!*stmt_p)
*stmt_p = alloc_stmt_list ();
else if (TREE_CODE (*stmt_p) != STATEMENT_LIST)
{
tree t = *stmt_p;
*stmt_p = alloc_stmt_list ();
append_to_statement_list (t, stmt_p);
}
}
gimplification failed.
PRE_P points to the list where side effects that must happen before
EXPR should be stored.
POST_P points to the list where side effects that must happen after
EXPR should be stored, or NULL if there is no suitable list. In
that case, we copy the result to a temporary, emit the
post-effects, and then return the temporary.
GIMPLE_TEST_F points to a function that takes a tree T and
returns nonzero if T is in the GIMPLE form requested by the
caller. The GIMPLE predicates are in tree-gimple.c.
This test is used twice. Before gimplification, the test is
invoked to determine whether *EXPR_P is already gimple enough. If
that fails, *EXPR_P is gimplified according to its code and
GIMPLE_TEST_F is called again. If the test still fails, then a new
temporary variable is created and assigned the value of the
gimplified expression.
FALLBACK tells the function what sort of a temporary we want. If the 1
bit is set, an rvalue is OK. If the 2 bit is set, an lvalue is OK.
If both are set, either is OK, but an lvalue is preferable.
The return value is either GS_ERROR or GS_ALL_DONE, since this function
iterates until solution. */
enum gimplify_status
gimplify_expr (tree *expr_p, tree *pre_p, tree *post_p,
bool (* gimple_test_f) (tree), fallback_t fallback)
{
tree tmp;
tree internal_pre = NULL_TREE;
tree internal_post = NULL_TREE;
tree save_expr;
int is_statement = (pre_p == NULL);
location_t saved_location;
enum gimplify_status ret;
save_expr = *expr_p;
if (save_expr == NULL_TREE)
return GS_ALL_DONE;
succeeds. This is wrong; the design is for gimplification to be
idempotent, and for the predicates to only test for valid forms, not
whether they are fully simplified. */
if (pre_p == NULL)
pre_p = &internal_pre;
if (post_p == NULL)
post_p = &internal_post;
saved_location = input_location;
if (save_expr != error_mark_node
&& EXPR_HAS_LOCATION (*expr_p))
input_location = EXPR_LOCATION (*expr_p);
remains the same. */
do
{
at the toplevel. */
STRIP_USELESS_TYPE_CONVERSION (*expr_p);
save_expr = *expr_p;
if (save_expr == error_mark_node
|| (TREE_TYPE (save_expr)
&& TREE_TYPE (save_expr) == error_mark_node))
{
ret = GS_ERROR;
break;
}
ret = lang_hooks.gimplify_expr (expr_p, pre_p, post_p);
if (ret == GS_OK)
{
if (*expr_p == NULL_TREE)
break;
if (*expr_p != save_expr)
continue;
}
else if (ret != GS_UNHANDLED)
break;
ret = GS_OK;
switch (TREE_CODE (*expr_p))
{
case POSTINCREMENT_EXPR:
case POSTDECREMENT_EXPR:
case PREINCREMENT_EXPR:
case PREDECREMENT_EXPR:
ret = gimplify_self_mod_expr (expr_p, pre_p, post_p,
fallback != fb_none);
break;
case ARRAY_REF:
case ARRAY_RANGE_REF:
case REALPART_EXPR:
case IMAGPART_EXPR:
case COMPONENT_REF:
case VIEW_CONVERT_EXPR:
ret = gimplify_compound_lval (expr_p, pre_p, post_p,
fallback ? fallback : fb_rvalue);
break;
case COND_EXPR:
ret = gimplify_cond_expr (expr_p, pre_p, fallback);
