Copyright (C) 2005, 2006
Free Software Foundation, Inc.
This file is part of BFD, the Binary File Descriptor library.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#include "bfd.h"
#include "sysdep.h"
#include "libbfd.h"
#include "elf-bfd.h"
#include "elf/m32c.h"
#include "libiberty.h"
static reloc_howto_type * m32c_reloc_type_lookup
(bfd *, bfd_reloc_code_real_type);
static void m32c_info_to_howto_rela
(bfd *, arelent *, Elf_Internal_Rela *);
static bfd_boolean m32c_elf_relocate_section
(bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
static bfd_boolean m32c_elf_gc_sweep_hook
(bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
static asection * m32c_elf_gc_mark_hook
(asection *, struct bfd_link_info *, Elf_Internal_Rela *, struct elf_link_hash_entry *, Elf_Internal_Sym *);
static bfd_boolean m32c_elf_check_relocs
(bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
static bfd_boolean m32c_elf_relax_delete_bytes (bfd *, asection *, bfd_vma, int);
#ifdef DEBUG
static char * m32c_get_reloc (long reloc);
#endif
static bfd_boolean m32c_elf_relax_section
(bfd *abfd, asection *sec, struct bfd_link_info *link_info, bfd_boolean *again);
static reloc_howto_type m32c_elf_howto_table [] =
{
HOWTO (R_M32C_NONE,
0,
0,
32,
FALSE,
0,
complain_overflow_bitfield,
bfd_elf_generic_reloc,
"R_M32C_NONE",
FALSE,
0,
0,
FALSE),
HOWTO (R_M32C_16,
0,
1,
16,
FALSE,
0,
complain_overflow_bitfield,
bfd_elf_generic_reloc,
"R_M32C_16",
FALSE,
0,
0xffff,
FALSE),
HOWTO (R_M32C_24,
0,
2,
24,
FALSE,
0,
complain_overflow_bitfield,
bfd_elf_generic_reloc,
"R_M32C_24",
FALSE,
0,
0xffffff,
FALSE),
HOWTO (R_M32C_32,
0,
2,
32,
FALSE,
0,
complain_overflow_bitfield,
bfd_elf_generic_reloc,
"R_M32C_32",
FALSE,
0,
0xffffffff,
FALSE),
HOWTO (R_M32C_8_PCREL,
0,
0,
8,
TRUE,
0,
complain_overflow_signed,
bfd_elf_generic_reloc,
"R_M32C_8_PCREL",
FALSE,
0,
0xff,
TRUE),
HOWTO (R_M32C_16_PCREL,
0,
1,
16,
TRUE,
0,
complain_overflow_signed,
bfd_elf_generic_reloc,
"R_M32C_16_PCREL",
FALSE,
0,
0xffff,
TRUE),
HOWTO (R_M32C_8,
0,
0,
8,
FALSE,
0,
complain_overflow_unsigned,
bfd_elf_generic_reloc,
"R_M32C_8",
FALSE,
0,
0xff,
FALSE),
HOWTO (R_M32C_LO16,
0,
1,
16,
FALSE,
0,
complain_overflow_dont,
bfd_elf_generic_reloc,
"R_M32C_LO16",
FALSE,
0,
0xffff,
FALSE),
HOWTO (R_M32C_HI8,
0,
0,
8,
FALSE,
0,
complain_overflow_dont,
bfd_elf_generic_reloc,
"R_M32C_HI8",
FALSE,
0,
0xff,
FALSE),
HOWTO (R_M32C_HI16,
0,
1,
16,
FALSE,
0,
complain_overflow_dont,
bfd_elf_generic_reloc,
"R_M32C_HI16",
FALSE,
0,
0xffff,
FALSE),
HOWTO (R_M32C_RL_JUMP,
0,
0,
0,
FALSE,
0,
complain_overflow_signed,
bfd_elf_generic_reloc,
"R_M32C_RL_JUMP",
FALSE,
0,
0,
FALSE),
HOWTO (R_M32C_RL_1ADDR,
0,
0,
0,
FALSE,
0,
complain_overflow_signed,
bfd_elf_generic_reloc,
"R_M32C_RL_1ADDR",
FALSE,
0,
0,
FALSE),
HOWTO (R_M32C_RL_2ADDR,
0,
0,
0,
FALSE,
0,
complain_overflow_signed,
bfd_elf_generic_reloc,
"R_M32C_RL_2ADDR",
FALSE,
0,
0,
FALSE),
};
struct m32c_reloc_map
{
bfd_reloc_code_real_type bfd_reloc_val;
unsigned int m32c_reloc_val;
};
static const struct m32c_reloc_map m32c_reloc_map [] =
{
{ BFD_RELOC_NONE, R_M32C_NONE },
{ BFD_RELOC_16, R_M32C_16 },
{ BFD_RELOC_24, R_M32C_24 },
{ BFD_RELOC_32, R_M32C_32 },
{ BFD_RELOC_8_PCREL, R_M32C_8_PCREL },
{ BFD_RELOC_16_PCREL, R_M32C_16_PCREL },
{ BFD_RELOC_8, R_M32C_8 },
{ BFD_RELOC_LO16, R_M32C_LO16 },
{ BFD_RELOC_HI16, R_M32C_HI16 },
{ BFD_RELOC_M32C_HI8, R_M32C_HI8 },
{ BFD_RELOC_M32C_RL_JUMP, R_M32C_RL_JUMP },
{ BFD_RELOC_M32C_RL_1ADDR, R_M32C_RL_1ADDR },
{ BFD_RELOC_M32C_RL_2ADDR, R_M32C_RL_2ADDR }
};
static reloc_howto_type *
m32c_reloc_type_lookup
(bfd * abfd ATTRIBUTE_UNUSED,
bfd_reloc_code_real_type code)
{
unsigned int i;
for (i = ARRAY_SIZE (m32c_reloc_map); --i;)
if (m32c_reloc_map [i].bfd_reloc_val == code)
return & m32c_elf_howto_table [m32c_reloc_map[i].m32c_reloc_val];
return NULL;
}
static void
m32c_info_to_howto_rela
(bfd * abfd ATTRIBUTE_UNUSED,
arelent * cache_ptr,
Elf_Internal_Rela * dst)
{
unsigned int r_type;
r_type = ELF32_R_TYPE (dst->r_info);
BFD_ASSERT (r_type < (unsigned int) R_M32C_max);
cache_ptr->howto = & m32c_elf_howto_table [r_type];
}
There is some attempt to make this function usable for many architectures,
both USE_REL and USE_RELA ['twould be nice if such a critter existed],
if only to serve as a learning tool.
The RELOCATE_SECTION function is called by the new ELF backend linker
to handle the relocations for a section.
