// Special functions -*- C++ -*-// Copyright (C) 2006, 2007, 2008// Free Software Foundation, Inc.//// This file is part of the GNU ISO C++ Library. This library is free// software; you can redistribute it and/or modify it under the// terms of the GNU General Public License as published by the// Free Software Foundation; either version 2, or (at your option)// any later version.//// This library is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the// GNU General Public License for more details.//// You should have received a copy of the GNU General Public License along// with this library; see the file COPYING. If not, write to the Free// Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,// USA.//// As a special exception, you may use this file as part of a free software// library without restriction. Specifically, if other files instantiate// templates or use macros or inline functions from this file, or you compile// this file and link it with other files to produce an executable, this// file does not by itself cause the resulting executable to be covered by// the GNU General Public License. This exception does not however// invalidate any other reasons why the executable file might be covered by// the GNU General Public License./** @file tr1/exp_integral.tcc* This is an internal header file, included by other library headers.* You should not attempt to use it directly.*///// ISO C++ 14882 TR1: 5.2 Special functions//// Written by Edward Smith-Rowland based on://// (1) Handbook of Mathematical Functions,// Ed. by Milton Abramowitz and Irene A. Stegun,// Dover Publications, New-York, Section 5, pp. 228-251.// (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl// (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,// W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),// 2nd ed, pp. 222-225.//#ifndef _GLIBCXX_TR1_EXP_INTEGRAL_TCC#define _GLIBCXX_TR1_EXP_INTEGRAL_TCC 1#include "special_function_util.h"namespace std{namespace tr1{// [5.2] Special functions// Implementation-space details.namespace __detail{/*** @brief Return the exponential integral @f$ E_1(x) @f$* by series summation. This should be good* for @f$ x < 1 @f$.** The exponential integral is given by* \f[* E_1(x) = \int_{1}^{\infty} \frac{e^{-xt}}{t} dt* \f]** @param __x The argument of the exponential integral function.* @return The exponential integral.*/template<typename _Tp>_Tp__expint_E1_series(const _Tp __x){const _Tp __eps = std::numeric_limits<_Tp>::epsilon();_Tp __term = _Tp(1);_Tp __esum = _Tp(0);_Tp __osum = _Tp(0);const unsigned int __max_iter = 100;for (unsigned int __i = 1; __i < __max_iter; ++__i){__term *= - __x / __i;if (std::abs(__term) < __eps)break;if (__term >= _Tp(0))__esum += __term / __i;else__osum += __term / __i;}return - __esum - __osum- __numeric_constants<_Tp>::__gamma_e() - std::log(__x);}/*** @brief Return the exponential integral @f$ E_1(x) @f$* by asymptotic expansion.** The exponential integral is given by* \f[* E_1(x) = \int_{1}^\infty \frac{e^{-xt}}{t} dt* \f]** @param __x The argument of the exponential integral function.* @return The exponential integral.*/template<typename _Tp>_Tp__expint_E1_asymp(const _Tp __x){_Tp __term = _Tp(1);_Tp __esum = _Tp(1);_Tp __osum = _Tp(0);const unsigned int __max_iter = 1000;for (unsigned int __i = 1; __i < __max_iter; ++__i){_Tp __prev = __term;__term *= - __i / __x;if (std::abs(__term) > std::abs(__prev))break;if (__term >= _Tp(0))__esum += __term;else__osum += __term;}return std::exp(- __x) * (__esum + __osum) / __x;}/*** @brief Return the exponential integral @f$ E_n(x) @f$* by series summation.** The exponential integral is given by* \f[* E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt* \f]** @param __n The order of the exponential integral function.* @param __x The argument of the exponential integral function.* @return The exponential integral.