Copyright 1987, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
Free Software Foundation, Inc.
This file is part of GAS, the GNU Assembler.
GAS is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GAS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GAS; see the file COPYING. If not, write to the Free
Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
02110-1301, USA. */
distinguish the world of expressions from the world of statements.
(It also gives smaller files to re-compile.)
Here, "operand"s are of expressions, not instructions. */
#include <string.h>
#define min(a, b) ((a) < (b) ? (a) : (b))
#include "as.h"
#include "safe-ctype.h"
#include "obstack.h"
static void floating_constant (expressionS * expressionP);
static valueT generic_bignum_to_int32 (void);
#ifdef BFD64
static valueT generic_bignum_to_int64 (void);
#endif
static void integer_constant (int radix, expressionS * expressionP);
static void mri_char_constant (expressionS *);
static void current_location (expressionS *);
static void clean_up_expression (expressionS * expressionP);
static segT operand (expressionS *, enum expr_mode);
static operatorT operator (int *);
extern const char EXP_CHARS[], FLT_CHARS[];
we can provide better error messages. */
struct expr_symbol_line {
struct expr_symbol_line *next;
symbolS *sym;
char *file;
unsigned int line;
};
static struct expr_symbol_line *expr_symbol_lines;
build expressions up out of other expressions. The symbol is put
into the fake section expr_section. */
symbolS *
make_expr_symbol (expressionS *expressionP)
{
expressionS zero;
symbolS *symbolP;
struct expr_symbol_line *n;
if (expressionP->X_op == O_symbol
&& expressionP->X_add_number == 0)
return expressionP->X_add_symbol;
if (expressionP->X_op == O_big)
{
generic_floating_point_number or generic_bignum, and we are
going to lose it if we haven't already. */
if (expressionP->X_add_number > 0)
as_bad (_("bignum invalid"));
else
as_bad (_("floating point number invalid"));
zero.X_op = O_constant;
zero.X_add_number = 0;
zero.X_unsigned = 0;
clean_up_expression (&zero);
expressionP = &zero;
}
expr_section is convenient for the old a.out code, for which
S_GET_SEGMENT does not always retrieve the value put in by
S_SET_SEGMENT. */
symbolP = symbol_create (FAKE_LABEL_NAME,
(expressionP->X_op == O_constant
? absolute_section
: expr_section),
0, &zero_address_frag);
symbol_set_value_expression (symbolP, expressionP);
if (expressionP->X_op == O_constant)
resolve_symbol_value (symbolP);
n = (struct expr_symbol_line *) xmalloc (sizeof *n);
n->sym = symbolP;
as_where (&n->file, &n->line);
n->next = expr_symbol_lines;
expr_symbol_lines = n;
return symbolP;
}
non-zero if something was found, 0 if no information is known for
the symbol. */
int
expr_symbol_where (symbolS *sym, char **pfile, unsigned int *pline)
{
register struct expr_symbol_line *l;
for (l = expr_symbol_lines; l != NULL; l = l->next)
{
if (l->sym == sym)
{
*pfile = l->file;
*pline = l->line;
return 1;
}
}
return 0;
}
Since complex expressions are recorded as symbols for use in other
expressions these return a symbolS * and not an expressionS *.
These explicitly do not take an "add_number" argument. */
It would just return its argument. */
The corresponding one for signed constants is missing because
there's currently no need for it. One could add an unsigned_p flag
but that seems more clumsy. */
symbolS *
expr_build_uconstant (offsetT value)
{
expressionS e;
e.X_op = O_constant;
e.X_add_number = value;
e.X_unsigned = 1;
return make_expr_symbol (&e);
}
symbolS *
expr_build_dot (void)
{
expressionS e;
current_location (&e);
return make_expr_symbol (&e);
}
Also build any bignum literal here. */
happens to be loaded before it in memory. And its way too complicated
for me to fix right. Thus a hack. JF: Just make generic_bignum bigger,
and never write into the early words, thus they'll always be zero.
I hate Dean's floating-point code. Bleh. */
LITTLENUM_TYPE generic_bignum[SIZE_OF_LARGE_NUMBER + 6];
FLONUM_TYPE generic_floating_point_number = {
&generic_bignum[6],
&generic_bignum[SIZE_OF_LARGE_NUMBER + 6 - 1],
0,
0,
0
};
static void
floating_constant (expressionS *expressionP)
{
int error_code;
error_code = atof_generic (&input_line_pointer, ".", EXP_CHARS,
&generic_floating_point_number);
if (error_code)
{
if (error_code == ERROR_EXPONENT_OVERFLOW)
{
as_bad (_("bad floating-point constant: exponent overflow"));
}
else
{
as_bad (_("bad floating-point constant: unknown error code=%d"),
error_code);
}
}
expressionP->X_op = O_big;
whitespace. */
expressionP->X_add_number = -1;
}
static valueT
generic_bignum_to_int32 (void)
{
valueT number =
((generic_bignum[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
| (generic_bignum[0] & LITTLENUM_MASK);
number &= 0xffffffff;
return number;
}
#ifdef BFD64
static valueT
generic_bignum_to_int64 (void)
{
valueT number =
((((((((valueT) generic_bignum[3] & LITTLENUM_MASK)
<< LITTLENUM_NUMBER_OF_BITS)
| ((valueT) generic_bignum[2] & LITTLENUM_MASK))
<< LITTLENUM_NUMBER_OF_BITS)
| ((valueT) generic_bignum[1] & LITTLENUM_MASK))
<< LITTLENUM_NUMBER_OF_BITS)
| ((valueT) generic_bignum[0] & LITTLENUM_MASK));
return number;
}
#endif
static void
integer_constant (int radix, expressionS *expressionP)
{
char *start;
char *suffix = NULL;
char c;
valueT number;
short int digit;
short int maxdig = 0;
int too_many_digits = 0;
char *name;
symbolS *symbolP;
int small;
so we pretend it will fit into 32 bits. If, after making up a 32
bit number, we realise that we have scanned more digits than
comfortably fit into 32 bits, we re-scan the digits coding them
into a bignum. For decimal and octal numbers we are
conservative: Some numbers may be assumed bignums when in fact
they do fit into 32 bits. Numbers of any radix can have excess
leading zeros: We strive to recognise this and cast them back
into 32 bits. We must check that the bignum really is more than
32 bits, and change it back to a 32-bit number if it fits. The
number we are looking for is expected to be positive, but if it
fits into 32 bits as an unsigned number, we let it be a 32-bit
number. The cavalier approach is for speed in ordinary cases. */
you're compiling in 64-bit mode, the target is a 64-bit machine.
