Copyright 1987, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
1999, 2000, 2001, 2003, 2004, 2005, 2006, 2007
Free Software Foundation, Inc.
This file is part of GAS, the GNU Assembler.
GAS is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GAS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GAS; see the file COPYING. If not, write to the Free
Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
02110-1301, USA. */
#include "as.h"
#include "subsegs.h"
#include "obstack.h"
extern fragS zero_address_frag;
extern fragS bss_address_frag;
void
frag_init (void)
{
zero_address_frag.fr_type = rs_fill;
bss_address_frag.fr_type = rs_fill;
}
allocate frags (currently, this is only possible in the absolute
section), or into an mri common. */
static void
frag_alloc_check (const struct obstack *ob)
{
if (ob->chunk_size == 0)
{
as_bad (_("attempt to allocate data in absolute section"));
subseg_set (text_section, 0);
}
if (mri_common_symbol != NULL)
{
as_bad (_("attempt to allocate data in common section"));
mri_common_symbol = NULL;
}
}
Call this routine from everywhere else, so that all the weird alignment
hackery can be done in just one place. */
fragS *
frag_alloc (struct obstack *ob)
{
fragS *ptr;
int oalign;
(void) obstack_alloc (ob, 0);
oalign = obstack_alignment_mask (ob);
obstack_alignment_mask (ob) = 0;
ptr = (fragS *) obstack_alloc (ob, SIZEOF_STRUCT_FRAG);
obstack_alignment_mask (ob) = oalign;
memset (ptr, 0, SIZEOF_STRUCT_FRAG);
return ptr;
}
If there is no room, close of the current frag with a ".fill 0"
and begin a new frag. Unless the new frag has nchars chars available
do not return. Do not set up any fields of *now_frag. */
void
frag_grow (unsigned int nchars)
{
if (obstack_room (&frchain_now->frch_obstack) < nchars)
{
unsigned int n;
long oldc;
frag_wane (frag_now);
frag_new (0);
oldc = frchain_now->frch_obstack.chunk_size;
this if we would waste too much memory. Especially necessary
for extremely big (like 2GB initialized) frags. */
if (nchars < 0x10000)
frchain_now->frch_obstack.chunk_size = 2 * nchars;
else
frchain_now->frch_obstack.chunk_size = nchars + 0x10000;
frchain_now->frch_obstack.chunk_size += SIZEOF_STRUCT_FRAG;
if (frchain_now->frch_obstack.chunk_size > 0)
while ((n = obstack_room (&frchain_now->frch_obstack)) < nchars
&& (unsigned long) frchain_now->frch_obstack.chunk_size > nchars)
{
frag_wane (frag_now);
frag_new (0);
}
frchain_now->frch_obstack.chunk_size = oldc;
}
if (obstack_room (&frchain_now->frch_obstack) < nchars)
as_fatal (_("can't extend frag %u chars"), nchars);
}
frag, in the same subsegment as the old frag.
[frchain_now remains the same but frag_now is updated.]
Because this calculates the correct value of fr_fix by
looking at the obstack 'frags', it needs to know how many
characters at the end of the old frag belong to the maximal
variable part; The rest must belong to fr_fix.
It doesn't actually set up the old frag's fr_var. You may have
set fr_var == 1, but allocated 10 chars to the end of the frag;
In this case you pass old_frags_var_max_size == 10.
In fact, you may use fr_var for something totally unrelated to the
size of the variable part of the frag; None of the generic frag
handling code makes use of fr_var.