The relocs are always passed as Rela structures; if the section
actually uses Rel structures, the r_addend field will always be
zero.
This function is responsible for adjusting the section contents as
necessary, and (if using Rela relocs and generating a relocatable
output file) adjusting the reloc addend as necessary.
This function does not have to worry about setting the reloc
address or the reloc symbol index.
LOCAL_SYMS is a pointer to the swapped in local symbols.
LOCAL_SECTIONS is an array giving the section in the input file
corresponding to the st_shndx field of each local symbol.
The global hash table entry for the global symbols can be found
via elf_sym_hashes (input_bfd).
When generating relocatable output, this function must handle
STB_LOCAL/STT_SECTION symbols specially. The output symbol is
going to be the section symbol corresponding to the output
section, which means that the addend must be adjusted
accordingly. */
static bfd_boolean
m32c_elf_relocate_section
(bfd * output_bfd ATTRIBUTE_UNUSED,
struct bfd_link_info * info,
bfd * input_bfd,
asection * input_section,
bfd_byte * contents,
Elf_Internal_Rela * relocs,
Elf_Internal_Sym * local_syms,
asection ** local_sections)
{
Elf_Internal_Shdr * symtab_hdr;
struct elf_link_hash_entry ** sym_hashes;
Elf_Internal_Rela * rel;
Elf_Internal_Rela * relend;
bfd *dynobj;
asection *splt;
symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
sym_hashes = elf_sym_hashes (input_bfd);
relend = relocs + input_section->reloc_count;
dynobj = elf_hash_table (info)->dynobj;
splt = NULL;
if (dynobj != NULL)
splt = bfd_get_section_by_name (dynobj, ".plt");
for (rel = relocs; rel < relend; rel ++)
{
reloc_howto_type * howto;
unsigned long r_symndx;
Elf_Internal_Sym * sym;
asection * sec;
struct elf_link_hash_entry * h;
bfd_vma relocation;
bfd_reloc_status_type r;
const char * name = NULL;
int r_type;
r_type = ELF32_R_TYPE (rel->r_info);
anything with them, so skip them. */
if (r_type == R_M32C_RL_JUMP
|| r_type == R_M32C_RL_1ADDR
|| r_type == R_M32C_RL_2ADDR)
continue;
r_symndx = ELF32_R_SYM (rel->r_info);
if (info->relocatable)
{
anything, unless the reloc is against a section symbol,
in which case we have to adjust according to where the
section symbol winds up in the output section. */
if (r_symndx < symtab_hdr->sh_info)
{
sym = local_syms + r_symndx;
if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
{
sec = local_sections [r_symndx];
rel->r_addend += sec->output_offset + sym->st_value;
}
}
continue;
}
howto = m32c_elf_howto_table + ELF32_R_TYPE (rel->r_info);
h = NULL;
sym = NULL;
sec = NULL;
if (r_symndx < symtab_hdr->sh_info)
{
sym = local_syms + r_symndx;
sec = local_sections [r_symndx];
relocation = (sec->output_section->vma
+ sec->output_offset
+ sym->st_value);
name = bfd_elf_string_from_elf_section
(input_bfd, symtab_hdr->sh_link, sym->st_name);
name = (sym->st_name == 0) ? bfd_section_name (input_bfd, sec) : name;
}
else
{
h = sym_hashes [r_symndx - symtab_hdr->sh_info];
while (h->root.type == bfd_link_hash_indirect
|| h->root.type == bfd_link_hash_warning)
h = (struct elf_link_hash_entry *) h->root.u.i.link;
name = h->root.root.string;
if (h->root.type == bfd_link_hash_defined
|| h->root.type == bfd_link_hash_defweak)
{
sec = h->root.u.def.section;
relocation = (h->root.u.def.value
+ sec->output_section->vma
+ sec->output_offset);
}
else if (h->root.type == bfd_link_hash_undefweak)
{
relocation = 0;
}
else
{
if (! ((*info->callbacks->undefined_symbol)
(info, h->root.root.string, input_bfd,
input_section, rel->r_offset, TRUE)))
return FALSE;
relocation = 0;
}
}
switch (ELF32_R_TYPE (rel->r_info))
{
case R_M32C_16:
{
bfd_vma *plt_offset;
if (h != NULL)
plt_offset = &h->plt.offset;
else
plt_offset = elf_local_got_offsets (input_bfd) + r_symndx;
relocation, *plt_offset);*/
if (relocation <= 0xffff)
{
have deallocated the plt entry in relax_section. */
BFD_ASSERT (*plt_offset == (bfd_vma) -1);
}
else
{
we must have allocated a plt entry. */
BFD_ASSERT (*plt_offset != (bfd_vma) -1);
fill in the plt entry with the correct symbol address. */
if ((*plt_offset & 1) == 0)
{
unsigned int x;
x = 0x000000fc;
x |= (relocation << 8) & 0xffffff00;
bfd_put_32 (input_bfd, x, splt->contents + *plt_offset);
*plt_offset |= 1;
}
relocation = (splt->output_section->vma
+ splt->output_offset
+ (*plt_offset & -2));
if (name)
{
char *newname = bfd_malloc (strlen(name)+5);
strcpy (newname, name);
strcat(newname, ".plt");
_bfd_generic_link_add_one_symbol (info,
input_bfd,
newname,
BSF_FUNCTION | BSF_WEAK,
splt,
(*plt_offset & -2),
0,
1,
0,
0);
}
}
}
break;
case R_M32C_HI8:
case R_M32C_HI16:
relocation >>= 16;
break;
}
#if 0
printf ("relocate %s at %06lx relocation %06lx addend %ld ",
m32c_elf_howto_table[ELF32_R_TYPE(rel->r_info)].name,
rel->r_offset + input_section->output_section->vma + input_section->output_offset,
relocation, rel->r_addend);
{
int i;
for (i=0; i<4; i++)
printf (" %02x", contents[rel->r_offset+i]);
printf ("\n");
}
#endif
r = _bfd_final_link_relocate (howto, input_bfd, input_section,
contents, rel->r_offset, relocation,
rel->r_addend);
if (r != bfd_reloc_ok)
{
const char * msg = (const char *) NULL;
switch (r)
{