This should be cleaned up. */
#ifdef BFD64
#define valuesize 64
#else
#define valuesize 32
#endif
if ((NUMBERS_WITH_SUFFIX || flag_m68k_mri) && radix == 0)
{
int flt = 0;
radix. For that matter, it might actually be a floating
point constant. */
for (suffix = input_line_pointer; ISALNUM (*suffix); suffix++)
{
if (*suffix == 'e' || *suffix == 'E')
flt = 1;
}
if (suffix == input_line_pointer)
{
radix = 10;
suffix = NULL;
}
else
{
c = *--suffix;
c = TOUPPER (c);
we distinguish between 'B' and 'b'. This is the case for
Z80. */
if ((NUMBERS_WITH_SUFFIX && LOCAL_LABELS_FB ? *suffix : c) == 'B')
radix = 2;
else if (c == 'D')
radix = 10;
else if (c == 'O' || c == 'Q')
radix = 8;
else if (c == 'H')
radix = 16;
else if (suffix[1] == '.' || c == 'E' || flt)
{
floating_constant (expressionP);
return;
}
else
{
radix = 10;
suffix = NULL;
}
}
}
switch (radix)
{
case 2:
maxdig = 2;
too_many_digits = valuesize + 1;
break;
case 8:
maxdig = radix = 8;
too_many_digits = (valuesize + 2) / 3 + 1;
break;
case 16:
maxdig = radix = 16;
too_many_digits = (valuesize + 3) / 4 + 1;
break;
case 10:
maxdig = radix = 10;
too_many_digits = (valuesize + 11) / 4;
}
#undef valuesize
start = input_line_pointer;
c = *input_line_pointer++;
for (number = 0;
(digit = hex_value (c)) < maxdig;
c = *input_line_pointer++)
{
number = number * radix + digit;
}
small = (input_line_pointer - start - 1) < too_many_digits;
if (radix == 16 && c == '_')
{
This example is equivalent to 0x00000333000000001234567800000001. */
int num_little_digits = 0;
int i;
input_line_pointer = start;
know (LITTLENUM_NUMBER_OF_BITS == 16);
for (c = '_'; c == '_'; num_little_digits += 2)
{
int ndigit = 0;
number = 0;
for (c = *input_line_pointer++;
(digit = hex_value (c)) < maxdig;
c = *(input_line_pointer++))
{
number = number * radix + digit;
ndigit++;
}
if (ndigit > 8)
as_bad (_("a bignum with underscores may not have more than 8 hex digits in any word"));
Shift things down 2 little digits. */
know (LITTLENUM_NUMBER_OF_BITS == 16);
for (i = min (num_little_digits + 1, SIZE_OF_LARGE_NUMBER - 1);
i >= 2;
i--)
generic_bignum[i] = generic_bignum[i - 2];
generic_bignum[0] = number & 0xffffffff;
generic_bignum[1] = number >> 16;
}
if (num_little_digits > SIZE_OF_LARGE_NUMBER - 1)
num_little_digits = SIZE_OF_LARGE_NUMBER - 1;
assert (num_little_digits >= 4);
if (num_little_digits != 8)
as_bad (_("a bignum with underscores must have exactly 4 words"));
us a change to fit this constant into a small number. */
while (generic_bignum[num_little_digits - 1] == 0
&& num_little_digits > 1)
num_little_digits--;
if (num_little_digits <= 2)
{
number = generic_bignum_to_int32 ();
small = 1;
}
#ifdef BFD64
else if (num_little_digits <= 4)
{
number = generic_bignum_to_int64 ();
small = 1;
}
#endif
else
{
small = 0;
number = num_little_digits;
}
}
else if (!small)
{
LITTLENUM_TYPE *leader;
LITTLENUM_TYPE *pointer;
long carry;
leader = generic_bignum;
generic_bignum[0] = 0;
generic_bignum[1] = 0;
generic_bignum[2] = 0;
generic_bignum[3] = 0;
input_line_pointer = start;
c = *input_line_pointer++;
for (; (carry = hex_value (c)) < maxdig; c = *input_line_pointer++)
{
for (pointer = generic_bignum; pointer <= leader; pointer++)
{
long work;
work = carry + radix * *pointer;
*pointer = work & LITTLENUM_MASK;
carry = work >> LITTLENUM_NUMBER_OF_BITS;
}
if (carry)
{
if (leader < generic_bignum + SIZE_OF_LARGE_NUMBER - 1)
{
*++leader = carry;
}
}
}
know (LITTLENUM_NUMBER_OF_BITS == 16);
if (leader < generic_bignum + 2)
{
number = generic_bignum_to_int32 ();
small = 1;
}
#ifdef BFD64
else if (leader < generic_bignum + 4)
{
number = generic_bignum_to_int64 ();
small = 1;
}
#endif
else
{
number = leader - generic_bignum + 1;
}
}
if ((NUMBERS_WITH_SUFFIX || flag_m68k_mri)
&& suffix != NULL
&& input_line_pointer - 1 == suffix)
c = *input_line_pointer++;
if (small)
{
Note that unlike un*x, we allow "011f" "0x9f" to both mean
the same as the (conventional) "9f".
This is simply easier than checking for strict canonical
form. Syntax sux! */
if (LOCAL_LABELS_FB && c == 'b')
{
Because it is backward, expect it to be defined. */
name = fb_label_name ((int) number, 0);
symbolP = symbol_find (name);
if ((symbolP != NULL) && (S_IS_DEFINED (symbolP)))
{
checking absoluteness. */
know (SEG_NORMAL (S_GET_SEGMENT (symbolP)));
expressionP->X_op = O_symbol;
expressionP->X_add_symbol = symbolP;
}
else
{
the parsed number. */
as_bad (_("backward ref to unknown label \"%d:\""),
(int) number);
expressionP->X_op = O_constant;
}
expressionP->X_add_number = 0;
}
else if (LOCAL_LABELS_FB && c == 'f')
{
unknown. undefined: seen it before. unknown: never seen
it before.
