Copyright (C) 1995-2003, 2006-2008, 2011 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA. */
#include <config.h>
#include <float.h>
#include <math.h>
#include <string.h>
#include <unistd.h>
#include <stdlib.h>
#define NDEBUG
#include <assert.h>
#ifdef HAVE_ERRNO_H
#include <errno.h>
#endif
#include <stdio.h>
#include <stdarg.h>
#include "quadmath-printf.h"
#include "fpioconst.h"
#ifdef USE_I18N_NUMBER_H
#include "_i18n_number.h"
#endif
#define outchar(ch) \
do \
{ \
register const int outc = (ch); \
if (PUTC (outc, fp) == EOF) \
{ \
if (buffer_malloced) \
free (wbuffer); \
return -1; \
} \
++done; \
} while (0)
#define PRINT(ptr, wptr, len) \
do \
{ \
register size_t outlen = (len); \
if (len > 20) \
{ \
if (PUT (fp, wide ? (const char *) wptr : ptr, outlen) != outlen) \
{ \
if (buffer_malloced) \
free (wbuffer); \
return -1; \
} \
ptr += outlen; \
done += outlen; \
} \
else \
{ \
if (wide) \
while (outlen-- > 0) \
outchar (*wptr++); \
else \
while (outlen-- > 0) \
outchar (*ptr++); \
} \
} while (0)
#define PADN(ch, len) \
do \
{ \
if (PAD (fp, ch, len) != len) \
{ \
if (buffer_malloced) \
free (wbuffer); \
return -1; \
} \
done += len; \
} \
while (0)
An MP variable occupies a varying number of entries in its array. We keep
track of this number for efficiency reasons. Otherwise we would always
have to process the whole array. */
#define MPN_VAR(name) mp_limb_t *name; mp_size_t name##size
#define MPN_ASSIGN(dst,src) \
memcpy (dst, src, (dst##size = src##size) * sizeof (mp_limb_t))
#define MPN_GE(u,v) \
(u##size > v##size || (u##size == v##size && mpn_cmp (u, v, u##size) >= 0))
extern mp_size_t mpn_extract_flt128 (mp_ptr res_ptr, mp_size_t size,
int *expt, int *is_neg,
__float128 value) attribute_hidden;
static unsigned int guess_grouping (unsigned int intdig_max,
const char *grouping);
static wchar_t *group_number (wchar_t *buf, wchar_t *bufend,
unsigned int intdig_no, const char *grouping,
wchar_t thousands_sep, int ngroups);
int
__quadmath_printf_fp (struct __quadmath_printf_file *fp,
const struct printf_info *info,
const void *const *args)
{
__float128 fpnum;
const char *decimal;
wchar_t decimalwc;
const char *thousands_sep = NULL;
wchar_t thousands_sepwc = L_('\0');
const char *grouping;
const char *special = NULL;
const wchar_t *wspecial = NULL;
position. */
mp_limb_t fp_input[(FLT128_MANT_DIG + BITS_PER_MP_LIMB - 1) / BITS_PER_MP_LIMB];
int to_shift = 0;
MPN_VAR(frac);
int exponent;
int expsign = 0;
int is_neg = 0;
MPN_VAR(scale);
MPN_VAR(tmp);
wchar_t digit;
int type;
int done = 0;
mp_limb_t cy;
int wide = info->wide;
wchar_t *wbuffer = NULL;
int buffer_malloced = 0;
auto wchar_t hack_digit (void);
wchar_t hack_digit (void)
{
mp_limb_t hi;
if (expsign != 0 && type == 'f' && exponent-- > 0)