case bfd_reloc_overflow:
r = info->callbacks->reloc_overflow
(info, (h ? &h->root : NULL), name, howto->name, (bfd_vma) 0,
input_bfd, input_section, rel->r_offset);
break;
case bfd_reloc_undefined:
r = info->callbacks->undefined_symbol
(info, name, input_bfd, input_section, rel->r_offset,
TRUE);
break;
case bfd_reloc_outofrange:
msg = _("internal error: out of range error");
break;
case bfd_reloc_notsupported:
msg = _("internal error: unsupported relocation error");
break;
case bfd_reloc_dangerous:
msg = _("internal error: dangerous relocation");
break;
default:
msg = _("internal error: unknown error");
break;
}
if (msg)
r = info->callbacks->warning
(info, msg, name, input_bfd, input_section, rel->r_offset);
if (! r)
return FALSE;
}
}
return TRUE;
}
relocation. */
static asection *
m32c_elf_gc_mark_hook
(asection * sec,
struct bfd_link_info * info ATTRIBUTE_UNUSED,
Elf_Internal_Rela * rel,
struct elf_link_hash_entry * h,
Elf_Internal_Sym * sym)
{
if (h != NULL)
{
switch (ELF32_R_TYPE (rel->r_info))
{
default:
switch (h->root.type)
{
case bfd_link_hash_defined:
case bfd_link_hash_defweak:
return h->root.u.def.section;
case bfd_link_hash_common:
return h->root.u.c.p->section;
default:
break;
}
}
}
else
{
if (!(elf_bad_symtab (sec->owner)
&& ELF_ST_BIND (sym->st_info) != STB_LOCAL)
&& ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
&& sym->st_shndx != SHN_COMMON))
{
return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
}
}
return NULL;
}
static bfd_boolean
m32c_elf_gc_sweep_hook
(bfd * abfd ATTRIBUTE_UNUSED,
struct bfd_link_info * info ATTRIBUTE_UNUSED,
asection * sec ATTRIBUTE_UNUSED,
const Elf_Internal_Rela * relocs ATTRIBUTE_UNUSED)
{
return TRUE;
}
below 64k containing a JMP instruction to the final address. */
static bfd_boolean
m32c_elf_check_relocs
(bfd * abfd,
struct bfd_link_info * info,
asection * sec,
const Elf_Internal_Rela * relocs)
{
Elf_Internal_Shdr * symtab_hdr;
struct elf_link_hash_entry ** sym_hashes;
struct elf_link_hash_entry ** sym_hashes_end;
const Elf_Internal_Rela * rel;
const Elf_Internal_Rela * rel_end;
bfd_vma *local_plt_offsets;
asection *splt;
bfd *dynobj;
if (info->relocatable)
return TRUE;
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
sym_hashes = elf_sym_hashes (abfd);
local_plt_offsets = elf_local_got_offsets (abfd);
splt = NULL;
dynobj = elf_hash_table(info)->dynobj;
sym_hashes_end = sym_hashes + symtab_hdr->sh_size/sizeof (Elf32_External_Sym);
if (!elf_bad_symtab (abfd))
sym_hashes_end -= symtab_hdr->sh_info;
rel_end = relocs + sec->reloc_count;
for (rel = relocs; rel < rel_end; rel++)
{
struct elf_link_hash_entry *h;
unsigned long r_symndx;
bfd_vma *offset;
r_symndx = ELF32_R_SYM (rel->r_info);
if (r_symndx < symtab_hdr->sh_info)
h = NULL;
else
{
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
while (h->root.type == bfd_link_hash_indirect
|| h->root.type == bfd_link_hash_warning)
h = (struct elf_link_hash_entry *) h->root.u.i.link;
}
switch (ELF32_R_TYPE (rel->r_info))
{
We may need to allocate a thunk in low memory; reserve memory
for it now. */
case R_M32C_16:
if (dynobj == NULL)
elf_hash_table (info)->dynobj = dynobj = abfd;
if (splt == NULL)
{
splt = bfd_get_section_by_name (dynobj, ".plt");
if (splt == NULL)
{
splt = bfd_make_section (dynobj, ".plt");
if (splt == NULL
|| ! bfd_set_section_flags (dynobj, splt,
(SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
| SEC_LINKER_CREATED
| SEC_READONLY
| SEC_CODE))
|| ! bfd_set_section_alignment (dynobj, splt, 1))
return FALSE;
}
}
if (h != NULL)
offset = &h->plt.offset;
else
{
if (local_plt_offsets == NULL)
{
size_t size;
unsigned int i;
size = symtab_hdr->sh_info * sizeof (bfd_vma);
local_plt_offsets = (bfd_vma *) bfd_alloc (abfd, size);
if (local_plt_offsets == NULL)
return FALSE;
elf_local_got_offsets (abfd) = local_plt_offsets;
for (i = 0; i < symtab_hdr->sh_info; i++)
local_plt_offsets[i] = (bfd_vma) -1;
}
offset = &local_plt_offsets[r_symndx];
}
if (*offset == (bfd_vma) -1)
{
*offset = splt->size;
splt->size += 4;
}
break;
}
}
return TRUE;
}
static bfd_boolean
m32c_elf_finish_dynamic_sections (bfd *abfd ATTRIBUTE_UNUSED,
struct bfd_link_info *info)
{
bfd *dynobj;
asection *splt;
been filled in. */
if ((dynobj = elf_hash_table (info)->dynobj) != NULL
&& (splt = bfd_get_section_by_name (dynobj, ".plt")) != NULL)
{
bfd_byte *contents = splt->contents;
unsigned int i, size = splt->size;
for (i = 0; i < size; i += 4)
{
unsigned int x = bfd_get_32 (dynobj, contents + i);
BFD_ASSERT (x != 0);
}
}
return TRUE;
}
static bfd_boolean
m32c_elf_always_size_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
struct bfd_link_info *info)
{
bfd *dynobj;
asection *splt;
if (info->relocatable)
return TRUE;
dynobj = elf_hash_table (info)->dynobj;
if (dynobj == NULL)
return TRUE;
splt = bfd_get_section_by_name (dynobj, ".plt");
BFD_ASSERT (splt != NULL);
splt->contents = (bfd_byte *) bfd_zalloc (dynobj, splt->size);
if (splt->contents == NULL)
return FALSE;
return TRUE;
}
static bfd_boolean
m32c_elf_set_private_flags (bfd *abfd, flagword flags)
{
elf_elfheader (abfd)->e_flags = flags;
elf_flags_init (abfd) = TRUE;
return TRUE;
}
object file when linking. */
static bfd_boolean