conditional expression, and this has undefined behavior
only on execution, so create a temporary if an lvalue is
required. */
if (fallback == fb_lvalue)
{
*expr_p = get_initialized_tmp_var (*expr_p, pre_p, post_p);
lang_hooks.mark_addressable (*expr_p);
}
break;
case CALL_EXPR:
ret = gimplify_call_expr (expr_p, pre_p, fallback != fb_none);
from a function, and this has undefined behavior only on
execution, so create a temporary if an lvalue is
required. */
if (fallback == fb_lvalue)
{
*expr_p = get_initialized_tmp_var (*expr_p, pre_p, post_p);
lang_hooks.mark_addressable (*expr_p);
}
break;
case TREE_LIST:
gcc_unreachable ();
case COMPOUND_EXPR:
ret = gimplify_compound_expr (expr_p, pre_p, fallback != fb_none);
break;
case MODIFY_EXPR:
case INIT_EXPR:
ret = gimplify_modify_expr (expr_p, pre_p, post_p,
fallback != fb_none);
useful. */
if (*expr_p && TREE_CODE (*expr_p) == INIT_EXPR)
TREE_SET_CODE (*expr_p, MODIFY_EXPR);
break;
case TRUTH_ANDIF_EXPR:
case TRUTH_ORIF_EXPR:
ret = gimplify_boolean_expr (expr_p);
break;
case TRUTH_NOT_EXPR:
TREE_OPERAND (*expr_p, 0)
= gimple_boolify (TREE_OPERAND (*expr_p, 0));
ret = gimplify_expr (&TREE_OPERAND (*expr_p, 0), pre_p, post_p,
is_gimple_val, fb_rvalue);
recalculate_side_effects (*expr_p);
break;
case ADDR_EXPR:
ret = gimplify_addr_expr (expr_p, pre_p, post_p);
break;
case VA_ARG_EXPR:
ret = gimplify_va_arg_expr (expr_p, pre_p, post_p);
break;
case CONVERT_EXPR:
case NOP_EXPR:
if (IS_EMPTY_STMT (*expr_p))
{
ret = GS_ALL_DONE;
break;
}
if (VOID_TYPE_P (TREE_TYPE (*expr_p))
|| fallback == fb_none)
{
try again. */
*expr_p = TREE_OPERAND (*expr_p, 0);
break;
}
ret = gimplify_conversion (expr_p);
if (ret == GS_ERROR)
break;
if (*expr_p != save_expr)
break;
case FIX_TRUNC_EXPR:
case FIX_CEIL_EXPR:
case FIX_FLOOR_EXPR:
case FIX_ROUND_EXPR:
ret = gimplify_expr (&TREE_OPERAND (*expr_p, 0), pre_p, post_p,
is_gimple_val, fb_rvalue);
recalculate_side_effects (*expr_p);
break;
case INDIRECT_REF:
*expr_p = fold_indirect_ref (*expr_p);
if (*expr_p != save_expr)
break;
case ALIGN_INDIRECT_REF:
case MISALIGNED_INDIRECT_REF:
ret = gimplify_expr (&TREE_OPERAND (*expr_p, 0), pre_p, post_p,
is_gimple_reg, fb_rvalue);
recalculate_side_effects (*expr_p);
break;
case INTEGER_CST:
case REAL_CST:
case STRING_CST:
case COMPLEX_CST:
case VECTOR_CST:
ret = GS_ALL_DONE;
break;
case CONST_DECL:
CONST_DECL node. Otherwise the decl is replaceable by its
value. */
if (fallback & fb_lvalue)
ret = GS_ALL_DONE;
else
*expr_p = DECL_INITIAL (*expr_p);
break;
case DECL_EXPR:
ret = gimplify_decl_expr (expr_p);
break;
case EXC_PTR_EXPR:
ret = GS_ALL_DONE;
break;
case BIND_EXPR:
ret = gimplify_bind_expr (expr_p, NULL, pre_p);
break;
case LOOP_EXPR:
ret = gimplify_loop_expr (expr_p, pre_p);
break;
case SWITCH_EXPR:
ret = gimplify_switch_expr (expr_p, pre_p);
break;
case EXIT_EXPR:
ret = gimplify_exit_expr (expr_p);
break;
case GOTO_EXPR:
and the target needs to be gimplified. */
if (TREE_CODE (GOTO_DESTINATION (*expr_p)) != LABEL_DECL)
ret = gimplify_expr (&GOTO_DESTINATION (*expr_p), pre_p,