hi = 0;
else if (scalesize == 0)
{
hi = frac[fracsize - 1];
frac[fracsize - 1] = mpn_mul_1 (frac, frac, fracsize - 1, 10);
}
else
{
if (fracsize < scalesize)
hi = 0;
else
{
hi = mpn_divmod (tmp, frac, fracsize, scale, scalesize);
tmp[fracsize - scalesize] = hi;
hi = tmp[0];
fracsize = scalesize;
while (fracsize != 0 && frac[fracsize - 1] == 0)
--fracsize;
if (fracsize == 0)
{
limbs. */
fracsize = 1;
return L_('0') + hi;
}
}
mp_limb_t _cy = mpn_mul_1 (frac, frac, fracsize, 10);
if (_cy != 0)
frac[fracsize++] = _cy;
}
return L_('0') + hi;
}
#ifdef USE_NL_LANGINFO
if (info->extra == 0)
decimal = nl_langinfo (DECIMAL_POINT);
else
{
decimal = nl_langinfo (MON_DECIMAL_POINT);
if (*decimal == '\0')
decimal = nl_langinfo (DECIMAL_POINT);
}
assert (*decimal != '\0');
#elif defined USE_LOCALECONV
const struct lconv *lc = localeconv ();
if (info->extra == 0)
decimal = lc->decimal_point;
else
{
decimal = lc->mon_decimal_point;
if (decimal == NULL || *decimal == '\0')
decimal = lc->decimal_point;
}
if (decimal == NULL || *decimal == '\0')
decimal = ".";
#else
decimal = ".";
#endif
#ifdef USE_NL_LANGINFO_WC
if (info->extra == 0)
decimalwc = nl_langinfo_wc (_NL_NUMERIC_DECIMAL_POINT_WC);
else
{
decimalwc = nl_langinfo_wc (_NL_MONETARY_DECIMAL_POINT_WC);
if (decimalwc == L_('\0'))
decimalwc = nl_langinfo_wc (_NL_NUMERIC_DECIMAL_POINT_WC);
}
assert (decimalwc != L_('\0'));
#else
decimalwc = L_('.');
#endif
#if defined USE_NL_LANGINFO && defined USE_NL_LANGINFO_WC
if (info->group)
{
if (info->extra == 0)
grouping = nl_langinfo (GROUPING);
else
grouping = nl_langinfo (MON_GROUPING);
if (*grouping <= 0 || *grouping == CHAR_MAX)
grouping = NULL;
else
{
if (wide)
{
if (info->extra == 0)
thousands_sepwc = nl_langinfo_wc (_NL_NUMERIC_THOUSANDS_SEP_WC);
else
thousands_sepwc = nl_langinfo_wc (_NL_MONETARY_THOUSANDS_SEP_WC);
if (thousands_sepwc == L_('\0'))
grouping = NULL;
}
else
{
if (info->extra == 0)
thousands_sep = nl_langinfo (THOUSANDS_SEP);
else
thousands_sep = nl_langinfo (MON_THOUSANDS_SEP);
if (*thousands_sep == '\0')
grouping = NULL;
}
}
}
else
#elif defined USE_NL_LANGINFO
if (info->group && !wide)
{
if (info->extra == 0)
grouping = nl_langinfo (GROUPING);
else
grouping = nl_langinfo (MON_GROUPING);
if (*grouping <= 0 || *grouping == CHAR_MAX)
grouping = NULL;
else
{
if (info->extra == 0)
thousands_sep = nl_langinfo (THOUSANDS_SEP);
else
thousands_sep = nl_langinfo (MON_THOUSANDS_SEP);
if (*thousands_sep == '\0')
grouping = NULL;
}
}
else
#elif defined USE_LOCALECONV
if (info->group && !wide)
{
if (info->extra == 0)
grouping = lc->grouping;
else
grouping = lc->mon_grouping;
if (grouping == NULL || *grouping <= 0 || *grouping == CHAR_MAX)
grouping = NULL;
else
{
if (info->extra == 0)