Construct a local label name, then an undefined symbol.
Don't create a xseg frag for it: caller may do that.
Just return it as never seen before. */
name = fb_label_name ((int) number, 1);
symbolP = symbol_find_or_make (name);
#ifndef many_segments
can't have newlines in the argument. */
know (S_GET_SEGMENT (symbolP) == undefined_section || S_GET_SEGMENT (symbolP) == text_section || S_GET_SEGMENT (symbolP) == data_section);
#endif
expressionP->X_op = O_symbol;
expressionP->X_add_symbol = symbolP;
expressionP->X_add_number = 0;
}
else if (LOCAL_LABELS_DOLLAR && c == '$')
{
another reference to it. If it is not *currently* defined,
then this is a fresh instantiation of that number, so create
it. */
if (dollar_label_defined ((long) number))
{
name = dollar_label_name ((long) number, 0);
symbolP = symbol_find (name);
know (symbolP != NULL);
}
else
{
name = dollar_label_name ((long) number, 1);
symbolP = symbol_find_or_make (name);
}
expressionP->X_op = O_symbol;
expressionP->X_add_symbol = symbolP;
expressionP->X_add_number = 0;
}
else
{
expressionP->X_op = O_constant;
expressionP->X_add_number = number;
input_line_pointer--;
}
}
else
{
expressionP->X_op = O_big;
expressionP->X_add_number = number;
input_line_pointer--;
}
}
static void
mri_char_constant (expressionS *expressionP)
{
int i;
if (*input_line_pointer == '\''
&& input_line_pointer[1] != '\'')
{
expressionP->X_op = O_constant;
expressionP->X_add_number = 0;
return;
}
number in reverse. */
for (i = SIZE_OF_LARGE_NUMBER - 1; i >= 0; i--)
{
int j;
generic_bignum[i] = 0;
for (j = 0; j < CHARS_PER_LITTLENUM; j++)
{
if (*input_line_pointer == '\'')
{
if (input_line_pointer[1] != '\'')
break;
++input_line_pointer;
}
generic_bignum[i] <<= 8;
generic_bignum[i] += *input_line_pointer;
++input_line_pointer;
}
if (i < SIZE_OF_LARGE_NUMBER - 1)
{
last one to make it match the earlier ones. If there is
only one, we can just use the value directly. */
for (; j < CHARS_PER_LITTLENUM; j++)
generic_bignum[i] <<= 8;
}
if (*input_line_pointer == '\''
&& input_line_pointer[1] != '\'')
break;
}
if (i < 0)
{
as_bad (_("character constant too large"));
i = 0;
}
if (i > 0)
{
int c;
int j;
c = SIZE_OF_LARGE_NUMBER - i;
for (j = 0; j < c; j++)
generic_bignum[j] = generic_bignum[i + j];
i = c;
}
know (LITTLENUM_NUMBER_OF_BITS == 16);
if (i > 2)
{
expressionP->X_op = O_big;
expressionP->X_add_number = i;
}
else
{
expressionP->X_op = O_constant;
if (i < 2)
expressionP->X_add_number = generic_bignum[0] & LITTLENUM_MASK;
else
expressionP->X_add_number =
(((generic_bignum[1] & LITTLENUM_MASK)
<< LITTLENUM_NUMBER_OF_BITS)
| (generic_bignum[0] & LITTLENUM_MASK));
}
++input_line_pointer;
}
handles the magic symbol `.'. */
static void
current_location (expressionS *expressionp)
{
if (now_seg == absolute_section)
{
expressionp->X_op = O_constant;
expressionp->X_add_number = abs_section_offset;
}
else
{
expressionp->X_op = O_symbol;
expressionp->X_add_symbol = symbol_temp_new_now ();
expressionp->X_add_number = 0;
}
}
be a space.
Out: An expressionS.
The operand may have been empty: in this case X_op == O_absent.
Input_line_pointer->(next non-blank) char after operand. */
static segT
operand (expressionS *expressionP, enum expr_mode mode)
{
char c;
symbolS *symbolP;
char *name;
segT segment;
This is because the only thing which cares whether a number is
unsigned is the code in emit_expr which extends constants into
bignums. It should only sign extend negative numbers, so that
something like ``.quad 0x80000000'' is not sign extended even
though it appears negative if valueT is 32 bits. */
expressionP->X_unsigned = 1;
SKIP_WHITESPACE ();
c = *input_line_pointer++;
if (is_end_of_line[(unsigned char) c])
goto eol;
switch (c)
{
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
input_line_pointer--;
integer_constant ((NUMBERS_WITH_SUFFIX || flag_m68k_mri)
? 0 : 10,
expressionP);
break;
#ifdef LITERAL_PREFIXDOLLAR_HEX
case '$':
if (* input_line_pointer == 'L')
goto isname;
integer_constant (16, expressionP);
break;
#endif
#ifdef LITERAL_PREFIXPERCENT_BIN
case '%':
integer_constant (2, expressionP);
break;
#endif
case '0':
if (NUMBERS_WITH_SUFFIX || flag_m68k_mri)
{
char *s;
for (s = input_line_pointer; hex_p (*s); s++)
;
if (*s == 'h' || *s == 'H' || *input_line_pointer == '.')