NULL, is_gimple_val, fb_rvalue);
break;
case LABEL_EXPR:
ret = GS_ALL_DONE;
gcc_assert (decl_function_context (LABEL_EXPR_LABEL (*expr_p))
== current_function_decl);
break;
case CASE_LABEL_EXPR:
ret = gimplify_case_label_expr (expr_p);
break;
case RETURN_EXPR:
ret = gimplify_return_expr (*expr_p, pre_p);
break;
case CONSTRUCTOR:
magic. Buf if we're just elaborating this for side effects, just
gimplify any element that has side-effects. */
if (fallback == fb_none)
{
unsigned HOST_WIDE_INT ix;
constructor_elt *ce;
tree temp = NULL_TREE;
for (ix = 0;
VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (*expr_p),
ix, ce);
ix++)
if (TREE_SIDE_EFFECTS (ce->value))
append_to_statement_list (ce->value, &temp);
*expr_p = temp;
ret = GS_OK;
}
structure or union, and this has undefined behavior only
on execution, so create a temporary if an lvalue is
required. */
else if (fallback == fb_lvalue)
{
*expr_p = get_initialized_tmp_var (*expr_p, pre_p, post_p);
lang_hooks.mark_addressable (*expr_p);
}
else
ret = GS_ALL_DONE;
break;
original GIMPLE grammar. */
eliminated. */
case SAVE_EXPR:
ret = gimplify_save_expr (expr_p, pre_p, post_p);
break;
case BIT_FIELD_REF:
{
enum gimplify_status r0, r1, r2;
r0 = gimplify_expr (&TREE_OPERAND (*expr_p, 0), pre_p, post_p,
is_gimple_lvalue, fb_either);
r1 = gimplify_expr (&TREE_OPERAND (*expr_p, 1), pre_p, post_p,
is_gimple_val, fb_rvalue);
r2 = gimplify_expr (&TREE_OPERAND (*expr_p, 2), pre_p, post_p,
is_gimple_val, fb_rvalue);
recalculate_side_effects (*expr_p);
ret = MIN (r0, MIN (r1, r2));
}
break;
case NON_LVALUE_EXPR:
gcc_unreachable ();
case ASM_EXPR:
ret = gimplify_asm_expr (expr_p, pre_p, post_p);
break;
case TRY_FINALLY_EXPR:
case TRY_CATCH_EXPR:
gimplify_to_stmt_list (&TREE_OPERAND (*expr_p, 0));
gimplify_to_stmt_list (&TREE_OPERAND (*expr_p, 1));
ret = GS_ALL_DONE;
break;
case CLEANUP_POINT_EXPR:
ret = gimplify_cleanup_point_expr (expr_p, pre_p);
break;
case TARGET_EXPR:
ret = gimplify_target_expr (expr_p, pre_p, post_p);
break;
case CATCH_EXPR:
gimplify_to_stmt_list (&CATCH_BODY (*expr_p));
ret = GS_ALL_DONE;
break;
case EH_FILTER_EXPR:
gimplify_to_stmt_list (&EH_FILTER_FAILURE (*expr_p));
ret = GS_ALL_DONE;
break;
case OBJ_TYPE_REF:
{
enum gimplify_status r0, r1;
r0 = gimplify_expr (&OBJ_TYPE_REF_OBJECT (*expr_p), pre_p, post_p,
is_gimple_val, fb_rvalue);
r1 = gimplify_expr (&OBJ_TYPE_REF_EXPR (*expr_p), pre_p, post_p,
is_gimple_val, fb_rvalue);
ret = MIN (r0, r1);
}
break;
case LABEL_DECL:
the label as "forced"; meaning it can never be removed and
it is a potential target for any computed goto. */
FORCED_LABEL (*expr_p) = 1;
ret = GS_ALL_DONE;
break;
case STATEMENT_LIST:
ret = gimplify_statement_list (expr_p);
break;
case WITH_SIZE_EXPR:
{
gimplify_expr (&TREE_OPERAND (*expr_p, 0), pre_p,
post_p == &internal_post ? NULL : post_p,
gimple_test_f, fallback);
gimplify_expr (&TREE_OPERAND (*expr_p, 1), pre_p, post_p,
is_gimple_val, fb_rvalue);
}
break;
case VAR_DECL:
case PARM_DECL:
ret = gimplify_var_or_parm_decl (expr_p);
