* @brief Sequential helper functions.
* This file is a GNU parallel extension to the Standard C++ Library.
*/
#ifndef _GLIBCXX_PARALLEL_BASE_H
#define _GLIBCXX_PARALLEL_BASE_H 1
#include <cstdio>
#include <functional>
#include <omp.h>
#include <parallel/features.h>
#include <parallel/basic_iterator.h>
#include <parallel/parallel.h>
* @namespace std::__parallel
* @brief GNU parallel code, replaces standard behavior with parallel behavior.
*/
namespace std
{
namespace __parallel { }
}
* @namespace __gnu_parallel
* @brief GNU parallel code for public use.
*/
namespace __gnu_parallel
{
using namespace std::__parallel;
}
* @namespace __gnu_sequential
* @brief GNU sequential classes for public use.
*/
namespace __gnu_sequential
{
#ifdef _GLIBCXX_PARALLEL
using namespace std::__norm;
#else
using namespace std;
#endif
}
namespace __gnu_parallel
{
inline int
get_max_threads()
{
int __i = omp_get_max_threads();
return __i > 1 ? __i : 1;
}
inline bool
is_parallel(const _Parallelism __p) { return __p != sequential; }
* @param n Argument.
* @return Returns 0 for argument 0.
*/
template<typename Size>
inline Size
log2(Size n)
{
Size k;
for (k = 0; n != 1; n >>= 1)
++k;
return k;
}
* @param a First integer, to be encoded in the most-significant @c
* lcas_t_bits/2 bits.
* @param b Second integer, to be encoded in the least-significant
* @c lcas_t_bits/2 bits.
* @return __gnu_parallel::lcas_t value encoding @c a and @c b.
* @see decode2
*/
inline lcas_t
encode2(int a, int b)
{
return (((lcas_t)a) << (lcas_t_bits / 2)) | (((lcas_t)b) << 0);
}
* @param x __gnu_parallel::lcas_t to decode integers from.
* @param a First integer, to be decoded from the most-significant
* @c lcas_t_bits/2 bits of @c x.
* @param b Second integer, to be encoded in the least-significant
* @c lcas_t_bits/2 bits of @c x.
* @see encode2
*/
inline void
decode2(lcas_t x, int& a, int& b)
{
a = (int)((x >> (lcas_t_bits / 2)) & lcas_t_mask);
b = (int)((x >> 0 ) & lcas_t_mask);
}
template<typename T>
const T&
min(const T& a, const T& b)
{ return (a < b) ? a : b; }
template<typename T>
const T&
max(const T& a, const T& b)
{ return (a > b) ? a : b; }
* ordering predicate
*/
template<typename Comparator, typename T1, typename T2>
class equal_from_less : public std::binary_function<T1, T2, bool>
{
private:
Comparator& comp;
public:
equal_from_less(Comparator& _comp) : comp(_comp) { }
bool operator()(const T1& a, const T2& b)
{
return !comp(a, b) && !comp(b, a);
}
};
* but giving the argument types explicitly. */
template<typename _Predicate, typename argument_type>
class unary_negate
: public std::unary_function<argument_type, bool>
{
protected:
_Predicate _M_pred;
public:
explicit
unary_negate(const _Predicate& __x) : _M_pred(__x) { }
bool
operator()(const argument_type& __x)
{ return !_M_pred(__x); }
};
* but giving the argument types explicitly. */
template<typename _Operation, typename first_argument_type,
typename second_argument_type, typename result_type>
class binder1st
: public std::unary_function<second_argument_type, result_type>
{
protected:
_Operation op;
first_argument_type value;
public:
binder1st(const _Operation& __x,
const first_argument_type& __y)
: op(__x), value(__y) { }
result_type
operator()(const second_argument_type& __x)
{ return op(value, __x); }
result_type
operator()(second_argument_type& __x) const
{ return op(value, __x); }
};
* @brief Similar to std::binder2nd, but giving the argument types
* explicitly.