{
--input_line_pointer;
integer_constant (0, expressionP);
break;
}
}
c = *input_line_pointer;
switch (c)
{
case 'o':
case 'O':
case 'q':
case 'Q':
case '8':
case '9':
if (NUMBERS_WITH_SUFFIX || flag_m68k_mri)
{
integer_constant (0, expressionP);
break;
}
default:
default_case:
if (c && strchr (FLT_CHARS, c))
{
input_line_pointer++;
floating_constant (expressionP);
expressionP->X_add_number = - TOLOWER (c);
}
else
{
expressionP->X_op = O_constant;
expressionP->X_add_number = 0;
}
break;
case 'x':
case 'X':
if (flag_m68k_mri)
goto default_case;
input_line_pointer++;
integer_constant (16, expressionP);
break;
case 'b':
if (LOCAL_LABELS_FB && ! (flag_m68k_mri || NUMBERS_WITH_SUFFIX))
{
some conditions, fall through to call
integer_constant. However, that didn't make sense,
as integer_constant only accepts digits. */
than the expected base; for consistency, do the same
here. */
if (input_line_pointer[1] < '0'
|| input_line_pointer[1] > '9')
{
input_line_pointer--;
integer_constant (10, expressionP);
break;
}
}
case 'B':
input_line_pointer++;
if (flag_m68k_mri || NUMBERS_WITH_SUFFIX)
goto default_case;
integer_constant (2, expressionP);
break;
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
integer_constant ((flag_m68k_mri || NUMBERS_WITH_SUFFIX)
? 0 : 8,
expressionP);
break;
case 'f':
if (LOCAL_LABELS_FB)
{
number, make it one. Otherwise, make it a local label,
and try to deal with parsing the rest later. */
if (!input_line_pointer[1]
|| (is_end_of_line[0xff & input_line_pointer[1]])
|| strchr (FLT_CHARS, 'f') == NULL)
goto is_0f_label;
{
char *cp = input_line_pointer + 1;
int r = atof_generic (&cp, ".", EXP_CHARS,
&generic_floating_point_number);
switch (r)
{
case 0:
case ERROR_EXPONENT_OVERFLOW:
if (*cp == 'f' || *cp == 'b')
goto is_0f_label;
else if (cp == input_line_pointer + 1)
end of operand. */
goto is_0f_label;
else
goto is_0f_float;
default:
as_fatal (_("expr.c(operand): bad atof_generic return val %d"),
r);
}
}
two labels, depending on what we've decided we're probably
looking at. */
is_0f_label:
input_line_pointer--;
integer_constant (10, expressionP);
break;
is_0f_float:
;
}
case 'd':
case 'D':
if (flag_m68k_mri || NUMBERS_WITH_SUFFIX)
{
integer_constant (0, expressionP);
break;
}
case 'F':
case 'r':
case 'e':
case 'E':
case 'g':
case 'G':
input_line_pointer++;
floating_constant (expressionP);
expressionP->X_add_number = - TOLOWER (c);
break;
case '$':
if (LOCAL_LABELS_DOLLAR)
{
integer_constant (10, expressionP);
break;
}
else
goto default_case;
}
break;
case '(':
#ifndef NEED_INDEX_OPERATOR
case '[':
#endif
if (mode != expr_defer)
segment = expression (expressionP);
else
segment = deferred_expression (expressionP);
if ((c == '(' && *input_line_pointer != ')')
|| (c == '[' && *input_line_pointer != ']'))
as_bad (_("missing '%c'"), c == '(' ? ')' : ']');
else
input_line_pointer++;
SKIP_WHITESPACE ();
return segment;
#ifdef TC_M68K
case 'E':
if (! flag_m68k_mri || *input_line_pointer != '\'')
goto de_fault;
as_bad (_("EBCDIC constants are not supported"));
case 'A':
if (! flag_m68k_mri || *input_line_pointer != '\'')
goto de_fault;
++input_line_pointer;
#endif
case '\'':
if (! flag_m68k_mri)
{
ESCAPEMENT is permitted for a single quote. The next
character, parity errors and all, is taken as the value
of the operand. VERY KINKY. */
expressionP->X_op = O_constant;
expressionP->X_add_number = *input_line_pointer++;
break;
}
mri_char_constant (expressionP);
break;
#ifdef TC_M68K
case '"':
if (! flag_m68k_mri)
goto de_fault;
#endif
case '~':
if (is_name_beginner (c))
goto isname;
case '!':
case '-':
case '+':
{
Disabled, since the preprocessor removes whitespace. */
if (0 && (c == '-' || c == '+') && *input_line_pointer == c)
goto target_op;
operand (expressionP, mode);
if (expressionP->X_op == O_constant)
{
if (c == '-')
{
expressionP->X_add_number = - expressionP->X_add_number;
This is compatible with other people's
assemblers. Sigh. */
expressionP->X_unsigned = 0;
}
else if (c == '~' || c == '"')
expressionP->X_add_number = ~ expressionP->X_add_number;
else if (c == '!')
expressionP->X_add_number = ! expressionP->X_add_number;
}
else if (expressionP->X_op == O_big
&& expressionP->X_add_number <= 0
&& c == '-'
&& (generic_floating_point_number.sign == '+'
|| generic_floating_point_number.sign == 'P'))
{
if (generic_floating_point_number.sign == '+')
generic_floating_point_number.sign = '-';
else
generic_floating_point_number.sign = 'N';
}
else if (expressionP->X_op == O_big
&& expressionP->X_add_number > 0)
{
int i;
if (c == '~' || c == '-')
{
for (i = 0; i < expressionP->X_add_number; ++i)
generic_bignum[i] = ~generic_bignum[i];
if (c == '-')
for (i = 0; i < expressionP->X_add_number; ++i)
{
generic_bignum[i] += 1;
if (generic_bignum[i])
break;
}
}
else if (c == '!')
