Copyright (C) 1993, 1995, 1996, 1997 Free Software Foundation, Inc.
Contributed by Kresten Krab Thorup
+load support contributed by Ovidiu Predescu <ovidiu@net-community.com>
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation; either version 2, or (at your option) any later version.
GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details.
You should have received a copy of the GNU General Public License along with
GNU CC; see the file COPYING. If not, write to the Free Software
Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
GCC to produce an executable, this does not cause the resulting executable
to be covered by the GNU General Public License. This exception does not
however invalidate any other reasons why the executable file might be
covered by the GNU General Public License. */
#include "runtime.h"
defined in gcc (objc-act.c) */
#define OBJC_VERSION 8
#define PROTOCOL_VERSION 2
static struct objc_list* __objc_module_list = 0;
static struct objc_list* unclaimed_proto_list = 0;
static struct objc_list *uninitialized_statics = 0;
objc_mutex_t __objc_runtime_mutex = 0;
int __objc_runtime_threads_alive = 1;
static void init_check_module_version (Module_t);
static void __objc_init_protocols (struct objc_protocol_list* protos);
static void __objc_class_add_protocols (Class, struct objc_protocol_list*);
or a category is loaded into the runtime. This may e.g. help a
dynamic loader determine the classes that have been loaded when
an object file is dynamically linked in */
void (*_objc_load_callback)(Class class, Category* category);
BOOL __objc_dangling_categories = NO;
extern SEL
__sel_register_typed_name (const char *name, const char *types,
struct objc_selector *orig, BOOL is_const);
static void objc_send_load (void);
resembles the class hierarchy. This tree is traversed in preorder and the
classes in its nodes receive the +load message if these methods were not
executed before. The algorithm ensures that when the +load method of a class
is executed all the superclasses have been already received the +load
message. */
static void __objc_create_classes_tree (Module_t module);
static void __objc_call_callback (Module_t module);
installed in the runtime. */
static BOOL class_is_subclass_of_class (Class class, Class superclass);
typedef struct objc_class_tree {
Class class;
struct objc_list *subclasses;
} objc_class_tree;
are root classes (their super class is Nil). These different trees
represent different class hierarchies. */
static struct objc_list *__objc_class_tree_list = NULL;
not be destroyed during the execution of the program. */
static cache_ptr __objc_load_methods = NULL;
`upper' and the bottom class in this tree is `bottom_class'. The classes
in this tree are super classes of `bottom_class'. `subclasses' member
of each tree node point to the next subclass tree node. */
static objc_class_tree *
create_tree_of_subclasses_inherited_from (Class bottom_class, Class upper)
{
Class superclass = bottom_class->super_class ?
objc_lookup_class ((char*)bottom_class->super_class)
: Nil;
objc_class_tree *tree, *prev;
DEBUG_PRINTF ("create_tree_of_subclasses_inherited_from:");
DEBUG_PRINTF ("bottom_class = %s, upper = %s\n",
(bottom_class ? bottom_class->name : NULL),
(upper ? upper->name : NULL));
tree = prev = objc_calloc (1, sizeof (objc_class_tree));
prev->class = bottom_class;
while (superclass != upper)
{
tree = objc_calloc (1, sizeof (objc_class_tree));
tree->class = superclass;
tree->subclasses = list_cons (prev, tree->subclasses);
superclass = (superclass->super_class ?
objc_lookup_class ((char*)superclass->super_class)
: Nil);
prev = tree;
}
return tree;
}
function returns a new tree if the class has been successfully inserted into
the tree or NULL if the class is not part of the classes hierarchy described
by `tree'. This function is private to objc_tree_insert_class(), you should
not call it directly. */
static objc_class_tree *
__objc_tree_insert_class (objc_class_tree *tree, Class class)
{
DEBUG_PRINTF ("__objc_tree_insert_class: tree = %x, class = %s\n",
tree, class->name);
if (tree == NULL)
return create_tree_of_subclasses_inherited_from (class, NULL);
else if (class == tree->class)
{
DEBUG_PRINTF ("1. class %s was previously inserted\n", class->name);
return tree;
}
else if ((class->super_class ?