*/
template<typename _Operation, typename first_argument_type,
typename second_argument_type, typename result_type>
class binder2nd
: public std::unary_function<first_argument_type, result_type>
{
protected:
_Operation op;
second_argument_type value;
public:
binder2nd(const _Operation& __x,
const second_argument_type& __y)
: op(__x), value(__y) { }
result_type
operator()(const first_argument_type& __x) const
{ return op(__x, value); }
result_type
operator()(first_argument_type& __x)
{ return op(__x, value); }
};
template<typename T1, typename T2>
struct equal_to : std::binary_function<T1, T2, bool>
{
bool operator()(const T1& t1, const T2& t2) const
{ return t1 == t2; }
};
template<typename T1, typename T2>
struct less : std::binary_function<T1, T2, bool>
{
bool
operator()(const T1& t1, const T2& t2) const
{ return t1 < t2; }
bool
operator()(const T2& t2, const T1& t1) const
{ return t2 < t1; }
};
template<typename _Tp>
struct less<_Tp, _Tp> : public std::binary_function<_Tp, _Tp, bool>
{
bool
operator()(const _Tp& __x, const _Tp& __y) const
{ return __x < __y; }
};
template<typename _Tp1, typename _Tp2>
struct plus : public std::binary_function<_Tp1, _Tp2, _Tp1>
{
typedef __typeof__(*static_cast<_Tp1*>(NULL)
+ *static_cast<_Tp2*>(NULL)) result;
result
operator()(const _Tp1& __x, const _Tp2& __y) const
{ return __x + __y; }
};
template<typename _Tp>
struct plus<_Tp, _Tp> : public std::binary_function<_Tp, _Tp, _Tp>
{
typedef __typeof__(*static_cast<_Tp*>(NULL)
+ *static_cast<_Tp*>(NULL)) result;
result
operator()(const _Tp& __x, const _Tp& __y) const
{ return __x + __y; }
};
template<typename _Tp1, typename _Tp2>
struct multiplies : public std::binary_function<_Tp1, _Tp2, _Tp1>
{
typedef __typeof__(*static_cast<_Tp1*>(NULL)
* *static_cast<_Tp2*>(NULL)) result;
result
operator()(const _Tp1& __x, const _Tp2& __y) const
{ return __x * __y; }
};
template<typename _Tp>
struct multiplies<_Tp, _Tp> : public std::binary_function<_Tp, _Tp, _Tp>
{
typedef __typeof__(*static_cast<_Tp*>(NULL)
* *static_cast<_Tp*>(NULL)) result;
result
operator()(const _Tp& __x, const _Tp& __y) const
{ return __x * __y; }
};
template<typename T, typename _DifferenceTp>
class pseudo_sequence;
* If features the usual random-access iterator functionality.
* @param T Sequence value type.
* @param difference_type Sequence difference type.
*/
template<typename T, typename _DifferenceTp>
class pseudo_sequence_iterator
{
public:
typedef _DifferenceTp difference_type;
private:
typedef pseudo_sequence_iterator<T, _DifferenceTp> type;
const T& val;
difference_type pos;
public:
pseudo_sequence_iterator(const T& val, difference_type pos)
: val(val), pos(pos) { }
type&
operator++()
{
++pos;
return *this;
}
const type
operator++(int)
{ return type(pos++); }
const T&
operator*() const
{ return val; }
const T&
operator[](difference_type) const
{ return val; }
bool
operator==(const type& i2)
{ return pos == i2.pos; }
difference_type
operator!=(const type& i2)
{ return pos != i2.pos; }
difference_type
operator-(const type& i2)
{ return pos - i2.pos; }
};
the same element.
* The copies are not stored explicitly, of course.
* @param T Sequence value type.
* @param difference_type Sequence difference type.
*/
template<typename T, typename _DifferenceTp>
class pseudo_sequence
{
typedef pseudo_sequence<T, _DifferenceTp> type;
public:
typedef _DifferenceTp difference_type;
typedef pseudo_sequence_iterator<T, uint64> iterator;
* @param val Element of the sequence.
* @param count Number of (virtual) copies.
*/
pseudo_sequence(const T& val, difference_type count)
: val(val), count(count) { }
iterator
begin() const
{ return iterator(val, 0); }
iterator
end() const
{ return iterator(val, count); }
private:
const T& val;
difference_type count;
};
template<typename _ValueTp>
class void_functor
{
inline void
operator()(const _ValueTp& v) const { }
};
according to @c comp.
* @param a First iterator.
* @param b Second iterator.
* @param c Third iterator.
* @param comp Comparator.
*/
template<typename RandomAccessIterator, typename Comparator>
RandomAccessIterator
median_of_three_iterators(RandomAccessIterator a, RandomAccessIterator b,
RandomAccessIterator c, Comparator& comp)
{
if (comp(*a, *b))
if (comp(*b, *c))
return b;
else
if (comp(*a, *c))
return c;
else
return a;
else
{
if (comp(*a, *c))
return a;
else
if (comp(*b, *c))
return c;
else
return b;
}
}
inline void
__replacement_assert(const char* __file, int __line,
const char* __function, const char* __condition)
{
std::printf("%s:%d: %s: Assertion '%s' failed.\n", __file, __line,
__function, __condition);
__builtin_abort();
}
#define _GLIBCXX_PARALLEL_ASSERT(_Condition) \
do \
{ \
if (!(_Condition)) \
__gnu_parallel::__replacement_assert(__FILE__, __LINE__, \
__PRETTY_FUNCTION__, #_Condition); \
} while (false)
}
#endif