{
int nonzero = 0;
for (i = 0; i < expressionP->X_add_number; ++i)
{
if (generic_bignum[i])
nonzero = 1;
generic_bignum[i] = 0;
}
generic_bignum[0] = nonzero;
}
}
else if (expressionP->X_op != O_illegal
&& expressionP->X_op != O_absent)
{
if (c != '+')
{
expressionP->X_add_symbol = make_expr_symbol (expressionP);
if (c == '-')
expressionP->X_op = O_uminus;
else if (c == '~' || c == '"')
expressionP->X_op = O_bit_not;
else
expressionP->X_op = O_logical_not;
expressionP->X_add_number = 0;
}
}
else
as_warn (_("Unary operator %c ignored because bad operand follows"),
c);
}
break;
#if defined (DOLLAR_DOT) || defined (TC_M68K)
case '$':
DOLLAR_DOT is defined. */
#ifndef DOLLAR_DOT
if (! flag_m68k_mri)
goto de_fault;
#endif
if (DOLLAR_AMBIGU && hex_p (*input_line_pointer))
{
for a hexadecimal constant. */
integer_constant (16, expressionP);
break;
}
if (is_part_of_name (*input_line_pointer))
goto isname;
current_location (expressionP);
break;
#endif
case '.':
if (!is_part_of_name (*input_line_pointer))
{
current_location (expressionP);
break;
}
else if ((strncasecmp (input_line_pointer, "startof.", 8) == 0
&& ! is_part_of_name (input_line_pointer[8]))
|| (strncasecmp (input_line_pointer, "sizeof.", 7) == 0
&& ! is_part_of_name (input_line_pointer[7])))
{
int start;
start = (input_line_pointer[1] == 't'
|| input_line_pointer[1] == 'T');
input_line_pointer += start ? 8 : 7;
SKIP_WHITESPACE ();
if (*input_line_pointer != '(')
as_bad (_("syntax error in .startof. or .sizeof."));
else
{
char *buf;
++input_line_pointer;
SKIP_WHITESPACE ();
name = input_line_pointer;
c = get_symbol_end ();
buf = (char *) xmalloc (strlen (name) + 10);
if (start)
sprintf (buf, ".startof.%s", name);
else
sprintf (buf, ".sizeof.%s", name);
symbolP = symbol_make (buf);
free (buf);
expressionP->X_op = O_symbol;
expressionP->X_add_symbol = symbolP;
expressionP->X_add_number = 0;
*input_line_pointer = c;
SKIP_WHITESPACE ();
if (*input_line_pointer != ')')
as_bad (_("syntax error in .startof. or .sizeof."));
else
++input_line_pointer;
}
break;
}
else
{
goto isname;
}
case ',':
eol:
expressionP->X_op = O_absent;
input_line_pointer--;
break;
#ifdef TC_M68K
case '%':
if (! flag_m68k_mri)
goto de_fault;
integer_constant (2, expressionP);
break;
case '@':
if (! flag_m68k_mri)
goto de_fault;
integer_constant (8, expressionP);
break;
case ':':
if (! flag_m68k_mri)
goto de_fault;
using hexadecimal digits. */
++input_line_pointer;
integer_constant (16, expressionP);
break;
case '*':
if (! flag_m68k_mri || is_part_of_name (*input_line_pointer))
goto de_fault;
current_location (expressionP);
break;
#endif
default:
#ifdef TC_M68K
de_fault:
#endif
if (is_name_beginner (c))
{
This is kludged for speed, so code is repeated. */
isname:
name = --input_line_pointer;
c = get_symbol_end ();
#ifdef md_parse_name
specially in certain contexts. If a name always has a
specific value, it can often be handled by simply
entering it in the symbol table. */
if (md_parse_name (name, expressionP, mode, &c))
{
*input_line_pointer = c;
break;
}
#endif
#ifdef TC_I960
lda sizeof code,g13
FIXME: This should use md_parse_name. */
if (flag_mri
&& (strcasecmp (name, "sizeof") == 0
|| strcasecmp (name, "startof") == 0))
{
int start;
char *buf;
start = (name[1] == 't'
|| name[1] == 'T');
*input_line_pointer = c;
SKIP_WHITESPACE ();
name = input_line_pointer;
c = get_symbol_end ();
buf = (char *) xmalloc (strlen (name) + 10);
if (start)
sprintf (buf, ".startof.%s", name);
else
sprintf (buf, ".sizeof.%s", name);
symbolP = symbol_make (buf);
free (buf);
expressionP->X_op = O_symbol;
expressionP->X_add_symbol = symbolP;
expressionP->X_add_number = 0;
*input_line_pointer = c;
SKIP_WHITESPACE ();
break;
}
#endif
symbolP = symbol_find_or_make (name);
value now. */
segment = S_GET_SEGMENT (symbolP);
if (mode != expr_defer && segment == absolute_section)
{
expressionP->X_op = O_constant;
expressionP->X_add_number = S_GET_VALUE (symbolP);
}
else if (mode != expr_defer && segment == reg_section)
{
expressionP->X_op = O_register;
expressionP->X_add_number = S_GET_VALUE (symbolP);
}
else
{
expressionP->X_op = O_symbol;
expressionP->X_add_symbol = symbolP;
expressionP->X_add_number = 0;
}
*input_line_pointer = c;
}
else
{
target_op:
the X_op field to something other than O_absent and pointing
input_line_pointer past the expression. If it can't parse the
expression, X_op and input_line_pointer should be unchanged. */
expressionP->X_op = O_absent;
--input_line_pointer;
md_operand (expressionP);
if (expressionP->X_op == O_absent)
{
++input_line_pointer;
as_bad (_("bad expression"));
expressionP->X_op = O_constant;
expressionP->X_add_number = 0;
}
}
break;
}
created. Doing it here saves lines of code. */
clean_up_expression (expressionP);
SKIP_WHITESPACE ();
know (*input_line_pointer != ' ');
if (expressionP->X_add_symbol)
symbol_mark_used (expressionP->X_add_symbol);
expressionP->X_add_symbol = symbol_clone_if_forward_ref (expressionP->X_add_symbol);
expressionP->X_op_symbol = symbol_clone_if_forward_ref (expressionP->X_op_symbol);
switch (expressionP->X_op)
{
default:
return absolute_section;
case O_symbol:
return S_GET_SEGMENT (expressionP->X_add_symbol);
case O_register:
return reg_section;
}
}
The X_op field of the expressionS may only take certain values.
Elsewise we waste time special-case testing. Sigh. Ditto SEG_ABSENT.
Out: expressionS may have been modified:
Unused fields zeroed to help expr (). */
static void
clean_up_expression (expressionS *expressionP)
{
switch (expressionP->X_op)
{
case O_illegal:
case O_absent:
expressionP->X_add_number = 0;
case O_big:
case O_constant:
case O_register:
expressionP->X_add_symbol = NULL;
case O_symbol:
case O_uminus:
case O_bit_not:
expressionP->X_op_symbol = NULL;
break;
default:
break;
}
}
Unary operators and parenthetical expressions are treated as operands.
As usual, Q==quantity==operand, O==operator, X==expression mnemonics.
We used to do an aho/ullman shift-reduce parser, but the logic got so
warped that I flushed it and wrote a recursive-descent parser instead.
Now things are stable, would anybody like to write a fast parser?
Most expressions are either register (which does not even reach here)
or 1 symbol. Then "symbol+constant" and "symbol-symbol" are common.