thousands_sep = lc->thousands_sep;
else
thousands_sep = lc->mon_thousands_sep;
if (thousands_sep == NULL || *thousands_sep == '\0')
grouping = NULL;
}
}
else
#endif
grouping = NULL;
if (grouping != NULL && !wide)
multibyte representation for the thousands separator,
we must ensure the wide character thousands separator
is available, even if it is fake. */
thousands_sepwc = (wchar_t) 0xfffffffe;
{
fpnum = **(const __float128 **) args[0];
if (isnanq (fpnum))
{
ieee854_float128 u = { .value = fpnum };
is_neg = u.ieee.negative != 0;
if (isupper (info->spec))
{
special = "NAN";
wspecial = L_("NAN");
}
else
{
special = "nan";
wspecial = L_("nan");
}
}
else if (isinfq (fpnum))
{
is_neg = fpnum < 0;
if (isupper (info->spec))
{
special = "INF";
wspecial = L_("INF");
}
else
{
special = "inf";
wspecial = L_("inf");
}
}
else
{
fracsize = mpn_extract_flt128 (fp_input,
(sizeof (fp_input) /
sizeof (fp_input[0])),
&exponent, &is_neg, fpnum);
to_shift = 1 + fracsize * BITS_PER_MP_LIMB - FLT128_MANT_DIG;
}
}
if (special)
{
int width = info->width;
if (is_neg || info->showsign || info->space)
--width;
width -= 3;
if (!info->left && width > 0)
PADN (' ', width);
if (is_neg)
outchar ('-');
else if (info->showsign)
outchar ('+');
else if (info->space)
outchar (' ');
PRINT (special, wspecial, 3);
if (info->left && width > 0)
PADN (' ', width);
return done;
}
of the number we can allocate the needed memory. It would be more
efficient to use variables of the fixed maximum size but because this
would be really big it could lead to memory problems. */
{
mp_size_t bignum_size = ((ABS (exponent) + BITS_PER_MP_LIMB - 1)
/ BITS_PER_MP_LIMB
+ (FLT128_MANT_DIG / BITS_PER_MP_LIMB > 2 ? 8 : 4))
* sizeof (mp_limb_t);
frac = (mp_limb_t *) alloca (bignum_size);
tmp = (mp_limb_t *) alloca (bignum_size);
scale = (mp_limb_t *) alloca (bignum_size);
}
exponents because the method used for the one is not applicable/efficient
for the other. */
scalesize = 0;
if (exponent > 2)
{
int scaleexpo = 0;
int explog = FLT128_MAX_10_EXP_LOG;
int exp10 = 0;
const struct mp_power *powers = &_fpioconst_pow10[explog + 1];
int cnt_h, cnt_l, i;
if ((exponent + to_shift) % BITS_PER_MP_LIMB == 0)
{
MPN_COPY_DECR (frac + (exponent + to_shift) / BITS_PER_MP_LIMB,
fp_input, fracsize);
fracsize += (exponent + to_shift) / BITS_PER_MP_LIMB;
}
else
{
cy = mpn_lshift (frac + (exponent + to_shift) / BITS_PER_MP_LIMB,
fp_input, fracsize,
(exponent + to_shift) % BITS_PER_MP_LIMB);
fracsize += (exponent + to_shift) / BITS_PER_MP_LIMB;
if (cy)
frac[fracsize++] = cy;
}
MPN_ZERO (frac, (exponent + to_shift) / BITS_PER_MP_LIMB);
assert (powers > &_fpioconst_pow10[0]);
do
{
--powers;
bits respectively has m+n or m+n-1 bits. */
if (exponent >= scaleexpo + powers->p_expo - 1)
{