break;
case SSA_NAME:
ret = GS_ALL_DONE;
break;
default:
switch (TREE_CODE_CLASS (TREE_CODE (*expr_p)))
{
case tcc_comparison:
handle it specially (by converting to a call to
memcmp). It would be nice to only have to do this
for variable-sized objects, but then we'd have to
allow the same nest of reference nodes we allow for
MODIFY_EXPR and that's too complex. */
if (!AGGREGATE_TYPE_P (TREE_TYPE (TREE_OPERAND (*expr_p, 1))))
goto expr_2;
ret = gimplify_variable_sized_compare (expr_p);
break;
according to its class. */
case tcc_unary:
ret = gimplify_expr (&TREE_OPERAND (*expr_p, 0), pre_p,
post_p, is_gimple_val, fb_rvalue);
break;
case tcc_binary:
expr_2:
{
enum gimplify_status r0, r1;
r0 = gimplify_expr (&TREE_OPERAND (*expr_p, 0), pre_p,
post_p, is_gimple_val, fb_rvalue);
r1 = gimplify_expr (&TREE_OPERAND (*expr_p, 1), pre_p,
post_p, is_gimple_val, fb_rvalue);
ret = MIN (r0, r1);
break;
}
case tcc_declaration:
case tcc_constant:
ret = GS_ALL_DONE;
goto dont_recalculate;
default:
gcc_assert (TREE_CODE (*expr_p) == TRUTH_AND_EXPR
|| TREE_CODE (*expr_p) == TRUTH_OR_EXPR
|| TREE_CODE (*expr_p) == TRUTH_XOR_EXPR);
goto expr_2;
}
recalculate_side_effects (*expr_p);
dont_recalculate:
break;
}
if (ret == GS_OK && (*expr_p == NULL || *expr_p == save_expr))
ret = GS_ALL_DONE;
}
while (ret == GS_OK);
stub out the statement or propagate the error back out. */
if (ret == GS_ERROR)
{
if (is_statement)
*expr_p = NULL;
goto out;
}
we handled. Make sure it doesn't escape from any other context. */
gcc_assert (ret != GS_UNHANDLED);
if (fallback == fb_none && *expr_p && !is_gimple_stmt (*expr_p))
{
statement. If it doesn't have side-effects, throw it away. */
if (!TREE_SIDE_EFFECTS (*expr_p))
*expr_p = NULL;
else if (!TREE_THIS_VOLATILE (*expr_p))
{
has side effects. Recurse through the operands to find it. */
enum tree_code code = TREE_CODE (*expr_p);
switch (code)
{
case COMPONENT_REF:
case REALPART_EXPR: case IMAGPART_EXPR:
gimplify_expr (&TREE_OPERAND (*expr_p, 0), pre_p, post_p,
gimple_test_f, fallback);
break;
case ARRAY_REF:
case ARRAY_RANGE_REF:
gimplify_expr (&TREE_OPERAND (*expr_p, 0), pre_p, post_p,
gimple_test_f, fallback);
gimplify_expr (&TREE_OPERAND (*expr_p, 1), pre_p, post_p,
gimple_test_f, fallback);
break;
default:
a valid statement before we get here. */
gcc_unreachable ();
}
*expr_p = NULL;
}
else if (COMPLETE_TYPE_P (TREE_TYPE (*expr_p))
&& TYPE_MODE (TREE_TYPE (*expr_p)) != BLKmode)
{
to a non-BLKmode volatile lvalue as forcing a load. */
tree type = TYPE_MAIN_VARIANT (TREE_TYPE (*expr_p));
TREE_ADDRESSABLE type because such a type should not be
copied by bitwise-assignment. However, we make an
exception here, as all we are doing here is ensuring that
we read the bytes that make up the type. We use
create_tmp_var_raw because create_tmp_var will abort when
given a TREE_ADDRESSABLE type. */
tree tmp = create_tmp_var_raw (type, "vol");
gimple_add_tmp_var (tmp);
*expr_p = build (MODIFY_EXPR, type, tmp, *expr_p);
}
else
an incomplete type, so just throw it away. Likewise for