So I guess it doesn't really matter how inefficient more complex expressions
are parsed.
After expr(RANK,resultP) input_line_pointer->operator of rank <= RANK.
Also, we have consumed any leading or trailing spaces (operand does that)
and done all intervening operators.
This returns the segment of the result, which will be
absolute_section or the segment of a symbol. */
#undef __
#define __ O_illegal
#ifndef O_SINGLE_EQ
#define O_SINGLE_EQ O_illegal
#endif
static const operatorT op_encoding[256] = {
__, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
__, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
__, O_bit_or_not, __, __, __, O_modulus, O_bit_and, __,
__, __, O_multiply, O_add, __, O_subtract, __, O_divide,
__, __, __, __, __, __, __, __,
__, __, __, __, O_lt, O_SINGLE_EQ, O_gt, __,
__, __, __, __, __, __, __, __,
__, __, __, __, __, __, __, __,
__, __, __, __, __, __, __, __,
__, __, __,
#ifdef NEED_INDEX_OPERATOR
O_index,
#else
__,
#endif
__, __, O_bit_exclusive_or, __,
__, __, __, __, __, __, __, __,
__, __, __, __, __, __, __, __,
__, __, __, __, __, __, __, __,
__, __, __, __, O_bit_inclusive_or, __, __, __,
__, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
__, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
__, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
__, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
__, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
__, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
__, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
__, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __
};
0 operand, (expression)
1 ||
2 &&
3 == <> < <= >= >
4 + -
5 used for * / % in MRI mode
6 & ^ ! |
7 * / % << >>
8 unary - unary ~
*/
static operator_rankT op_rank[] = {
0,
0,
0,
0,
0,
0,
0,
9,
9,
9,
8,
8,
8,
8,
8,
7,
7,
7,
7,
5,
5,
4,
4,
4,
4,
4,
4,
3,
2,
1,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
};
division have lower precedence than the bit wise operators. This
function sets the operator precedences correctly for the current
mode. Also, MRI uses a different bit_not operator, and this fixes
that as well. */
#define STANDARD_MUL_PRECEDENCE 8
#define MRI_MUL_PRECEDENCE 6
void
expr_set_precedence (void)
{
if (flag_m68k_mri)
{
op_rank[O_multiply] = MRI_MUL_PRECEDENCE;
op_rank[O_divide] = MRI_MUL_PRECEDENCE;
op_rank[O_modulus] = MRI_MUL_PRECEDENCE;
}
else
{
op_rank[O_multiply] = STANDARD_MUL_PRECEDENCE;
op_rank[O_divide] = STANDARD_MUL_PRECEDENCE;
op_rank[O_modulus] = STANDARD_MUL_PRECEDENCE;
}
}
void
expr_begin (void)
{
expr_set_precedence ();
{
expressionS e;
e.X_op = O_max;
assert (e.X_op == O_max);
}
}
sets NUM_CHARS to the number of characters in the operator.
Does not advance INPUT_LINE_POINTER. */
static inline operatorT
operator (int *num_chars)
{
int c;
operatorT ret;
c = *input_line_pointer & 0xff;
*num_chars = 1;
if (is_end_of_line[c])
return O_illegal;
switch (c)
{
default:
return op_encoding[c];
case '+':
case '-':
Disabled, since the preprocessor removes whitespace. */
if (1 || input_line_pointer[1] != c)
return op_encoding[c];
return O_illegal;
case '<':
switch (input_line_pointer[1])
{
default:
return op_encoding[c];
case '<':
ret = O_left_shift;
break;
case '>':
ret = O_ne;
break;
case '=':
ret = O_le;
break;
}
*num_chars = 2;
return ret;
case '=':
if (input_line_pointer[1] != '=')
return op_encoding[c];
*num_chars = 2;
return O_eq;
case '>':
switch (input_line_pointer[1])
{
default:
return op_encoding[c];
case '>':
ret = O_right_shift;
break;
case '=':
ret = O_ge;
break;
}
*num_chars = 2;
return ret;
case '!':
switch (input_line_pointer[1])
{
case '!':
*num_chars = 2;
return O_bit_exclusive_or;
case '=':
*num_chars = 2;
return O_ne;
default:
if (flag_m68k_mri)
return O_bit_inclusive_or;
return op_encoding[c];
}
case '|':
if (input_line_pointer[1] != '|')
return op_encoding[c];
*num_chars = 2;
return O_logical_or;
case '&':
if (input_line_pointer[1] != '&')
return op_encoding[c];
*num_chars = 2;
return O_logical_and;
}
}
segT
expr (int rankarg,
expressionS *resultP,
enum expr_mode mode )
{
operator_rankT rank = (operator_rankT) rankarg;
segT retval;
expressionS right;
operatorT op_left;
operatorT op_right;
int op_chars;
know (rank >= 0);
if (rank == 0)
dot_value = frag_now_fix ();
retval = operand (resultP, mode);
know (*input_line_pointer != ' ');
op_left = operator (&op_chars);
while (op_left != O_illegal && op_rank[(int) op_left] > rank)
{
segT rightseg;
bfd_vma frag_off;
input_line_pointer += op_chars;
rightseg = expr (op_rank[(int) op_left], &right, mode);
if (right.X_op == O_absent)
{
as_warn (_("missing operand; zero assumed"));
right.X_op = O_constant;
right.X_add_number = 0;
right.X_add_symbol = NULL;
right.X_op_symbol = NULL;
}
know (*input_line_pointer != ' ');
if (op_left == O_index)
{
if (*input_line_pointer != ']')
as_bad ("missing right bracket");
else
{
++input_line_pointer;
SKIP_WHITESPACE ();
}
}
op_right = operator (&op_chars);
know (op_right == O_illegal
|| op_rank[(int) op_right] <= op_rank[(int) op_left]);
know ((int) op_left >= (int) O_multiply
&& (int) op_left <= (int) O_index);
if (resultP->X_op == O_big)
{
if (resultP->X_add_number > 0)
as_warn (_("left operand is a bignum; integer 0 assumed"));
else
as_warn (_("left operand is a float; integer 0 assumed"));
resultP->X_op = O_constant;
resultP->X_add_number = 0;
resultP->X_add_symbol = NULL;
resultP->X_op_symbol = NULL;
}
if (right.X_op == O_big)
{
if (right.X_add_number > 0)
as_warn (_("right operand is a bignum; integer 0 assumed"));
else
as_warn (_("right operand is a float; integer 0 assumed"));
right.X_op = O_constant;
right.X_add_number = 0;
right.X_add_symbol = NULL;
right.X_op_symbol = NULL;
}