Make a new frag, initialising some components. Link new frag at end
of frchain_now. */
void
frag_new (int old_frags_var_max_size
variable_length part of frag. */)
{
fragS *former_last_fragP;
frchainS *frchP;
assert (frchain_now->frch_last == frag_now);
frag_now->fr_fix = frag_now_fix_octets () - old_frags_var_max_size;
assert (frag_now->fr_type != 0);
will begin at a correct boundary. */
obstack_finish (&frchain_now->frch_obstack);
frchP = frchain_now;
know (frchP);
former_last_fragP = frchP->frch_last;
assert (former_last_fragP != 0);
assert (former_last_fragP == frag_now);
frag_now = frag_alloc (&frchP->frch_obstack);
as_where (&frag_now->fr_file, &frag_now->fr_line);
alignment. However, characters will add to obstack frags
IMMEDIATELY after the struct frag, even if they are not starting
at an alignment address. */
former_last_fragP->fr_next = frag_now;
frchP->frch_last = frag_now;
#ifndef NO_LISTING
{
extern struct list_info_struct *listing_tail;
frag_now->line = listing_tail;
}
#endif
assert (frchain_now->frch_last == frag_now);
frag_now->fr_next = NULL;
}
Close off the old frag with a .fill 0.
Return the address of the 1st char to write into. Advance
frag_now_growth past the new chars. */
char *
frag_more (int nchars)
{
register char *retval;
frag_alloc_check (&frchain_now->frch_obstack);
frag_grow (nchars);
retval = obstack_next_free (&frchain_now->frch_obstack);
obstack_blank_fast (&frchain_now->frch_obstack, nchars);
return (retval);
}
current frag. Close off the old frag with a .fill 0.
Set up a machine_dependent relaxable frag, then start a new frag.
Return the address of the 1st char of the var part of the old frag
to write into. */
char *
frag_var (relax_stateT type, int max_chars, int var, relax_substateT subtype,
symbolS *symbol, offsetT offset, char *opcode)
{
register char *retval;
frag_grow (max_chars);
retval = obstack_next_free (&frchain_now->frch_obstack);
obstack_blank_fast (&frchain_now->frch_obstack, max_chars);
frag_now->fr_var = var;
frag_now->fr_type = type;
frag_now->fr_subtype = subtype;
frag_now->fr_symbol = symbol;
frag_now->fr_offset = offset;
frag_now->fr_opcode = opcode;
#ifdef USING_CGEN
frag_now->fr_cgen.insn = 0;
frag_now->fr_cgen.opindex = 0;
frag_now->fr_cgen.opinfo = 0;
#endif
#ifdef TC_FRAG_INIT
TC_FRAG_INIT (frag_now);
#endif
as_where (&frag_now->fr_file, &frag_now->fr_line);
frag_new (max_chars);
return (retval);
}
allocated by caller.
No call to frag_grow is done. */
char *
frag_variant (relax_stateT type, int max_chars, int var,
relax_substateT subtype, symbolS *symbol, offsetT offset,
char *opcode)
{
register char *retval;
retval = obstack_next_free (&frchain_now->frch_obstack);
frag_now->fr_var = var;
frag_now->fr_type = type;
frag_now->fr_subtype = subtype;
frag_now->fr_symbol = symbol;
frag_now->fr_offset = offset;
frag_now->fr_opcode = opcode;
#ifdef USING_CGEN
frag_now->fr_cgen.insn = 0;
frag_now->fr_cgen.opindex = 0;
frag_now->fr_cgen.opinfo = 0;
#endif
#ifdef TC_FRAG_INIT
TC_FRAG_INIT (frag_now);
#endif
as_where (&frag_now->fr_file, &frag_now->fr_line);
frag_new (max_chars);
return (retval);
}
void
frag_wane (register fragS *fragP)
{
fragP->fr_type = rs_fill;
fragP->fr_offset = 0;
fragP->fr_var = 0;
}
int
frag_room (void)
{
return obstack_room (&frchain_now->frch_obstack);
}
force the next frag to have the appropriate alignment. ALIGNMENT