a BLKmode type, since any implicit inner load should
already have been turned into an explicit one by the
gimplification process. */
*expr_p = NULL;
}
everything together and replace the original statement with the
gimplified form. */
if (fallback == fb_none || is_statement)
{
if (internal_pre || internal_post)
{
append_to_statement_list (*expr_p, &internal_pre);
append_to_statement_list (internal_post, &internal_pre);
annotate_all_with_locus (&internal_pre, input_location);
*expr_p = internal_pre;
}
else if (!*expr_p)
;
else if (TREE_CODE (*expr_p) == STATEMENT_LIST)
annotate_all_with_locus (expr_p, input_location);
else
annotate_one_with_locus (*expr_p, input_location);
goto out;
}
interesting. */
handling some post-effects internally; if that's the case, we need to
copy into a temp before adding the post-effects to the tree. */
if (!internal_post && (*gimple_test_f) (*expr_p))
goto out;
expression. */
object the lvalue refers to would (probably) be modified by the
postqueue; we need to copy the value out first, which means an
rvalue. */
if ((fallback & fb_lvalue) && !internal_post
&& is_gimple_addressable (*expr_p))
{
in a temporary, and replace the expression with an INDIRECT_REF of
that temporary. */
tmp = build_fold_addr_expr (*expr_p);
gimplify_expr (&tmp, pre_p, post_p, is_gimple_reg, fb_rvalue);
*expr_p = build1 (INDIRECT_REF, TREE_TYPE (TREE_TYPE (tmp)), tmp);
}
else if ((fallback & fb_rvalue) && is_gimple_formal_tmp_rhs (*expr_p))
{
gcc_assert (!VOID_TYPE_P (TREE_TYPE (*expr_p)));
temporary TMP and replace the original expression with TMP. */
if (internal_post || (fallback & fb_lvalue))
the initialization and use of the temporary, so we can't use a
formal temp. FIXME do we care? */
*expr_p = get_initialized_tmp_var (*expr_p, pre_p, post_p);
else
*expr_p = get_formal_tmp_var (*expr_p, pre_p);
if (TREE_CODE (*expr_p) != SSA_NAME)
DECL_GIMPLE_FORMAL_TEMP_P (*expr_p) = 1;
}
else
{
#ifdef ENABLE_CHECKING
if (!(fallback & fb_mayfail))
{
fprintf (stderr, "gimplification failed:\n");
print_generic_expr (stderr, *expr_p, 0);
debug_tree (*expr_p);
internal_error ("gimplification failed");
}
#endif
gcc_assert (fallback & fb_mayfail);
impossible, don't die. Fail and let gimplify_asm_expr
issue an error. */
ret = GS_ERROR;
goto out;
}
gcc_assert ((*gimple_test_f) (*expr_p));
if (internal_post)
{
annotate_all_with_locus (&internal_post, input_location);
append_to_statement_list (internal_post, pre_p);
}
out:
input_location = saved_location;
return ret;
}
size that we find. Add to LIST_P any statements generated. */
void
gimplify_type_sizes (tree type, tree *list_p)
{
tree field, t;
if (type == NULL || type == error_mark_node)
return;
type = TYPE_MAIN_VARIANT (type);
if (TYPE_SIZES_GIMPLIFIED (type))
return;
TYPE_SIZES_GIMPLIFIED (type) = 1;
switch (TREE_CODE (type))
{
case INTEGER_TYPE:
case ENUMERAL_TYPE:
case BOOLEAN_TYPE:
case CHAR_TYPE:
case REAL_TYPE:
gimplify_one_sizepos (&TYPE_MIN_VALUE (type), list_p);
gimplify_one_sizepos (&TYPE_MAX_VALUE (type), list_p);