#ifdef md_optimize_expr
if (md_optimize_expr (resultP, op_left, &right))
{
;
}
else
#endif
if (op_left == O_add && right.X_op == O_constant)
{
resultP->X_add_number += right.X_add_number;
}
else if (op_left == O_subtract
&& right.X_op == O_symbol
&& resultP->X_op == O_symbol
&& retval == rightseg
&& (SEG_NORMAL (rightseg)
|| right.X_add_symbol == resultP->X_add_symbol)
&& frag_offset_fixed_p (symbol_get_frag (resultP->X_add_symbol),
symbol_get_frag (right.X_add_symbol),
&frag_off))
{
resultP->X_add_number -= right.X_add_number;
resultP->X_add_number -= frag_off / OCTETS_PER_BYTE;
resultP->X_add_number += (S_GET_VALUE (resultP->X_add_symbol)
- S_GET_VALUE (right.X_add_symbol));
resultP->X_op = O_constant;
resultP->X_add_symbol = 0;
}
else if (op_left == O_subtract && right.X_op == O_constant)
{
resultP->X_add_number -= right.X_add_number;
}
else if (op_left == O_add && resultP->X_op == O_constant)
{
resultP->X_op = right.X_op;
resultP->X_add_symbol = right.X_add_symbol;
resultP->X_op_symbol = right.X_op_symbol;
resultP->X_add_number += right.X_add_number;
retval = rightseg;
}
else if (resultP->X_op == O_constant && right.X_op == O_constant)
{
offsetT v = right.X_add_number;
if (v == 0 && (op_left == O_divide || op_left == O_modulus))
{
as_warn (_("division by zero"));
v = 1;
}
switch (op_left)
{
default: abort ();
case O_multiply: resultP->X_add_number *= v; break;
case O_divide: resultP->X_add_number /= v; break;
case O_modulus: resultP->X_add_number %= v; break;
case O_left_shift: resultP->X_add_number <<= v; break;
case O_right_shift:
characteristics of the compiler used to compile gas. */
resultP->X_add_number =
(offsetT) ((valueT) resultP->X_add_number >> (valueT) v);
break;
case O_bit_inclusive_or: resultP->X_add_number |= v; break;
case O_bit_or_not: resultP->X_add_number |= ~v; break;
case O_bit_exclusive_or: resultP->X_add_number ^= v; break;
case O_bit_and: resultP->X_add_number &= v; break;
case O_add: resultP->X_add_number += v; break;
case O_subtract: resultP->X_add_number -= v; break;
case O_eq:
resultP->X_add_number =
resultP->X_add_number == v ? ~ (offsetT) 0 : 0;
break;
case O_ne:
resultP->X_add_number =
resultP->X_add_number != v ? ~ (offsetT) 0 : 0;
break;
case O_lt:
resultP->X_add_number =
resultP->X_add_number < v ? ~ (offsetT) 0 : 0;
break;
case O_le:
resultP->X_add_number =
resultP->X_add_number <= v ? ~ (offsetT) 0 : 0;
break;
case O_ge:
resultP->X_add_number =
resultP->X_add_number >= v ? ~ (offsetT) 0 : 0;
break;
case O_gt:
resultP->X_add_number =
resultP->X_add_number > v ? ~ (offsetT) 0 : 0;
break;
case O_logical_and:
resultP->X_add_number = resultP->X_add_number && v;
break;
case O_logical_or:
resultP->X_add_number = resultP->X_add_number || v;
break;
}
}
else if (resultP->X_op == O_symbol
&& right.X_op == O_symbol
&& (op_left == O_add
|| op_left == O_subtract
|| (resultP->X_add_number == 0
&& right.X_add_number == 0)))
{
resultP->X_op = op_left;
resultP->X_op_symbol = right.X_add_symbol;
if (op_left == O_add)
resultP->X_add_number += right.X_add_number;
else if (op_left == O_subtract)
{
resultP->X_add_number -= right.X_add_number;
if (retval == rightseg && SEG_NORMAL (retval))
{
retval = absolute_section;
rightseg = absolute_section;
}
}
}
else
{
resultP->X_add_symbol = make_expr_symbol (resultP);
resultP->X_op_symbol = make_expr_symbol (&right);
resultP->X_op = op_left;
resultP->X_add_number = 0;
resultP->X_unsigned = 1;
}
if (retval != rightseg)
{
if (! SEG_NORMAL (retval))
{
if (retval != undefined_section || SEG_NORMAL (rightseg))
retval = rightseg;
}
else if (SEG_NORMAL (rightseg)
#ifdef DIFF_EXPR_OK
&& op_left != O_subtract
#endif
)
as_bad (_("operation combines symbols in different segments"));
}
op_left = op_right;
}
if (resultP->X_add_symbol)
symbol_mark_used (resultP->X_add_symbol);
if (rank == 0 && mode == expr_evaluate)
resolve_expression (resultP);
return resultP->X_op == O_constant ? absolute_section : retval;
}
used. */
int
resolve_expression (expressionS *expressionP)
{
valueT final_val = expressionP->X_add_number;
symbolS *add_symbol = expressionP->X_add_symbol;
symbolS *op_symbol = expressionP->X_op_symbol;
operatorT op = expressionP->X_op;
valueT left, right;
segT seg_left, seg_right;
fragS *frag_left, *frag_right;
bfd_vma frag_off;
switch (op)
{
default:
return 0;
case O_constant:
case O_register:
left = 0;
break;
case O_symbol:
case O_symbol_rva:
if (!snapshot_symbol (&add_symbol, &left, &seg_left, &frag_left))
return 0;
break;
case O_uminus:
case O_bit_not:
case O_logical_not:
if (!snapshot_symbol (&add_symbol, &left, &seg_left, &frag_left))
return 0;
if (seg_left != absolute_section)
return 0;
if (op == O_logical_not)
left = !left;
else if (op == O_uminus)
left = -left;
else
left = ~left;
op = O_constant;
break;
case O_multiply:
case O_divide:
case O_modulus:
case O_left_shift:
case O_right_shift:
case O_bit_inclusive_or:
case O_bit_or_not:
case O_bit_exclusive_or:
case O_bit_and:
case O_add:
case O_subtract:
case O_eq:
case O_ne:
case O_lt:
case O_le:
case O_ge:
case O_gt:
case O_logical_and:
case O_logical_or:
if (!snapshot_symbol (&add_symbol, &left, &seg_left, &frag_left)
|| !snapshot_symbol (&op_symbol, &right, &seg_right, &frag_right))
return 0;
constant into X_add_number. */
if (op == O_add)
{
if (seg_right == absolute_section)
{
final_val += right;
op = O_symbol;
break;
}
else if (seg_left == absolute_section)
{
final_val += left;
left = right;
seg_left = seg_right;
add_symbol = op_symbol;
op = O_symbol;
break;
}
}
else if (op == O_subtract)
{
if (seg_right == absolute_section)
{
final_val -= right;
op = O_symbol;
break;
}
}
Subtraction, and other comparison operators are permitted if
both operands are in the same section.