objc_lookup_class ((char*)class->super_class)
: Nil)
== tree->class)
{
list of subclasses. First check to see if it wasn't already
inserted. */
struct objc_list *list = tree->subclasses;
objc_class_tree *node;
while (list)
{
the tree. */
if (((objc_class_tree*)list->head)->class == class)
{
DEBUG_PRINTF ("2. class %s was previously inserted\n",
class->name);
return tree;
}
list = list->tail;
}
node = objc_calloc (1, sizeof (objc_class_tree));
node->class = class;
tree->subclasses = list_cons (node, tree->subclasses);
DEBUG_PRINTF ("3. class %s inserted\n", class->name);
return tree;
}
else
{
superclasses in the list of subclasses. */
struct objc_list *subclasses = tree->subclasses;
return NULL to indicate our caller that it must take the next tree. */
if (!class_is_subclass_of_class (class, tree->class))
return NULL;
for (; subclasses != NULL; subclasses = subclasses->tail)
{
Class aClass = ((objc_class_tree*)(subclasses->head))->class;
if (class_is_subclass_of_class (class, aClass))
{
into its subtree and return the original tree since nothing
has been changed. */
subclasses->head
= __objc_tree_insert_class (subclasses->head, class);
DEBUG_PRINTF ("4. class %s inserted\n", class->name);
return tree;
}
}
Create a new tree of classes whose topmost class is a direct subclass
of tree->class. */
{
objc_class_tree *new_tree
= create_tree_of_subclasses_inherited_from (class, tree->class);
tree->subclasses = list_cons (new_tree, tree->subclasses);
DEBUG_PRINTF ("5. class %s inserted\n", class->name);
return tree;
}
}
}
static void
objc_tree_insert_class (Class class)
{
struct objc_list *list_node;
objc_class_tree *tree;
list_node = __objc_class_tree_list;
while (list_node)
{
tree = __objc_tree_insert_class (list_node->head, class);
if (tree)
{
list_node->head = tree;
break;
}
else
list_node = list_node->tail;
}
here. */
if (!list_node)
{
__objc_class_tree_list = list_cons (NULL, __objc_class_tree_list);
__objc_class_tree_list->head = __objc_tree_insert_class (NULL, class);
}
}
static void
objc_preorder_traverse (objc_class_tree *tree,
int level,
void (*function)(objc_class_tree*, int))
{
struct objc_list *node;
(*function) (tree, level);
for (node = tree->subclasses; node; node = node->tail)
objc_preorder_traverse (node->head, level + 1, function);
}
static void
objc_postorder_traverse (objc_class_tree *tree,
int level,
void (*function)(objc_class_tree*, int))
{
struct objc_list *node;
for (node = tree->subclasses; node; node = node->tail)
objc_postorder_traverse (node->head, level + 1, function);
(*function) (tree, level);
}
#ifdef DEBUG
static void
__objc_tree_print (objc_class_tree *tree, int level)
{
int i;
for (i = 0; i < level; i++)
printf (" ");
printf ("%s\n", tree->class->name);
}
#endif
the methods corresponding to `op' selector. Walking in the reverse order
assures the +load of class is executed first and then +load of categories
because of the way in which categories are added to the class methods. */
static void
__objc_send_message_in_list (MethodList_t method_list, Class class, SEL op)
{
int i;
if (!method_list)
return;
__objc_send_message_in_list (method_list->method_next, class, op);
for (i = 0; i < method_list->method_count; i++)
{
Method_t mth = &method_list->method_list[i];
if (mth->method_name && sel_eq (mth->method_name, op)
&& !hash_is_key_in_hash (__objc_load_methods, mth->method_name))
{
(*mth->method_imp) ((id)class, mth->method_name);
hash_add (&__objc_load_methods, mth->method_imp, mth->method_imp);
DEBUG_PRINTF ("sending +load in class: %s\n", class->name);
break;
}
}
}
static void
__objc_send_load (objc_class_tree *tree, int level)
{
static SEL load_sel = 0;
Class class = tree->class;
MethodList_t method_list = class->class_pointer->methods;
if (!load_sel)
load_sel = sel_register_name ("load");
__objc_send_message_in_list (method_list, class, load_sel);
}
static void
__objc_destroy_class_tree_node (objc_class_tree *tree, int level)
{
objc_free (tree);
}
runtime completely installs the classes. */
static BOOL
class_is_subclass_of_class (Class class, Class superclass)
{
for (; class != Nil;)
{
if (class == superclass)
return YES;
class = (class->super_class ?