is the power of two to which to align. FILL_CHARACTER is the
character to use to fill in any bytes which are skipped. MAX is
the maximum number of characters to skip when doing the alignment,
or 0 if there is no maximum. */
void
frag_align (int alignment, int fill_character, int max)
{
if (now_seg == absolute_section)
{
addressT new_off;
addressT mask;
mask = (~(addressT) 0) << alignment;
new_off = (abs_section_offset + ~mask) & mask;
if (max == 0 || new_off - abs_section_offset <= (addressT) max)
abs_section_offset = new_off;
}
else
{
char *p;
p = frag_var (rs_align, 1, 1, (relax_substateT) max,
(symbolS *) 0, (offsetT) alignment, (char *) 0);
*p = fill_character;
}
}
pattern rather than a single byte. ALIGNMENT is the power of two
to which to align. FILL_PATTERN is the fill pattern to repeat in
the bytes which are skipped. N_FILL is the number of bytes in
FILL_PATTERN. MAX is the maximum number of characters to skip when
doing the alignment, or 0 if there is no maximum. */
void
frag_align_pattern (int alignment, const char *fill_pattern,
int n_fill, int max)
{
char *p;
p = frag_var (rs_align, n_fill, n_fill, (relax_substateT) max,
(symbolS *) 0, (offsetT) alignment, (char *) 0);
memcpy (p, fill_pattern, n_fill);
}
instruction so that the disassembler does not choke on it. */
#ifndef NOP_OPCODE
#define NOP_OPCODE 0x00
#endif
the alignment code. Needs to be large enough to hold any fixed sized
prologue plus the replicating portion. */
#ifndef MAX_MEM_FOR_RS_ALIGN_CODE
is required to code fill, which means that we get just repeat the
one NOP_OPCODE byte. */
# ifndef HANDLE_ALIGN
# define MAX_MEM_FOR_RS_ALIGN_CODE 1
# else
# define MAX_MEM_FOR_RS_ALIGN_CODE ((1 << alignment) - 1)
# endif
#endif
void
frag_align_code (int alignment, int max)
{
char *p;
p = frag_var (rs_align_code, MAX_MEM_FOR_RS_ALIGN_CODE, 1,
(relax_substateT) max, (symbolS *) 0,
(offsetT) alignment, (char *) 0);
*p = NOP_OPCODE;
}
addressT
frag_now_fix_octets (void)
{
if (now_seg == absolute_section)
return abs_section_offset;
return ((char *) obstack_next_free (&frchain_now->frch_obstack)
- frag_now->fr_literal);
}
addressT
frag_now_fix (void)
{
return frag_now_fix_octets () / OCTETS_PER_BYTE;
}
void
frag_append_1_char (int datum)
{
frag_alloc_check (&frchain_now->frch_obstack);
if (obstack_room (&frchain_now->frch_obstack) <= 1)
{
frag_wane (frag_now);
frag_new (0);
}
obstack_1grow (&frchain_now->frch_obstack, datum);
}
their start addresses. Set OFFSET to the difference in address
not already accounted for in the frag FR_ADDRESS. */
bfd_boolean
frag_offset_fixed_p (const fragS *frag1, const fragS *frag2, bfd_vma *offset)
{
const fragS *frag;
bfd_vma off;
Prior to assigning frag addresses this will be zero. */
off = frag1->fr_address - frag2->fr_address;
if (frag1 == frag2)
{
*offset = off;
return TRUE;
}
frag = frag1;
while (frag->fr_type == rs_fill)
{
off += frag->fr_fix + frag->fr_offset * frag->fr_var;
frag = frag->fr_next;
if (frag == NULL)
break;
if (frag == frag2)
{
*offset = off;
return TRUE;
}
}
off = frag1->fr_address - frag2->fr_address;
frag = frag2;
while (frag->fr_type == rs_fill)
{
off -= frag->fr_fix + frag->fr_offset * frag->fr_var;
frag = frag->fr_next;
if (frag == NULL)
break;
if (frag == frag1)
{
*offset = off;
return TRUE;
}
}
return FALSE;
}