Shifts by constant zero are permitted on anything.
Multiplies, bit-ors, and bit-ands with constant zero are
permitted on anything.
Multiplies and divides by constant one are permitted on
anything.
Binary operations with both operands being the same register
or undefined symbol are permitted if the result doesn't depend
on the input value.
Otherwise, both operands must be absolute. We already handled
the case of addition or subtraction of a constant above. */
frag_off = 0;
if (!(seg_left == absolute_section
&& seg_right == absolute_section)
&& !(op == O_eq || op == O_ne)
&& !((op == O_subtract
|| op == O_lt || op == O_le || op == O_ge || op == O_gt)
&& seg_left == seg_right
&& (finalize_syms
|| frag_offset_fixed_p (frag_left, frag_right, &frag_off))
&& (seg_left != reg_section || left == right)
&& (seg_left != undefined_section || add_symbol == op_symbol)))
{
if ((seg_left == absolute_section && left == 0)
|| (seg_right == absolute_section && right == 0))
{
if (op == O_bit_exclusive_or || op == O_bit_inclusive_or)
{
if (seg_right != absolute_section || right != 0)
{
seg_left = seg_right;
left = right;
add_symbol = op_symbol;
}
op = O_symbol;
break;
}
else if (op == O_left_shift || op == O_right_shift)
{
if (seg_left != absolute_section || left != 0)
{
op = O_symbol;
break;
}
}
else if (op != O_multiply
&& op != O_bit_or_not && op != O_bit_and)
return 0;
}
else if (op == O_multiply
&& seg_left == absolute_section && left == 1)
{
seg_left = seg_right;
left = right;
add_symbol = op_symbol;
op = O_symbol;
break;
}
else if ((op == O_multiply || op == O_divide)
&& seg_right == absolute_section && right == 1)
{
op = O_symbol;
break;
}
else if (left != right
|| ((seg_left != reg_section || seg_right != reg_section)
&& (seg_left != undefined_section
|| seg_right != undefined_section
|| add_symbol != op_symbol)))
return 0;
else if (op == O_bit_and || op == O_bit_inclusive_or)
{
op = O_symbol;
break;
}
else if (op != O_bit_exclusive_or && op != O_bit_or_not)
return 0;
}
right += frag_off / OCTETS_PER_BYTE;
switch (op)
{
case O_add: left += right; break;
case O_subtract: left -= right; break;
case O_multiply: left *= right; break;
case O_divide:
if (right == 0)
return 0;
left = (offsetT) left / (offsetT) right;
break;
case O_modulus:
if (right == 0)
return 0;
left = (offsetT) left % (offsetT) right;
break;
case O_left_shift: left <<= right; break;
case O_right_shift: left >>= right; break;
case O_bit_inclusive_or: left |= right; break;
case O_bit_or_not: left |= ~right; break;
case O_bit_exclusive_or: left ^= right; break;
case O_bit_and: left &= right; break;
case O_eq:
case O_ne:
left = (left == right
&& seg_left == seg_right
&& (finalize_syms || frag_left == frag_right)
&& (seg_left != undefined_section
|| add_symbol == op_symbol)
? ~ (valueT) 0 : 0);
if (op == O_ne)
left = ~left;
break;
case O_lt:
left = (offsetT) left < (offsetT) right ? ~ (valueT) 0 : 0;
break;
case O_le:
left = (offsetT) left <= (offsetT) right ? ~ (valueT) 0 : 0;
break;
case O_ge:
left = (offsetT) left >= (offsetT) right ? ~ (valueT) 0 : 0;
break;
case O_gt:
left = (offsetT) left > (offsetT) right ? ~ (valueT) 0 : 0;
break;
case O_logical_and: left = left && right; break;
case O_logical_or: left = left || right; break;
default: abort ();
}
op = O_constant;
break;
}
if (op == O_symbol)
{
if (seg_left == absolute_section)
op = O_constant;
else if (seg_left == reg_section && final_val == 0)
op = O_register;
else if (add_symbol != expressionP->X_add_symbol)
final_val += left;
expressionP->X_add_symbol = add_symbol;
}
expressionP->X_op = op;
if (op == O_constant || op == O_register)
final_val += left;
expressionP->X_add_number = final_val;
return 1;
}
expr.c is just a branch office read.c anyway, and putting it
here lessens the crowd at read.c.
Assume input_line_pointer is at start of symbol name.
Advance input_line_pointer past symbol name.
Turn that character into a '\0', returning its former value.
This allows a string compare (RMS wants symbol names to be strings)
of the symbol name.
There will always be a char following symbol name, because all good
lines end in end-of-line. */
char
get_symbol_end (void)
{
char c;
constructed string. */
if (is_name_beginner (c = *input_line_pointer++) || c == '\001')
{
while (is_part_of_name (c = *input_line_pointer++)
|| c == '\001')
;
if (is_name_ender (c))
c = *input_line_pointer++;
}
*--input_line_pointer = 0;
return (c);
}
unsigned int
get_single_number (void)
{
expressionS exp;
operand (&exp, expr_normal);
return exp.X_add_number;
}