m32c_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
{
flagword old_flags, old_partial;
flagword new_flags, new_partial;
bfd_boolean error = FALSE;
char new_opt[80];
char old_opt[80];
new_opt[0] = old_opt[0] = '\0';
new_flags = elf_elfheader (ibfd)->e_flags;
old_flags = elf_elfheader (obfd)->e_flags;
#ifdef DEBUG
(*_bfd_error_handler) ("old_flags = 0x%.8lx, new_flags = 0x%.8lx, init = %s, filename = %s",
old_flags, new_flags, elf_flags_init (obfd) ? "yes" : "no",
bfd_get_filename (ibfd));
#endif
if (!elf_flags_init (obfd))
{
elf_flags_init (obfd) = TRUE;
elf_elfheader (obfd)->e_flags = new_flags;
}
else if (new_flags == old_flags)
;
else
{
the generic cpu). */
new_partial = (new_flags & EF_M32C_CPU_MASK);
old_partial = (old_flags & EF_M32C_CPU_MASK);
if (new_partial == old_partial)
;
else
{
switch (new_partial)
{
default: strcat (new_opt, " -m16c"); break;
case EF_M32C_CPU_M16C: strcat (new_opt, " -m16c"); break;
case EF_M32C_CPU_M32C: strcat (new_opt, " -m32c"); break;
}
switch (old_partial)
{
default: strcat (old_opt, " -m16c"); break;
case EF_M32C_CPU_M16C: strcat (old_opt, " -m16c"); break;
case EF_M32C_CPU_M32C: strcat (old_opt, " -m32c"); break;
}
}
if (new_opt[0])
{
error = TRUE;
(*_bfd_error_handler)
(_("%s: compiled with %s and linked with modules compiled with %s"),
bfd_get_filename (ibfd), new_opt, old_opt);
}
new_flags &= ~ EF_M32C_ALL_FLAGS;
old_flags &= ~ EF_M32C_ALL_FLAGS;
if (new_flags != old_flags)
{
error = TRUE;
(*_bfd_error_handler)
(_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
bfd_get_filename (ibfd), (long)new_flags, (long)old_flags);
}
}
if (error)
bfd_set_error (bfd_error_bad_value);
return !error;
}
static bfd_boolean
m32c_elf_print_private_bfd_data (bfd *abfd, PTR ptr)
{
FILE *file = (FILE *) ptr;
flagword flags;
BFD_ASSERT (abfd != NULL && ptr != NULL);
_bfd_elf_print_private_bfd_data (abfd, ptr);
flags = elf_elfheader (abfd)->e_flags;
fprintf (file, _("private flags = 0x%lx:"), (long)flags);
switch (flags & EF_M32C_CPU_MASK)
{
default: break;
case EF_M32C_CPU_M16C: fprintf (file, " -m16c"); break;
case EF_M32C_CPU_M32C: fprintf (file, " -m32c"); break;
}
fputc ('\n', file);
return TRUE;
}
static int
elf32_m32c_machine (bfd *abfd)
{
switch (elf_elfheader (abfd)->e_flags & EF_M32C_CPU_MASK)
{
case EF_M32C_CPU_M16C: return bfd_mach_m16c;
case EF_M32C_CPU_M32C: return bfd_mach_m32c;
}
return bfd_mach_m16c;
}
static bfd_boolean
m32c_elf_object_p (bfd *abfd)
{
bfd_default_set_arch_mach (abfd, bfd_arch_m32c,
elf32_m32c_machine (abfd));
return TRUE;
}
#ifdef DEBUG
static void
dump_symtab (bfd * abfd, void *internal_syms, void *external_syms)
{
size_t locsymcount;
Elf_Internal_Sym *isymbuf;
Elf_Internal_Sym *isymend;
Elf_Internal_Sym *isym;
Elf_Internal_Shdr *symtab_hdr;
bfd_boolean free_internal = 0, free_external = 0;
char * st_info_str;
char * st_info_stb_str;
char * st_other_str;
char * st_shndx_str;
if (! internal_syms)
{
internal_syms = bfd_malloc (1000);
free_internal = 1;
}
if (! external_syms)
{
external_syms = bfd_malloc (1000);
free_external = 1;
}
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
locsymcount = symtab_hdr->sh_size / get_elf_backend_data(abfd)->s->sizeof_sym;
if (free_internal)
isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
symtab_hdr->sh_info, 0,
internal_syms, external_syms, NULL);
else
isymbuf = internal_syms;
isymend = isymbuf + locsymcount;
for (isym = isymbuf ; isym < isymend ; isym++)
{
switch (ELF_ST_TYPE (isym->st_info))
{
case STT_FUNC: st_info_str = "STT_FUNC";
case STT_SECTION: st_info_str = "STT_SECTION";
case STT_SRELC: st_info_str = "STT_SRELC";
case STT_FILE: st_info_str = "STT_FILE";
case STT_OBJECT: st_info_str = "STT_OBJECT";
case STT_TLS: st_info_str = "STT_TLS";
default: st_info_str = "";
}
switch (ELF_ST_BIND (isym->st_info))
{
case STB_LOCAL: st_info_stb_str = "STB_LOCAL";
case STB_GLOBAL: st_info_stb_str = "STB_GLOBAL";
default: st_info_stb_str = "";
}
switch (ELF_ST_VISIBILITY (isym->st_other))
{
case STV_DEFAULT: st_other_str = "STV_DEFAULT";
case STV_INTERNAL: st_other_str = "STV_INTERNAL";
case STV_PROTECTED: st_other_str = "STV_PROTECTED";
default: st_other_str = "";
}
switch (isym->st_shndx)
{
case SHN_ABS: st_shndx_str = "SHN_ABS";
case SHN_COMMON: st_shndx_str = "SHN_COMMON";
case SHN_UNDEF: st_shndx_str = "SHN_UNDEF";
default: st_shndx_str = "";
}
printf ("isym = %p st_value = %lx st_size = %lx st_name = (%lu) %s "
"st_info = (%d) %s %s st_other = (%d) %s st_shndx = (%d) %s\n",
isym,
(unsigned long) isym->st_value,
(unsigned long) isym->st_size,
isym->st_name,
bfd_elf_string_from_elf_section (abfd, symtab_hdr->sh_link,
isym->st_name),
isym->st_info, st_info_str, st_info_stb_str,
isym->st_other, st_other_str,
isym->st_shndx, st_shndx_str);
}
if (free_internal)
free (internal_syms);
if (free_external)
free (external_syms);
}
static char *
m32c_get_reloc (long reloc)
{
if (0 <= reloc && reloc < R_M32C_max)
return m32c_elf_howto_table[reloc].name;
else
return "";
}
#endif
is within the low 64k, remove any entry for it in the plt. */
struct relax_plt_data
{
asection *splt;
bfd_boolean *again;
};
static bfd_boolean
m32c_relax_plt_check (struct elf_link_hash_entry *h,
PTR xdata)
{