for (t = TYPE_NEXT_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
{
TYPE_MIN_VALUE (t) = TYPE_MIN_VALUE (type);
TYPE_MAX_VALUE (t) = TYPE_MAX_VALUE (type);
}
break;
case ARRAY_TYPE:
gimplify_type_sizes (TREE_TYPE (type), list_p);
gimplify_type_sizes (TYPE_DOMAIN (type), list_p);
break;
case RECORD_TYPE:
case UNION_TYPE:
case QUAL_UNION_TYPE:
for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
if (TREE_CODE (field) == FIELD_DECL)
{
gimplify_one_sizepos (&DECL_FIELD_OFFSET (field), list_p);
gimplify_type_sizes (TREE_TYPE (field), list_p);
}
break;
case POINTER_TYPE:
case REFERENCE_TYPE:
gimplify_type_sizes (TREE_TYPE (type), list_p);
break;
default:
break;
}
gimplify_one_sizepos (&TYPE_SIZE (type), list_p);
gimplify_one_sizepos (&TYPE_SIZE_UNIT (type), list_p);
for (t = TYPE_NEXT_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
{
TYPE_SIZE (t) = TYPE_SIZE (type);
TYPE_SIZE_UNIT (t) = TYPE_SIZE_UNIT (type);
TYPE_SIZES_GIMPLIFIED (t) = 1;
}
}
a size or position, has had all of its SAVE_EXPRs evaluated.
We add any required statements to STMT_P. */
void
gimplify_one_sizepos (tree *expr_p, tree *stmt_p)
{
tree type, expr = *expr_p;
A PLACEHOLDER_EXPR. We also don't want to do anything if it's already
a VAR_DECL. If it's a VAR_DECL from another function, the gimplifier
will want to replace it with a new variable, but that will cause problems
if this type is from outside the function. It's OK to have that here. */
if (expr == NULL_TREE || TREE_CONSTANT (expr)
|| TREE_CODE (expr) == VAR_DECL
|| CONTAINS_PLACEHOLDER_P (expr))
return;
type = TREE_TYPE (expr);
*expr_p = unshare_expr (expr);
gimplify_expr (expr_p, stmt_p, NULL, is_gimple_val, fb_rvalue);
expr = *expr_p;
In particular, we do not wish to drop a "sizetype" in favour of a
type of similar dimensions. We don't want to pollute the generic
type-stripping code with this knowledge because it doesn't matter
for the bulk of GENERIC/GIMPLE. It only matters that TYPE_SIZE_UNIT
and friends retain their "sizetype-ness". */
if (TREE_TYPE (expr) != type
&& TREE_CODE (type) == INTEGER_TYPE
&& TYPE_IS_SIZETYPE (type))
{
tree tmp;
*expr_p = create_tmp_var (type, NULL);
tmp = build1 (NOP_EXPR, type, expr);
tmp = build2 (MODIFY_EXPR, type, *expr_p, tmp);
if (EXPR_HAS_LOCATION (expr))
SET_EXPR_LOCUS (tmp, EXPR_LOCUS (expr));
else
SET_EXPR_LOCATION (tmp, input_location);
gimplify_and_add (tmp, stmt_p);
}
}
#ifdef ENABLE_CHECKING
static bool
cpt_same_type (tree a, tree b)
{
if (lang_hooks.types_compatible_p (a, b))
return true;
link them together. This routine is intended to catch type errors
that will affect the optimizers, and the optimizers don't add new
dereferences of function pointers, so ignore it. */
if ((TREE_CODE (a) == FUNCTION_TYPE || TREE_CODE (a) == METHOD_TYPE)
&& (TREE_CODE (b) == FUNCTION_TYPE || TREE_CODE (b) == METHOD_TYPE))
return true;
the element from the type of the array. See build_unary_op's handling
of ADDR_EXPR. This seems wrong -- if we were going to do this, we
should have done it when creating the variable in the first place.