*/template<typename _Tp>_Tp__expint_En_series(const unsigned int __n, const _Tp __x){const unsigned int __max_iter = 100;const _Tp __eps = std::numeric_limits<_Tp>::epsilon();const int __nm1 = __n - 1;_Tp __ans = (__nm1 != 0? _Tp(1) / __nm1 : -std::log(__x)- __numeric_constants<_Tp>::__gamma_e());_Tp __fact = _Tp(1);for (int __i = 1; __i <= __max_iter; ++__i){__fact *= -__x / _Tp(__i);_Tp __del;if ( __i != __nm1 )__del = -__fact / _Tp(__i - __nm1);else{_Tp __psi = -_TR1_GAMMA_TCC;for (int __ii = 1; __ii <= __nm1; ++__ii)__psi += _Tp(1) / _Tp(__ii);__del = __fact * (__psi - std::log(__x));}__ans += __del;if (std::abs(__del) < __eps * std::abs(__ans))return __ans;}std::__throw_runtime_error(__N("Series summation failed ""in __expint_En_series."));}/*** @brief Return the exponential integral @f$ E_n(x) @f$* by continued fractions.** The exponential integral is given by* \f[* E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt* \f]** @param __n The order of the exponential integral function.* @param __x The argument of the exponential integral function.* @return The exponential integral.*/template<typename _Tp>_Tp__expint_En_cont_frac(const unsigned int __n, const _Tp __x){const unsigned int __max_iter = 100;const _Tp __eps = std::numeric_limits<_Tp>::epsilon();const _Tp __fp_min = std::numeric_limits<_Tp>::min();const int __nm1 = __n - 1;_Tp __b = __x + _Tp(__n);_Tp __c = _Tp(1) / __fp_min;_Tp __d = _Tp(1) / __b;_Tp __h = __d;for ( unsigned int __i = 1; __i <= __max_iter; ++__i ){_Tp __a = -_Tp(__i * (__nm1 + __i));__b += _Tp(2);__d = _Tp(1) / (__a * __d + __b);__c = __b + __a / __c;const _Tp __del = __c * __d;__h *= __del;if (std::abs(__del - _Tp(1)) < __eps){const _Tp __ans = __h * std::exp(-__x);return __ans;}}std::__throw_runtime_error(__N("Continued fraction failed ""in __expint_En_cont_frac."));}/*** @brief Return the exponential integral @f$ E_n(x) @f$* by recursion. Use upward recursion for @f$ x < n @f$* and downward recursion (Miller's algorithm) otherwise.** The exponential integral is given by* \f[* E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt* \f]** @param __n The order of the exponential integral function.* @param __x The argument of the exponential integral function.* @return The exponential integral.*/template<typename _Tp>_Tp__expint_En_recursion(const unsigned int __n, const _Tp __x){_Tp __En;_Tp __E1 = __expint_E1(__x);if (__x < _Tp(__n)){// Forward recursion is stable only for n < x.__En = __E1;for (unsigned int __j = 2; __j < __n; ++__j)__En = (std::exp(-__x) - __x * __En) / _Tp(__j - 1);}else{// Backward recursion is stable only for n >= x.__En = _Tp(1);const int __N = __n + 20; // TODO: Check this starting number._Tp __save = _Tp(0);for (int __j = __N; __j > 0; --__j){__En = (std::exp(-__x) - __j * __En) / __x;if (__j == __n)__save = __En;}_Tp __norm = __En / __E1;__En /= __norm;}return __En;}/*** @brief Return the exponential integral @f$ Ei(x) @f$* by series summation.** The exponential integral is given by* \f[* Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt* \f]** @param __x The argument of the exponential integral function.* @return The exponential integral.*/template<typename _Tp>_Tp__expint_Ei_series(const _Tp __x){_Tp __term = _Tp(1);_Tp __sum = _Tp(0);const unsigned int __max_iter = 1000;for (unsigned int __i = 1; __i < __max_iter; ++__i){__term *= __x / __i;__sum += __term / __i;if (__term < std::numeric_limits<_Tp>::epsilon() * __sum)break;}return __numeric_constants<_Tp>::__gamma_e() + __sum + std::log(__x);}/*** @brief Return the exponential integral @f$ Ei(x) @f$* by asymptotic expansion.** The exponential integral is given by* \f[* Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt* \f]** @param __x The argument of the exponential integral function.* @return The exponential integral.*/template<typename _Tp>_Tp__expint_Ei_asymp(const _Tp __x){_Tp __term = _Tp(1);_Tp __sum = _Tp(1);const unsigned int __max_iter = 1000;for (unsigned int __i = 1; __i < __max_iter; ++__i){_Tp __prev = __term;__term *= __i / __x;if (__term < std::numeric_limits<_Tp>::epsilon())break;if (__term >= __prev)break;__sum += __term;}return std::exp(__x) * __sum / __x;}/*** @brief Return the exponential integral @f$ Ei(x) @f$.