Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
Contributed by the Arenaire and Cacao projects, INRIA.
This file is part of the GNU MPFR Library.
The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"
int
mpfr_div_ui (mpfr_ptr y, mpfr_srcptr x, unsigned long int u, mpfr_rnd_t rnd_mode)
{
long i;
int sh;
mp_size_t xn, yn, dif;
mp_limb_t *xp, *yp, *tmp, c, d;
mpfr_exp_t exp;
int inexact, middle = 1, nexttoinf;
MPFR_TMP_DECL(marker);
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
{
if (MPFR_IS_NAN (x))
{
MPFR_SET_NAN (y);
MPFR_RET_NAN;
}
else if (MPFR_IS_INF (x))
{
MPFR_SET_INF (y);
MPFR_SET_SAME_SIGN (y, x);
MPFR_RET (0);
}
else
{
MPFR_ASSERTD (MPFR_IS_ZERO(x));
if (u == 0)
{
MPFR_SET_NAN(y);
MPFR_RET_NAN;
}
else
{
MPFR_SET_ZERO(y);
MPFR_SET_SAME_SIGN (y, x);
MPFR_RET(0);
}
}
}
else if (MPFR_UNLIKELY (u <= 1))
{
if (u < 1)
{
MPFR_SET_INF (y);
MPFR_SET_SAME_SIGN (y, x);
MPFR_RET (0);
}
else
return mpfr_set (y, x, rnd_mode);
}
else if (MPFR_UNLIKELY (IS_POW2 (u)))
return mpfr_div_2si (y, x, MPFR_INT_CEIL_LOG2 (u), rnd_mode);
MPFR_SET_SAME_SIGN (y, x);
MPFR_TMP_MARK (marker);
xn = MPFR_LIMB_SIZE (x);
yn = MPFR_LIMB_SIZE (y);
xp = MPFR_MANT (x);
yp = MPFR_MANT (y);
exp = MPFR_GET_EXP (x);
dif = yn + 1 - xn;
tmp = (mp_limb_t*) MPFR_TMP_ALLOC ((yn + 1) * BYTES_PER_MP_LIMB);
c = (mp_limb_t) u;
MPFR_ASSERTN (u == c);
if (dif >= 0)
c = mpn_divrem_1 (tmp, dif, xp, xn, c);
else
c = mpn_divrem_1 (tmp, 0, xp - dif, yn + 1, c);
inexact = (c != 0);
* In case we just have the right number of bits (postpone this ?), *
* we need to check whether the remainder is more or less than half *
* the divisor. The test must be performed with a subtraction, so as *
* to prevent carries. */
if (MPFR_LIKELY (rnd_mode == MPFR_RNDN))
{
if (c < (mp_limb_t) u - c)
middle = -1;
else if (c > (mp_limb_t) u - c)
middle = 1;
else
middle = 0;
}
that we did not neglect any word of x (division large / 1 -> small). */
for (i=0; ((inexact == 0) || (middle == 0)) && (i < -dif); i++)
if (xp[i])
inexact = middle = 1;
If the high limb of the result is 0 (xp[xn-1] < u), remove it.
Otherwise, compute the left shift to be performed to normalize.
In the latter case, we discard some low bits computed. They
contain information useful for the rounding, hence the updating
of middle and inexact.
*/
if (tmp[yn] == 0)
{
MPN_COPY(yp, tmp, yn);
exp -= GMP_NUMB_BITS;
}
else
{
int shlz;
count_leading_zeros (shlz, tmp[yn]);
if (MPFR_LIKELY (shlz != 0))
{
mp_limb_t w = tmp[0] << shlz;
mpn_lshift (yp, tmp + 1, yn, shlz);
yp[0] += tmp[0] >> (GMP_NUMB_BITS - shlz);
if (w > (MPFR_LIMB_ONE << (GMP_NUMB_BITS - 1)))
{ middle = 1; }
else if (w < (MPFR_LIMB_ONE << (GMP_NUMB_BITS - 1)))
{ middle = -1; }
else
{ middle = (c != 0); }
inexact = inexact || (w != 0);
exp -= shlz;
}
else
{
1<<(GMP_NUMB_BITS-1). It might be better to handle the
u == 1 case seperately ?
*/
MPN_COPY (yp, tmp + 1, yn);
}
}
MPFR_UNSIGNED_MINUS_MODULO (sh, MPFR_PREC (y));
d = *yp & MPFR_LIMB_MASK (sh);
*yp ^= d;
MPFR_TMP_FREE (marker);
if (exp < __gmpfr_emin - 1)
return mpfr_underflow (y, rnd_mode == MPFR_RNDN ? MPFR_RNDZ : rnd_mode,
MPFR_SIGN (y));
if (MPFR_UNLIKELY (d == 0 && inexact == 0))
nexttoinf = 0;
else
{
MPFR_UPDATE2_RND_MODE(rnd_mode, MPFR_SIGN (y));
switch (rnd_mode)
{
case MPFR_RNDZ:
inexact = - MPFR_INT_SIGN (y);
nexttoinf = 0;
break;
case MPFR_RNDA:
inexact = MPFR_INT_SIGN (y);
nexttoinf = 1;
break;
default:
MPFR_ASSERTD (rnd_mode == MPFR_RNDN);
if (sh && d < (MPFR_LIMB_ONE << (sh - 1)))
{
inexact = - MPFR_INT_SIGN (y);
nexttoinf = 0;
}
else if (sh && d > (MPFR_LIMB_ONE << (sh - 1)))
{
inexact = MPFR_INT_SIGN (y);
nexttoinf = 1;
}
else
{
indicate even rounding, but the result is inexact, so up) ;
The second case is the case where middle should be used to
decide the direction of rounding (no further bit computed) ;
The third is the true even rounding.
*/
if ((sh && inexact) || (!sh && middle > 0) ||
(!inexact && *yp & (MPFR_LIMB_ONE << sh)))
{
inexact = MPFR_INT_SIGN (y);
nexttoinf = 1;
}
else
{
inexact = - MPFR_INT_SIGN (y);
nexttoinf = 0;
}
}
}
}
if (nexttoinf &&
MPFR_UNLIKELY (mpn_add_1 (yp, yp, yn, MPFR_LIMB_ONE << sh)))
{
exp++;
yp[yn-1] = MPFR_LIMB_HIGHBIT;
}
MPFR_EXP (y) = exp;
return mpfr_check_range (y, inexact, rnd_mode);
}
int mpfr_div_si (mpfr_ptr y, mpfr_srcptr x, long int u, mpfr_rnd_t rnd_mode)
{
int res;
if (u >= 0)
res = mpfr_div_ui (y, x, u, rnd_mode);
else
{
res = -mpfr_div_ui (y, x, -u, MPFR_INVERT_RND (rnd_mode));
MPFR_CHANGE_SIGN (y);
}
return res;
}