struct relax_plt_data *data = (struct relax_plt_data *) xdata;
if (h->root.type == bfd_link_hash_warning)
h = (struct elf_link_hash_entry *) h->root.u.i.link;
if (h->plt.offset != (bfd_vma) -1)
{
bfd_vma address;
if (h->root.type == bfd_link_hash_undefined
|| h->root.type == bfd_link_hash_undefweak)
address = 0;
else
address = (h->root.u.def.section->output_section->vma
+ h->root.u.def.section->output_offset
+ h->root.u.def.value);
if (address <= 0xffff)
{
h->plt.offset = -1;
data->splt->size -= 4;
*data->again = TRUE;
}
}
return TRUE;
}
previously had a plt entry, give it a new entry offset. */
static bfd_boolean
m32c_relax_plt_realloc (struct elf_link_hash_entry *h,
PTR xdata)
{
bfd_vma *entry = (bfd_vma *) xdata;
if (h->root.type == bfd_link_hash_warning)
h = (struct elf_link_hash_entry *) h->root.u.i.link;
if (h->plt.offset != (bfd_vma) -1)
{
h->plt.offset = *entry;
*entry += 4;
}
return TRUE;
}
static bfd_boolean
m32c_elf_relax_plt_section (bfd *dynobj,
asection *splt,
struct bfd_link_info *info,
bfd_boolean *again)
{
struct relax_plt_data relax_plt_data;
bfd *ibfd;
*again = FALSE;
if (info->relocatable)
return TRUE;
if (dynobj != elf_hash_table (info)->dynobj
|| strcmp (splt->name, ".plt") != 0)
return TRUE;
if (splt->size == 0)
return TRUE;
fall in the low 64k. */
relax_plt_data.splt = splt;
relax_plt_data.again = again;
elf_link_hash_traverse (elf_hash_table (info), m32c_relax_plt_check,
&relax_plt_data);
as we have to walk the list of input bfds and swap in symbol data. */
for (ibfd = info->input_bfds; ibfd ; ibfd = ibfd->link_next)
{
bfd_vma *local_plt_offsets = elf_local_got_offsets (ibfd);
Elf_Internal_Shdr *symtab_hdr;
Elf_Internal_Sym *isymbuf = NULL;
unsigned int idx;
if (! local_plt_offsets)
continue;
symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
if (symtab_hdr->sh_info != 0)
{
isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
if (isymbuf == NULL)
isymbuf = bfd_elf_get_elf_syms (ibfd, symtab_hdr,
symtab_hdr->sh_info, 0,
NULL, NULL, NULL);
if (isymbuf == NULL)
return FALSE;
}
for (idx = 0; idx < symtab_hdr->sh_info; ++idx)
{
Elf_Internal_Sym *isym;
asection *tsec;
bfd_vma address;
if (local_plt_offsets[idx] == (bfd_vma) -1)
continue;
isym = &isymbuf[idx];
if (isym->st_shndx == SHN_UNDEF)
continue;
else if (isym->st_shndx == SHN_ABS)
tsec = bfd_abs_section_ptr;
else if (isym->st_shndx == SHN_COMMON)
tsec = bfd_com_section_ptr;
else
tsec = bfd_section_from_elf_index (ibfd, isym->st_shndx);
address = (tsec->output_section->vma
+ tsec->output_offset
+ isym->st_value);
if (address <= 0xffff)
{
local_plt_offsets[idx] = -1;
splt->size -= 4;
*again = TRUE;
}
}
if (isymbuf != NULL
&& symtab_hdr->contents != (unsigned char *) isymbuf)
{
if (! info->keep_memory)
free (isymbuf);
else
{
symtab_hdr->contents = (unsigned char *) isymbuf;
}
}
}
.plt entry addresses. */
if (*again && splt->size > 0)
{
bfd_vma entry = 0;
elf_link_hash_traverse (elf_hash_table (info),
m32c_relax_plt_realloc, &entry);
for (ibfd = info->input_bfds; ibfd ; ibfd = ibfd->link_next)
{
bfd_vma *local_plt_offsets = elf_local_got_offsets (ibfd);
unsigned int nlocals = elf_tdata (ibfd)->symtab_hdr.sh_info;
unsigned int idx;
if (! local_plt_offsets)
continue;
for (idx = 0; idx < nlocals; ++idx)
if (local_plt_offsets[idx] != (bfd_vma) -1)
{
local_plt_offsets[idx] = entry;
entry += 4;
}
}
}
return TRUE;
}
static int
compare_reloc (const void *e1, const void *e2)
{
const Elf_Internal_Rela *i1 = (const Elf_Internal_Rela *) e1;
const Elf_Internal_Rela *i2 = (const Elf_Internal_Rela *) e2;
if (i1->r_offset == i2->r_offset)
return 0;
else
return i1->r_offset < i2->r_offset ? -1 : 1;
}
#define OFFSET_FOR_RELOC(rel) m32c_offset_for_reloc (abfd, rel, symtab_hdr, shndx_buf, intsyms)
static bfd_vma
m32c_offset_for_reloc (bfd *abfd,
Elf_Internal_Rela *rel,
Elf_Internal_Shdr *symtab_hdr,
Elf_External_Sym_Shndx *shndx_buf,
Elf_Internal_Sym *intsyms)
{
bfd_vma symval;
if (ELF32_R_SYM (rel->r_info) < symtab_hdr->sh_info)
{
Elf_Internal_Sym *isym;
Elf_External_Sym_Shndx *shndx;
asection *ssec;
isym = intsyms + ELF32_R_SYM (rel->r_info);
ssec = bfd_section_from_elf_index (abfd, isym->st_shndx);
shndx = shndx_buf + (shndx_buf ? ELF32_R_SYM (rel->r_info) : 0);
symval = isym->st_value;
if (ssec)
symval += ssec->output_section->vma
+ ssec->output_offset;
}
else
{
unsigned long indx;
struct elf_link_hash_entry *h;
indx = ELF32_R_SYM (rel->r_info) - symtab_hdr->sh_info;
h = elf_sym_hashes (abfd)[indx];
BFD_ASSERT (h != NULL);
if (h->root.type != bfd_link_hash_defined
&& h->root.type != bfd_link_hash_defweak)
symbol. Just ignore it--it will be caught by the
regular reloc processing. */
return 0;
symval = (h->root.u.def.value
+ h->root.u.def.section->output_section->vma
+ h->root.u.def.section->output_offset);
}
return symval;
}
static int bytes_saved = 0;
static int bytes_to_reloc[] = {
R_M32C_NONE,
R_M32C_8,
R_M32C_16,
R_M32C_24,
R_M32C_32
};
#define RLA_RELOCS 0x0000000f
#define RLA_NBYTES 0x00000ff0
differs from the old encoding (the index), then the insn can be
relaxed to the new encoding. */
typedef struct {
int bytes;
unsigned int max_disp;
unsigned char new_encoding;
} EncodingTable;
static EncodingTable m16c_addr_encodings[] = {