Alternately, why aren't the two array types made variants? */
if (TREE_CODE (a) == ARRAY_TYPE && TREE_CODE (b) == ARRAY_TYPE)
return cpt_same_type (TREE_TYPE (a), TREE_TYPE (b));
if (POINTER_TYPE_P (a) && POINTER_TYPE_P (b))
return cpt_same_type (TREE_TYPE (a), TREE_TYPE (b));
return false;
}
The type of a dereference should correspond to the pointer type;
similarly the type of an address should match its object. */
static tree
check_pointer_types_r (tree *tp, int *walk_subtrees ATTRIBUTE_UNUSED,
void *data ATTRIBUTE_UNUSED)
{
tree t = *tp;
tree ptype, otype, dtype;
switch (TREE_CODE (t))
{
case INDIRECT_REF:
case ARRAY_REF:
otype = TREE_TYPE (t);
ptype = TREE_TYPE (TREE_OPERAND (t, 0));
dtype = TREE_TYPE (ptype);
gcc_assert (cpt_same_type (otype, dtype));
break;
case ADDR_EXPR:
ptype = TREE_TYPE (t);
otype = TREE_TYPE (TREE_OPERAND (t, 0));
dtype = TREE_TYPE (ptype);
if (!cpt_same_type (otype, dtype))
{
a pointer to the array type. We must allow this in order to
properly represent assigning the address of an array in C into
pointer to the element type. */
gcc_assert (TREE_CODE (otype) == ARRAY_TYPE
&& POINTER_TYPE_P (ptype)
&& cpt_same_type (TREE_TYPE (otype), dtype));
break;
}
break;
default:
return NULL_TREE;
}
return NULL_TREE;
}
#endif
function decl containing BODY. */
void
gimplify_body (tree *body_p, tree fndecl, bool do_parms)
{
location_t saved_location = input_location;
tree body, parm_stmts;
timevar_push (TV_TREE_GIMPLIFY);
push_gimplify_context ();
It would seem we don't have to do this for nested functions because
they are supposed to be output and then the outer function gimplified
first, but the g++ front end doesn't always do it that way. */
unshare_body (body_p, fndecl);
unvisit_body (body_p, fndecl);
input_location = DECL_SOURCE_LOCATION (fndecl);
the body so that DECL_VALUE_EXPR gets processed correctly. */
parm_stmts = do_parms ? gimplify_parameters () : NULL;
gimplify_stmt (body_p);
body = *body_p;
if (!body)
body = alloc_stmt_list ();
else if (TREE_CODE (body) == STATEMENT_LIST)
{
tree t = expr_only (*body_p);
if (t)
body = t;
}
if (TREE_CODE (body) != BIND_EXPR)
{
tree b = build (BIND_EXPR, void_type_node, NULL_TREE,
NULL_TREE, NULL_TREE);
TREE_SIDE_EFFECTS (b) = 1;
append_to_statement_list_force (body, &BIND_EXPR_BODY (b));
body = b;
}
of the function. */
if (parm_stmts)
{
append_to_statement_list_force (BIND_EXPR_BODY (body), &parm_stmts);
BIND_EXPR_BODY (body) = parm_stmts;
}
unshare_all_trees (body);
*body_p = body;
pop_gimplify_context (body);
#ifdef ENABLE_CHECKING
walk_tree (body_p, check_pointer_types_r, NULL, NULL);
#endif
timevar_pop (TV_TREE_GIMPLIFY);
input_location = saved_location;
}
node for the function we want to gimplify. */
void
gimplify_function_tree (tree fndecl)
{
tree oldfn, parm, ret;