objc_lookup_class ((char*)class->super_class)
: Nil);
}
return NO;
}
superclasses are not yet know to the runtime. */
static struct objc_list* unresolved_classes = 0;
*/
extern void __objc_force_linking (void);
void
__objc_force_linking (void)
{
extern void __objc_linking (void);
__objc_linking ();
}
have been initialized. */
static void
objc_init_statics (void)
{
struct objc_list **cell = &uninitialized_statics;
struct objc_static_instances **statics_in_module;
objc_mutex_lock(__objc_runtime_mutex);
while (*cell)
{
int module_initialized = 1;
for (statics_in_module = (*cell)->head;
*statics_in_module; statics_in_module++)
{
struct objc_static_instances *statics = *statics_in_module;
Class class = objc_lookup_class (statics->class_name);
if (!class)
module_initialized = 0;
haven't been here before. However, the comparison is to be
reminded of taking into account class posing and to think about
possible semantics... */
else if (class != statics->instances[0]->class_pointer)
{
id *inst;
for (inst = &statics->instances[0]; *inst; inst++)
{
(*inst)->class_pointer = class;
refcounting, invoke `-retain'. Without refcounting, do
nothing and hope that `-free' will never be invoked. */
that effect now or later on? What are the semantics of
statically allocated instances, besides the trivial
NXConstantString, anyway? */
}
}
}
if (module_initialized)
{
struct objc_list *this = *cell;
*cell = this->tail;
objc_free(this);
}
else
cell = &(*cell)->tail;
}
objc_mutex_unlock(__objc_runtime_mutex);
}
module compiled. (_GLOBAL_$I$...) The purpose of this function is to
gather the module pointers so that they may be processed by the
initialization routines as soon as possible */
void
__objc_exec_class (Module_t module)
{
indicate that some global data structures need to be built. */
static BOOL previous_constructors = 0;
static struct objc_list* unclaimed_categories = 0;
Symtab_t symtab = module->symtab;
struct objc_static_instances **statics
= symtab->defs[symtab->cls_def_cnt + symtab->cat_def_cnt];
struct objc_list** cell;
SEL selectors = symtab->refs;
int i;
DEBUG_PRINTF ("received module: %s\n", module->name);
init_check_module_version(module);
if (!previous_constructors)
{
__objc_init_thread_system();
__objc_runtime_threads_alive = 1;
__objc_runtime_mutex = objc_mutex_allocate();
__objc_init_selector_tables();
__objc_init_class_tables();
__objc_init_dispatch_tables();
__objc_class_tree_list = list_cons (NULL, __objc_class_tree_list);
__objc_load_methods
= hash_new (128, (hash_func_type)hash_ptr, compare_ptrs);
previous_constructors = 1;
}
objc_mutex_lock(__objc_runtime_mutex);
__objc_module_list = list_cons(module, __objc_module_list);
if (selectors)
{
for (i = 0; selectors[i].sel_id; ++i)
{
const char *name, *type;
name = (char*)selectors[i].sel_id;
type = (char*)selectors[i].sel_types;
pointers to them in the runtime structures. is_const == YES */
__sel_register_typed_name (name, type,
(struct objc_selector*)&(selectors[i]),
YES);
}
}
DEBUG_PRINTF ("gathering selectors from module: %s\n", module->name);
for (i = 0; i < symtab->cls_def_cnt; ++i)
{
Class class = (Class) symtab->defs[i];
const char* superclass = (char*)class->super_class;
assert (CLS_ISCLASS(class));
assert (CLS_ISMETA(class->class_pointer));
DEBUG_PRINTF ("phase 1, processing class: %s\n", class->name);
In some cases it isn't and this crashes the program. */
class->subclass_list = NULL;
__objc_add_class_to_hash (class);
__objc_register_selectors_from_class (class);
__objc_register_selectors_from_class ((Class) class->class_pointer);
__objc_install_premature_dtable(class);
__objc_install_premature_dtable(class->class_pointer);
only done for root classes. */
__objc_register_instance_methods_to_class(class);
if (class->protocols)
__objc_init_protocols (class->protocols);
add the class to the unresolved_classes list. */
if (superclass && !objc_lookup_class (superclass))
unresolved_classes = list_cons (class, unresolved_classes);
}
for (i = 0; i < symtab->cat_def_cnt; ++i)
{
Category_t category = symtab->defs[i + symtab->cls_def_cnt];
Class class = objc_lookup_class (category->class_name);
if (class)
{
DEBUG_PRINTF ("processing categories from (module,object): %s, %s\n",
module->name,
class->name);
if (category->instance_methods)
class_add_method_list (class, category->instance_methods);
if (category->class_methods)
class_add_method_list ((Class) class->class_pointer,
category->class_methods);
if (category->protocols)
{
__objc_init_protocols (category->protocols);
__objc_class_add_protocols (class, category->protocols);
}
only done for root classes. */
__objc_register_instance_methods_to_class(class);
}
else
{
Save the information. */
unclaimed_categories = list_cons(category, unclaimed_categories);
}
}
if (statics)
uninitialized_statics = list_cons (statics, uninitialized_statics);
if (uninitialized_statics)
objc_init_statics ();
categories to objects. */
for (cell = &unclaimed_categories;
*cell;
({ if (*cell) cell = &(*cell)->tail; }))
{
Category_t category = (*cell)->head;
Class class = objc_lookup_class (category->class_name);
if (class)
{
DEBUG_PRINTF ("attaching stored categories to object: %s\n",
class->name);
list_remove_head (cell);
if (category->instance_methods)
class_add_method_list (class, category->instance_methods);
if (category->class_methods)
class_add_method_list ((Class) class->class_pointer,
category->class_methods);
if (category->protocols)
{
__objc_init_protocols (category->protocols);
__objc_class_add_protocols (class, category->protocols);
}
only done for root classes. */
__objc_register_instance_methods_to_class(class);
}
}
if (unclaimed_proto_list && objc_lookup_class ("Protocol"))
{
list_mapcar (unclaimed_proto_list,(void(*)(void*))__objc_init_protocols);
list_free (unclaimed_proto_list);
unclaimed_proto_list = 0;
}
objc_send_load ();
objc_mutex_unlock(__objc_runtime_mutex);
}
static void objc_send_load (void)
{
if (!__objc_module_list)
return;
superclasses known to the runtime. We suppose that the objects that are
allocated in the +load method are in general of a class declared in the
same module. */
if (unresolved_classes)
{
Class class = unresolved_classes->head;
while (objc_lookup_class ((char*)class->super_class))
{
list_remove_head (&unresolved_classes);
if (unresolved_classes)
class = unresolved_classes->head;
else
break;
}
* If we still have classes for whom we don't have yet their super
* classes known to the runtime we don't send the +load messages.