{ 0, 0, 0 },
{ 0, 0, 1 },
{ 0, 0, 2 },
{ 0, 0, 3 },
{ 0, 0, 4 },
{ 0, 0, 5 },
{ 0, 0, 6 },
{ 0, 0, 7 },
{ 1, 0, 6 },
{ 1, 0, 7 },
{ 1, 0, 10 },
{ 1, 0, 11 },
{ 2, 255, 8 },
{ 2, 255, 9 },
{ 2, 255, 10 },
{ 2, 0, 15 },
};
static EncodingTable m16c_jmpaddr_encodings[] = {
{ 0, 0, 0 },
{ 0, 0, 1 },
{ 0, 0, 2 },
{ 0, 0, 3 },
{ 0, 0, 4 },
{ 0, 0, 5 },
{ 0, 0, 6 },
{ 0, 0, 7 },
{ 1, 0, 6 },
{ 1, 0, 7 },
{ 1, 0, 10 },
{ 1, 0, 11 },
{ 3, 255, 8 },
{ 3, 255, 9 },
{ 2, 255, 10 },
{ 2, 0, 15 },
};
static EncodingTable m32c_addr_encodings[] = {
{ 0, 0, 0 },
{ 0, 0, 1 },
{ 0, 0, 2 },
{ 0, 0, 3 },
{ 1, 0, 0 },
{ 1, 0, 1 },
{ 1, 0, 6 },
{ 1, 0, 7 },
{ 2, 255, 4 },
{ 2, 255, 5 },
{ 2, 255, 6 },
{ 2, 127, 7 },
{ 3, 65535, 8 },
{ 3, 65535, 9 },
{ 3, 65535, 15 },
{ 2, 0, 15 },
{ 0, 0, 16 },
{ 0, 0, 17 },
{ 0, 0, 18 },
{ 0, 0, 19 },
{ 0, 0, 20 },
{ 0, 0, 21 },
{ 0, 0, 22 },
{ 0, 0, 23 },
{ 0, 0, 24 },
{ 0, 0, 25 },
{ 0, 0, 26 },
{ 0, 0, 27 },
{ 0, 0, 28 },
{ 0, 0, 29 },
{ 0, 0, 30 },
{ 0, 0, 31 },
};
static bfd_boolean
m32c_elf_relax_section
(bfd * abfd,
asection * sec,
struct bfd_link_info * link_info,
bfd_boolean * again)
{
Elf_Internal_Shdr *symtab_hdr;
Elf_Internal_Shdr *shndx_hdr;
Elf_Internal_Rela *internal_relocs;
Elf_Internal_Rela *free_relocs = NULL;
Elf_Internal_Rela *irel, *irelend, *srel;
bfd_byte * contents = NULL;
bfd_byte * free_contents = NULL;
Elf_Internal_Sym *intsyms = NULL;
Elf_Internal_Sym *free_intsyms = NULL;
Elf_External_Sym_Shndx *shndx_buf = NULL;
int machine;
if (abfd == elf_hash_table (link_info)->dynobj
&& strcmp (sec->name, ".plt") == 0)
return m32c_elf_relax_plt_section (abfd, sec, link_info, again);
*again = FALSE;
machine = elf32_m32c_machine (abfd);
this section does not have relocs, or if this is not a
code section. */
if (link_info->relocatable
|| (sec->flags & SEC_RELOC) == 0
|| sec->reloc_count == 0
|| (sec->flags & SEC_CODE) == 0)
return TRUE;
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
if (elf_section_data (sec)->this_hdr.contents != NULL)
contents = elf_section_data (sec)->this_hdr.contents;
else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
goto error_return;
if (symtab_hdr->contents != NULL)
{
intsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
}
else
{
intsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr, symtab_hdr->sh_info, 0, NULL, NULL, NULL);
symtab_hdr->contents = (bfd_byte *) intsyms;
}
if (shndx_hdr->sh_size != 0)
{
bfd_size_type amt;
amt = symtab_hdr->sh_info;
amt *= sizeof (Elf_External_Sym_Shndx);
shndx_buf = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
if (shndx_buf == NULL)
goto error_return;
if (bfd_seek (abfd, shndx_hdr->sh_offset, SEEK_SET) != 0
|| bfd_bread ((PTR) shndx_buf, amt, abfd) != amt)
goto error_return;
shndx_hdr->contents = (bfd_byte *) shndx_buf;
}
internal_relocs = (_bfd_elf_link_read_relocs
(abfd, sec, (PTR) NULL, (Elf_Internal_Rela *) NULL,
link_info->keep_memory));
if (internal_relocs == NULL)
goto error_return;
if (! link_info->keep_memory)
free_relocs = internal_relocs;
with, so we must sort them to guarantee this. */
qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
compare_reloc);
irelend = internal_relocs + sec->reloc_count;
for (irel = internal_relocs; irel < irelend; irel++)
{
bfd_vma symval;
unsigned char *insn, *gap, *einsn;
bfd_vma pc;
bfd_signed_vma pcrel;
int relax_relocs;
int gap_size;
int new_type;
int posn;
int enc;
EncodingTable *enctbl;
EncodingTable *e;
if (ELF32_R_TYPE(irel->r_info) != R_M32C_RL_JUMP
&& ELF32_R_TYPE(irel->r_info) != R_M32C_RL_1ADDR
&& ELF32_R_TYPE(irel->r_info) != R_M32C_RL_2ADDR)
continue;
srel = irel;
than the one it would replace. */
BFD_ASSERT (irel->r_offset < sec->size);
insn = contents + irel->r_offset;
relax_relocs = irel->r_addend % 16;
fake. The lower four bits of the addend is always the number
of following relocs (hence the qsort above) that are assigned
to this opcode. The next 8 bits of the addend indicates the
number of bytes in the insn. We use the rest of them
ourselves as flags for the more expensive operations (defines
above). The three relocs are:
RL_JUMP: This marks all direct jump insns. We check the
displacement and replace them with shorter jumps if
they're in range. We also use this to find JMP.S
insns and manually shorten them when we delete bytes.
We have to decode these insns to figure out what to
do.
RL_1ADDR: This is a :G or :Q insn, which has a single
"standard" operand. We have to extract the type
field, see if it's a wide displacement, then figure
out if we can replace it with a narrow displacement.
We don't have to decode these insns.
RL_2ADDR: Similarly, but two "standard" operands. Note that
r_addend may still be 1, as standard operands don't
always have displacements. Gas shouldn't give us one
with zero operands, but since we don't know which one
has the displacement, we check them both anyway.
These all point to the beginning of the insn itself, not the
operands.
Note that we only relax one step at a time, relying on the
linker to call us repeatedly. Thus, there is no code for
JMP.A->JMP.B although that will happen in two steps.
Likewise, for 2ADDR relaxes, we do one operand per cycle.