oldfn = current_function_decl;
current_function_decl = fndecl;
cfun = DECL_STRUCT_FUNCTION (fndecl);
if (cfun == NULL)
allocate_struct_function (fndecl);
for (parm = DECL_ARGUMENTS (fndecl); parm ; parm = TREE_CHAIN (parm))
{
for promotion to gimple registers. We'll transform their uses
as we find them. */
if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
&& !TREE_THIS_VOLATILE (parm)
&& !needs_to_live_in_memory (parm))
DECL_COMPLEX_GIMPLE_REG_P (parm) = 1;
}
ret = DECL_RESULT (fndecl);
if (TREE_CODE (TREE_TYPE (ret)) == COMPLEX_TYPE
&& !needs_to_live_in_memory (ret))
DECL_COMPLEX_GIMPLE_REG_P (ret) = 1;
gimplify_body (&DECL_SAVED_TREE (fndecl), fndecl, true);
the entry hook and wrap the whole function in a TRY_FINALLY_EXPR to
catch the exit hook. */
if (flag_instrument_function_entry_exit
&& ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (fndecl))
{
tree tf, x, bind;
tf = build (TRY_FINALLY_EXPR, void_type_node, NULL, NULL);
TREE_SIDE_EFFECTS (tf) = 1;
x = DECL_SAVED_TREE (fndecl);
append_to_statement_list (x, &TREE_OPERAND (tf, 0));
x = implicit_built_in_decls[BUILT_IN_PROFILE_FUNC_EXIT];
x = build_function_call_expr (x, NULL);
append_to_statement_list (x, &TREE_OPERAND (tf, 1));
bind = build (BIND_EXPR, void_type_node, NULL, NULL, NULL);
TREE_SIDE_EFFECTS (bind) = 1;
x = implicit_built_in_decls[BUILT_IN_PROFILE_FUNC_ENTER];
x = build_function_call_expr (x, NULL);
append_to_statement_list (x, &BIND_EXPR_BODY (bind));
append_to_statement_list (tf, &BIND_EXPR_BODY (bind));
DECL_SAVED_TREE (fndecl) = bind;
}
current_function_decl = oldfn;
cfun = oldfn ? DECL_STRUCT_FUNCTION (oldfn) : NULL;
}
force the result to be either ssa_name or an invariant, otherwise
just force it to be a rhs expression. If VAR is not NULL, make the
base variable of the final destination be VAR if suitable. */
tree
force_gimple_operand (tree expr, tree *stmts, bool simple, tree var)
{
tree t;
enum gimplify_status ret;
gimple_predicate gimple_test_f;
*stmts = NULL_TREE;
if (is_gimple_val (expr))
return expr;
gimple_test_f = simple ? is_gimple_val : is_gimple_reg_rhs;
push_gimplify_context ();
gimplify_ctxp->into_ssa = in_ssa_p;
if (var)
expr = build (MODIFY_EXPR, TREE_TYPE (var), var, expr);
ret = gimplify_expr (&expr, stmts, NULL,
gimple_test_f, fb_rvalue);
gcc_assert (ret != GS_ERROR);
if (referenced_vars)
{
for (t = gimplify_ctxp->temps; t ; t = TREE_CHAIN (t))
add_referenced_tmp_var (t);
}
pop_gimplify_context (NULL);
return expr;
}
some statements are produced, emits them before BSI. */
tree
force_gimple_operand_bsi (block_stmt_iterator *bsi, tree expr,
bool simple_p, tree var)
{
tree stmts;
expr = force_gimple_operand (expr, &stmts, simple_p, var);
if (stmts)
bsi_insert_before (bsi, stmts, BSI_SAME_STMT);
return expr;
}
#include "gt-gimplify.h"