** The exponential integral is given by* \f[* Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt* \f]** @param __x The argument of the exponential integral function.* @return The exponential integral.*/template<typename _Tp>_Tp__expint_Ei(const _Tp __x){if (__x < _Tp(0))return -__expint_E1(-__x);else if (__x < -std::log(std::numeric_limits<_Tp>::epsilon()))return __expint_Ei_series(__x);elsereturn __expint_Ei_asymp(__x);}/*** @brief Return the exponential integral @f$ E_1(x) @f$.** The exponential integral is given by* \f[* E_1(x) = \int_{1}^\infty \frac{e^{-xt}}{t} dt* \f]** @param __x The argument of the exponential integral function.* @return The exponential integral.*/template<typename _Tp>_Tp__expint_E1(const _Tp __x){if (__x < _Tp(0))return -__expint_Ei(-__x);else if (__x < _Tp(1))return __expint_E1_series(__x);else if (__x < _Tp(100)) // TODO: Find a good asymptotic switch point.return __expint_En_cont_frac(1, __x);elsereturn __expint_E1_asymp(__x);}/*** @brief Return the exponential integral @f$ E_n(x) @f$* for large argument.** The exponential integral is given by* \f[* E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt* \f]** This is something of an extension.** @param __n The order of the exponential integral function.* @param __x The argument of the exponential integral function.* @return The exponential integral.*/template<typename _Tp>_Tp__expint_asymp(const unsigned int __n, const _Tp __x){_Tp __term = _Tp(1);_Tp __sum = _Tp(1);for (unsigned int __i = 1; __i <= __n; ++__i){_Tp __prev = __term;__term *= -(__n - __i + 1) / __x;if (std::abs(__term) > std::abs(__prev))break;__sum += __term;}return std::exp(-__x) * __sum / __x;}/*** @brief Return the exponential integral @f$ E_n(x) @f$* for large order.** The exponential integral is given by* \f[* E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt* \f]** This is something of an extension.** @param __n The order of the exponential integral function.* @param __x The argument of the exponential integral function.* @return The exponential integral.*/template<typename _Tp>_Tp__expint_large_n(const unsigned int __n, const _Tp __x){const _Tp __xpn = __x + __n;const _Tp __xpn2 = __xpn * __xpn;_Tp __term = _Tp(1);_Tp __sum = _Tp(1);for (unsigned int __i = 1; __i <= __n; ++__i){_Tp __prev = __term;__term *= (__n - 2 * (__i - 1) * __x) / __xpn2;if (std::abs(__term) < std::numeric_limits<_Tp>::epsilon())break;__sum += __term;}return std::exp(-__x) * __sum / __xpn;}/*** @brief Return the exponential integral @f$ E_n(x) @f$.** The exponential integral is given by* \f[* E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt* \f]* This is something of an extension.** @param __n The order of the exponential integral function.* @param __x The argument of the exponential integral function.* @return The exponential integral.*/template<typename _Tp>_Tp__expint(const unsigned int __n, const _Tp __x){// Return NaN on NaN input.if (__isnan(__x))return std::numeric_limits<_Tp>::quiet_NaN();else if (__n <= 1 && __x == _Tp(0))return std::numeric_limits<_Tp>::infinity();else{_Tp __E0 = std::exp(__x) / __x;if (__n == 0)return __E0;_Tp __E1 = __expint_E1(__x);if (__n == 1)return __E1;if (__x == _Tp(0))return _Tp(1) / static_cast<_Tp>(__n - 1);_Tp __En = __expint_En_recursion(__n, __x);return __En;}}/*** @brief Return the exponential integral @f$ Ei(x) @f$.** The exponential integral is given by* \f[* Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt* \f]** @param __x The argument of the exponential integral function.* @return The exponential integral.*/template<typename _Tp>inline _Tp__expint(const _Tp __x){if (__isnan(__x))return std::numeric_limits<_Tp>::quiet_NaN();elsereturn __expint_Ei(__x);}} // namespace std::tr1::__detail}}#endif // _GLIBCXX_TR1_EXP_INTEGRAL_TCC