*/
in case this is the last reloc in the list, use the RL's
addend to choose between this reloc (no addend) or the next
(yes addend, which means at least one following reloc). */
srel = irel + (relax_relocs ? 1 : 0);
symval = OFFSET_FOR_RELOC (srel);
shrunk". */
gap_size = 0;
gap = NULL;
new_type = ELF32_R_TYPE(srel->r_info);
pc = sec->output_section->vma + sec->output_offset
+ srel->r_offset;
pcrel = symval - pc + srel->r_addend;
if (machine == bfd_mach_m16c)
{
switch (ELF32_R_TYPE(irel->r_info))
{
case R_M32C_RL_JUMP:
switch (insn[0])
{
case 0xfe:
if (pcrel >= 2 && pcrel <= 9)
{
the following reloc though. */
insn[0] = 0x60 | (pcrel - 2);
new_type = R_M32C_NONE;
irel->r_addend = 0x10;
gap_size = 1;
gap = insn + 1;
}
break;
case 0xf4:
after relaxing. Likewise for all other pc-rel
jumps. */
if (pcrel <= 128 && pcrel >= -128)
{
insn[0] = 0xfe;
insn[1] = 0;
new_type = R_M32C_8_PCREL;
gap_size = 1;
gap = insn + 2;
}
break;
case 0xfc:
if (pcrel <= 32768 && pcrel >= -32768)
{
insn[0] = 0xf4;
insn[1] = 0;
insn[2] = 0;
new_type = R_M32C_16_PCREL;
gap_size = 1;
gap = insn + 3;
}
break;
case 0xfd:
if (pcrel <= 32768 && pcrel >= -32768)
{
insn[0] = 0xf5;
insn[1] = 0;
insn[2] = 0;
new_type = R_M32C_16_PCREL;
gap_size = 1;
gap = insn + 3;
}
break;
}
break;
case R_M32C_RL_2ADDR:
enctbl = m16c_addr_encodings;
posn = 2;
enc = (insn[1] >> 4) & 0x0f;
e = & enctbl[enc];
if (srel->r_offset == irel->r_offset + posn
&& e->new_encoding != enc
&& symval <= e->max_disp)
{
insn[1] &= 0x0f;
insn[1] |= e->new_encoding << 4;
gap_size = e->bytes - enctbl[e->new_encoding].bytes;
gap = insn + posn + enctbl[e->new_encoding].bytes;
new_type = bytes_to_reloc[enctbl[e->new_encoding].bytes];
break;
}
if (relax_relocs == 2)
srel ++;
posn += e->bytes;
goto try_1addr_16;
case R_M32C_RL_1ADDR:
enctbl = m16c_addr_encodings;
posn = 2;
do this because all 2ADDR insns are at least two
bytes long. */
enc = insn[0] * 256 + insn[1];
enc &= 0xfff0;
if (enc == 0x7d20
|| enc == 0x7d00
|| enc == 0x7d30
|| enc == 0x7d10)
{
enctbl = m16c_jmpaddr_encodings;
}
try_1addr_16:
symval = OFFSET_FOR_RELOC (srel);
enc = insn[1] & 0x0f;
e = & enctbl[enc];
if (srel->r_offset == irel->r_offset + posn
&& e->new_encoding != enc
&& symval <= e->max_disp)
{
insn[1] &= 0xf0;
insn[1] |= e->new_encoding;
gap_size = e->bytes - enctbl[e->new_encoding].bytes;
gap = insn + posn + enctbl[e->new_encoding].bytes;
new_type = bytes_to_reloc[enctbl[e->new_encoding].bytes];
break;
}
break;
}
}
else
{
switch (ELF32_R_TYPE(irel->r_info))
{
case R_M32C_RL_JUMP:
switch (insn[0])
{
case 0xbb:
if (pcrel >= 2 && pcrel <= 9)
{
int p = pcrel - 2;
the following reloc though. */
insn[0] = 0x4a | ((p << 3) & 0x30) | (p & 1);
new_type = R_M32C_NONE;
irel->r_addend = 0x10;
gap_size = 1;
gap = insn + 1;
}
break;
case 0xce:
if (pcrel <= 128 && pcrel >= -128)
{
insn[0] = 0xbb;
insn[1] = 0;
new_type = R_M32C_8_PCREL;
gap_size = 1;
gap = insn + 2;
}
break;
case 0xcc:
if (pcrel <= 32768 && pcrel >= -32768)
{
insn[0] = 0xce;
insn[1] = 0;
insn[2] = 0;
new_type = R_M32C_16_PCREL;
gap_size = 1;
gap = insn + 3;
}
break;
case 0xcd:
if (pcrel <= 32768 && pcrel >= -32768)
{
insn[0] = 0xcf;
insn[1] = 0;
insn[2] = 0;
new_type = R_M32C_16_PCREL;
gap_size = 1;
gap = insn + 3;
}
break;
}
break;
case R_M32C_RL_2ADDR:
einsn = insn;
posn = 2;
if (einsn[0] == 1)
{
einsn ++;
posn ++;
}
enctbl = m32c_addr_encodings;
enc = ((einsn[0] & 0x70) >> 2) | ((einsn[1] & 0x30) >> 4);
e = & enctbl[enc];
if (srel->r_offset == irel->r_offset + posn
&& e->new_encoding != enc
&& symval <= e->max_disp)
{
einsn[0] &= 0x8f;
einsn[0] |= (e->new_encoding & 0x1c) << 2;
einsn[1] &= 0xcf;
einsn[1] |= (e->new_encoding & 0x03) << 4;
gap_size = e->bytes - enctbl[e->new_encoding].bytes;
gap = insn + posn + enctbl[e->new_encoding].bytes;
new_type = bytes_to_reloc[enctbl[e->new_encoding].bytes];
break;
}
if (relax_relocs == 2)
srel ++;
posn += e->bytes;
goto try_1addr_32;
case R_M32C_RL_1ADDR:
einsn = insn;
posn = 2;
if (einsn[0] == 1)
{
einsn ++;
posn ++;
}
enctbl = m32c_addr_encodings;
try_1addr_32:
symval = OFFSET_FOR_RELOC (srel);
enc = ((einsn[0] & 0x0e) << 1) | ((einsn[1] & 0xc0) >> 6);
e = & enctbl[enc];
if (srel->r_offset == irel->r_offset + posn
&& e->new_encoding != enc
&& symval <= e->max_disp)
{
einsn[0] &= 0xf1;
einsn[0] |= (e->new_encoding & 0x1c) >> 1;
einsn[1] &= 0x3f;
einsn[1] |= (e->new_encoding & 0x03) << 6;
gap_size = e->bytes - enctbl[e->new_encoding].bytes;
gap = insn + posn + enctbl[e->new_encoding].bytes;
new_type = bytes_to_reloc[enctbl[e->new_encoding].bytes];
break;
}
break;
}
}
if (gap_size == 0)
continue;
*again = TRUE;
srel->r_info = ELF32_R_INFO (ELF32_R_SYM (srel->r_info), new_type);
elf_section_data (sec)->relocs = internal_relocs;
free_relocs = NULL;
elf_section_data (sec)->this_hdr.contents = contents;
free_contents = NULL;
symtab_hdr->contents = (bfd_byte *) intsyms;