*/
if (unresolved_classes)
return;
}
in +load methods. If these classes are not yet known, even if all the
other classes are known, delay sending of +load. */
if (!objc_lookup_class ("NXConstantString") ||
!objc_lookup_class ("Object"))
return;
__objc_create_classes_tree function. This function creates a tree of
classes that resembles the class hierarchy. */
list_mapcar (__objc_module_list, (void(*)(void*))__objc_create_classes_tree);
while (__objc_class_tree_list)
{
#ifdef DEBUG
objc_preorder_traverse (__objc_class_tree_list->head,
0, __objc_tree_print);
#endif
objc_preorder_traverse (__objc_class_tree_list->head,
0, __objc_send_load);
objc_postorder_traverse (__objc_class_tree_list->head,
0, __objc_destroy_class_tree_node);
list_remove_head (&__objc_class_tree_list);
}
list_mapcar (__objc_module_list, (void(*)(void*))__objc_call_callback);
list_free (__objc_module_list);
__objc_module_list = NULL;
}
static void
__objc_create_classes_tree (Module_t module)
{
Symtab_t symtab = module->symtab;
int i;
tree hierarchy. */
for (i = 0; i < symtab->cls_def_cnt; i++)
{
Class class = (Class) symtab->defs[i];
objc_tree_insert_class (class);
}
}
static void
__objc_call_callback (Module_t module)
{
Symtab_t symtab = module->symtab;
int i;
each one. */
for (i = 0; i < symtab->cls_def_cnt; i++)
{
Class class = (Class) symtab->defs[i];
if (_objc_load_callback)
_objc_load_callback(class, 0);
}
methods as class methods for categories to root classes since they were
already added in the class. */
for (i = 0; i < symtab->cat_def_cnt; i++)
{
Category_t category = symtab->defs[i + symtab->cls_def_cnt];
Class class = objc_lookup_class (category->class_name);
if (_objc_load_callback)
_objc_load_callback(class, category);
}
}
static void init_check_module_version(Module_t module)
{
if ((module->version != OBJC_VERSION) || (module->size != sizeof (Module)))
{
int code;
if(module->version > OBJC_VERSION)
code = OBJC_ERR_OBJC_VERSION;
else if (module->version < OBJC_VERSION)
code = OBJC_ERR_GCC_VERSION;
else
code = OBJC_ERR_MODULE_SIZE;
objc_error(nil, code, "Module %s version %d doesn't match runtime %d\n",
module->name, (int)module->version, OBJC_VERSION);
}
}
static void
__objc_init_protocols (struct objc_protocol_list* protos)
{
int i;
static Class proto_class = 0;
if (! protos)
return;
objc_mutex_lock(__objc_runtime_mutex);
if (!proto_class)
proto_class = objc_lookup_class("Protocol");
if (!proto_class)
{
unclaimed_proto_list = list_cons (protos, unclaimed_proto_list);
objc_mutex_unlock(__objc_runtime_mutex);
return;
}
#if 0
assert (protos->next == 0);
#endif
for(i = 0; i < protos->count; i++)
{
struct objc_protocol* aProto = protos->list[i];
if (((size_t)aProto->class_pointer) == PROTOCOL_VERSION)
{
aProto->class_pointer = proto_class;
__objc_init_protocols (aProto->protocol_list);
}
else if (protos->list[i]->class_pointer != proto_class)
{
objc_error(nil, OBJC_ERR_PROTOCOL_VERSION,
"Version %d doesn't match runtime protocol version %d\n",
(int)((char*)protos->list[i]->class_pointer-(char*)0),
PROTOCOL_VERSION);
}
}
objc_mutex_unlock(__objc_runtime_mutex);
}
static void __objc_class_add_protocols (Class class,
struct objc_protocol_list* protos)
{
if (! protos)
return;
protos->next = class->protocols;
class->protocols = protos;
}