if (scalesize == 0)
{
if (FLT128_MANT_DIG > _FPIO_CONST_OFFSET * BITS_PER_MP_LIMB)
{
#define _FPIO_CONST_SHIFT \
(((FLT128_MANT_DIG + BITS_PER_MP_LIMB - 1) / BITS_PER_MP_LIMB) \
- _FPIO_CONST_OFFSET)
IEEE quad long double. */
tmpsize = powers->arraysize + _FPIO_CONST_SHIFT;
memcpy (tmp + _FPIO_CONST_SHIFT,
&__tens[powers->arrayoff],
tmpsize * sizeof (mp_limb_t));
MPN_ZERO (tmp, _FPIO_CONST_SHIFT);
bigger too. */
exponent += _FPIO_CONST_SHIFT * BITS_PER_MP_LIMB;
}
else
{
tmpsize = powers->arraysize;
memcpy (tmp, &__tens[powers->arrayoff],
tmpsize * sizeof (mp_limb_t));
}
}
else
{
cy = mpn_mul (tmp, scale, scalesize,
&__tens[powers->arrayoff
+ _FPIO_CONST_OFFSET],
powers->arraysize - _FPIO_CONST_OFFSET);
tmpsize = scalesize + powers->arraysize - _FPIO_CONST_OFFSET;
if (cy == 0)
--tmpsize;
}
if (MPN_GE (frac, tmp))
{
int cnt;
MPN_ASSIGN (scale, tmp);
count_leading_zeros (cnt, scale[scalesize - 1]);
scaleexpo = (scalesize - 2) * BITS_PER_MP_LIMB - cnt - 1;
exp10 |= 1 << explog;
}
}
--explog;
}
while (powers > &_fpioconst_pow10[0]);
exponent = exp10;
with the lowest number of bytes possible without losing any
bytes. Also the highest bit in the scaling factor has to be set
(this is a requirement of the MPN division routines). */
if (scalesize > 0)
{
both numbers. */
for (i = 0; scale[i] == 0 && frac[i] == 0; i++)
;
count_leading_zeros (cnt_h, scale[scalesize - 1]);
if (cnt_h == 0)
{
we only have to remove the trailing empty limbs. */
if (i > 0)
{
MPN_COPY_INCR (scale, scale + i, scalesize - i);
scalesize -= i;
MPN_COPY_INCR (frac, frac + i, fracsize - i);
fracsize -= i;
}
}
else
{
if (scale[i] != 0)
{
count_trailing_zeros (cnt_l, scale[i]);
if (frac[i] != 0)
{
int cnt_l2;
count_trailing_zeros (cnt_l2, frac[i]);
if (cnt_l2 < cnt_l)
cnt_l = cnt_l2;
}
}
else
count_trailing_zeros (cnt_l, frac[i]);
if (i == 0 && BITS_PER_MP_LIMB - cnt_h > cnt_l)
{
so that the scaling factor has its highest bit set. */
(void) mpn_lshift (scale, scale, scalesize, cnt_h);
cy = mpn_lshift (frac, frac, fracsize, cnt_h);
if (cy != 0)
frac[fracsize++] = cy;
}
else if (BITS_PER_MP_LIMB - cnt_h <= cnt_l)
{
and by packing the non-zero limbs which gain another
free one. */
(void) mpn_rshift (scale, scale + i, scalesize - i,
BITS_PER_MP_LIMB - cnt_h);
scalesize -= i + 1;
(void) mpn_rshift (frac, frac + i, fracsize - i,
BITS_PER_MP_LIMB - cnt_h);
fracsize -= frac[fracsize - i - 1] == 0 ? i + 1 : i;
}
else
{
The non-zero parts occupy the same number of limbs. */
(void) mpn_rshift (scale, scale + (i - 1),
scalesize - (i - 1),
BITS_PER_MP_LIMB - cnt_h);
scalesize -= i;
(void) mpn_rshift (frac, frac + (i - 1),
fracsize - (i - 1),
BITS_PER_MP_LIMB - cnt_h);
fracsize -= frac[fracsize - (i - 1) - 1] == 0 ? i : i - 1;
}
}
}
}
else if (exponent < 0)