free_intsyms = NULL;
bytes_saved += gap_size;
if (! m32c_elf_relax_delete_bytes(abfd, sec, gap - contents, gap_size))
goto error_return;
}
if (free_relocs != NULL)
{
free (free_relocs);
free_relocs = NULL;
}
if (free_contents != NULL)
{
if (! link_info->keep_memory)
free (free_contents);
else
elf_section_data (sec)->this_hdr.contents = contents;
free_contents = NULL;
}
if (shndx_buf != NULL)
{
shndx_hdr->contents = NULL;
free (shndx_buf);
}
if (free_intsyms != NULL)
{
if (! link_info->keep_memory)
free (free_intsyms);
else
{
symtab_hdr->contents = NULL ;
}
free_intsyms = NULL;
}
return TRUE;
error_return:
if (free_relocs != NULL)
free (free_relocs);
if (free_contents != NULL)
free (free_contents);
if (shndx_buf != NULL)
{
shndx_hdr->contents = NULL;
free (shndx_buf);
}
if (free_intsyms != NULL)
free (free_intsyms);
return FALSE;
}
static bfd_boolean
m32c_elf_relax_delete_bytes
(bfd * abfd,
asection * sec,
bfd_vma addr,
int count)
{
Elf_Internal_Shdr *symtab_hdr;
Elf_Internal_Shdr *shndx_hdr;
int sec_shndx;
bfd_byte *contents;
Elf_Internal_Rela *irel;
Elf_Internal_Rela *irelend;
Elf_Internal_Rela *irelalign;
bfd_vma toaddr;
Elf_Internal_Sym *isym;
Elf_Internal_Sym *isymend;
Elf_Internal_Sym *intsyms;
Elf_External_Sym_Shndx *shndx_buf;
Elf_External_Sym_Shndx *shndx;
struct elf_link_hash_entry ** sym_hashes;
struct elf_link_hash_entry ** end_hashes;
unsigned int symcount;
contents = elf_section_data (sec)->this_hdr.contents;
power larger than the number of bytes we are deleting. */
irelalign = NULL;
toaddr = sec->size;
irel = elf_section_data (sec)->relocs;
irelend = irel + sec->reloc_count;
memmove (contents + addr, contents + addr + count, (size_t) (toaddr - addr - count));
sec->size -= count;
for (irel = elf_section_data (sec)->relocs; irel < irelend; irel ++)
{
if (irel->r_offset > addr && irel->r_offset < toaddr)
irel->r_offset -= count;
if (ELF32_R_TYPE(irel->r_info) == R_M32C_RL_JUMP
&& irel->r_addend == 0x10
&& irel->r_offset + 1 < addr
&& irel->r_offset + 7 > addr)
{
bfd_vma disp;
unsigned char *insn = &contents[irel->r_offset];
disp = *insn;
if (elf32_m32c_machine (abfd) == bfd_mach_m16c)
{
if ((*insn & 0xf8) != 0x60)
continue;
disp = (disp & 7);
}
else
{
if ((*insn & 0xce) != 0x4a)
continue;
disp = ((disp & 0x30) >> 3) | (disp & 1);
}
if (irel->r_offset + disp + 2 >= addr+count)
{
disp -= count;
if (elf32_m32c_machine (abfd) == bfd_mach_m16c)
{
*insn = (*insn & 0xf8) | disp;
}
else
{
*insn = (*insn & 0xce) | ((disp & 6) << 3) | (disp & 1);
}
}
}
}
symtab_hdr = & elf_tdata (abfd)->symtab_hdr;
intsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
isym = intsyms;
isymend = isym + symtab_hdr->sh_info;
sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
shndx_hdr = & elf_tdata (abfd)->symtab_shndx_hdr;
shndx_buf = (Elf_External_Sym_Shndx *) shndx_hdr->contents;
shndx = shndx_buf;
for (; isym < isymend; isym++, shndx = (shndx ? shndx + 1 : NULL))
{
if ((int) isym->st_shndx == sec_shndx
&& isym->st_value > addr
&& isym->st_value < toaddr)
{
isym->st_value -= count;
}
}
symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
- symtab_hdr->sh_info);
sym_hashes = elf_sym_hashes (abfd);
end_hashes = sym_hashes + symcount;
for (; sym_hashes < end_hashes; sym_hashes ++)
{
struct elf_link_hash_entry * sym_hash = * sym_hashes;
if (sym_hash &&
( sym_hash->root.type == bfd_link_hash_defined
|| sym_hash->root.type == bfd_link_hash_defweak)
&& sym_hash->root.u.def.section == sec
&& sym_hash->root.u.def.value > addr
&& sym_hash->root.u.def.value < toaddr)
{
sym_hash->root.u.def.value -= count;
}
}
return TRUE;
}
#define ELF_ARCH bfd_arch_m32c
#define ELF_MACHINE_CODE EM_M32C
#define ELF_MAXPAGESIZE 0x1000
#if 0
#define TARGET_BIG_SYM bfd_elf32_m32c_vec
#define TARGET_BIG_NAME "elf32-m32c"
#else
#define TARGET_LITTLE_SYM bfd_elf32_m32c_vec
#define TARGET_LITTLE_NAME "elf32-m32c"
#endif
#define elf_info_to_howto_rel NULL
#define elf_info_to_howto m32c_info_to_howto_rela
#define elf_backend_object_p m32c_elf_object_p
#define elf_backend_relocate_section m32c_elf_relocate_section
#define elf_backend_gc_mark_hook m32c_elf_gc_mark_hook
#define elf_backend_gc_sweep_hook m32c_elf_gc_sweep_hook
#define elf_backend_check_relocs m32c_elf_check_relocs
#define elf_backend_object_p m32c_elf_object_p
#define elf_symbol_leading_char ('_')
#define elf_backend_always_size_sections \
m32c_elf_always_size_sections
#define elf_backend_finish_dynamic_sections \
m32c_elf_finish_dynamic_sections
#define elf_backend_can_gc_sections 1
#define bfd_elf32_bfd_reloc_type_lookup m32c_reloc_type_lookup
#define bfd_elf32_bfd_relax_section m32c_elf_relax_section
#define bfd_elf32_bfd_set_private_flags m32c_elf_set_private_flags
#define bfd_elf32_bfd_merge_private_bfd_data m32c_elf_merge_private_bfd_data
#define bfd_elf32_bfd_print_private_bfd_data m32c_elf_print_private_bfd_data
#include "elf32-target.h"