{
int exp10 = 0;
int explog = FLT128_MAX_10_EXP_LOG;
const struct mp_power *powers = &_fpioconst_pow10[explog + 1];
cy = mpn_lshift (frac, fp_input, fracsize, to_shift);
frac[fracsize++] = cy;
assert (cy == 1 || (frac[fracsize - 2] == 0 && frac[0] == 0));
expsign = 1;
exponent = -exponent;
assert (powers != &_fpioconst_pow10[0]);
do
{
--powers;
if (exponent >= powers->m_expo)
{
int i, incr, cnt_h, cnt_l;
mp_limb_t topval[2];
bigger than the second. */
if (fracsize < powers->arraysize - _FPIO_CONST_OFFSET)
cy = mpn_mul (tmp, &__tens[powers->arrayoff
+ _FPIO_CONST_OFFSET],
powers->arraysize - _FPIO_CONST_OFFSET,
frac, fracsize);
else
cy = mpn_mul (tmp, frac, fracsize,
&__tens[powers->arrayoff + _FPIO_CONST_OFFSET],
powers->arraysize - _FPIO_CONST_OFFSET);
tmpsize = fracsize + powers->arraysize - _FPIO_CONST_OFFSET;
if (cy == 0)
--tmpsize;
count_leading_zeros (cnt_h, tmp[tmpsize - 1]);
incr = (tmpsize - fracsize) * BITS_PER_MP_LIMB
+ BITS_PER_MP_LIMB - 1 - cnt_h;
assert (incr <= powers->p_expo);
for overflow. This is done by comparing with 10 shifted
to the right position. */
if (incr == exponent + 3)
{
if (cnt_h <= BITS_PER_MP_LIMB - 4)
{
topval[0] = 0;
topval[1]
= ((mp_limb_t) 10) << (BITS_PER_MP_LIMB - 4 - cnt_h);
}
else
{
topval[0] = ((mp_limb_t) 10) << (BITS_PER_MP_LIMB - 4);
topval[1] = 0;
(void) mpn_lshift (topval, topval, 2,
BITS_PER_MP_LIMB - cnt_h);
}
}
If the result is greater than 1.0 be have to test it
against 10.0. If it is greater or equal to 10.0 the
multiplication was not valid. This is because we cannot
determine the number of bits in the result in advance. */
if (incr < exponent + 3
|| (incr == exponent + 3 &&
(tmp[tmpsize - 1] < topval[1]
|| (tmp[tmpsize - 1] == topval[1]
&& tmp[tmpsize - 2] < topval[0]))))
{
exponents. */
exponent -= incr;
exp10 |= 1 << explog;
1.0, we must not shift the non-fractional digits down. */
if (exponent < 0)
cnt_h += -exponent;
for (i = 0; tmp[i] == 0; ++i);
if (cnt_h == BITS_PER_MP_LIMB - 1)
{
MPN_COPY (frac, tmp + i, tmpsize - i);
fracsize = tmpsize - i;
}
else
{
count_trailing_zeros (cnt_l, tmp[i]);
if (i == 0 && BITS_PER_MP_LIMB - 1 - cnt_h > cnt_l)
{
number so that the leading digit is in a
separate limb. */
cy = mpn_lshift (frac, tmp, tmpsize, cnt_h + 1);
fracsize = tmpsize + 1;
frac[fracsize - 1] = cy;
}
else if (BITS_PER_MP_LIMB - 1 - cnt_h <= cnt_l)
{
(void) mpn_rshift (frac, tmp + i, tmpsize - i,
BITS_PER_MP_LIMB - 1 - cnt_h);
fracsize = tmpsize - i;
}
else
{
are zero. The non-zero parts occupy the same
number of limbs. */
(void) mpn_rshift (frac, tmp + (i - 1),
tmpsize - (i - 1),
BITS_PER_MP_LIMB - 1 - cnt_h);
fracsize = tmpsize - (i - 1);
}
}
}
}
--explog;
}
while (powers != &_fpioconst_pow10[1] && exponent > 0);
if (exponent > 0)
{
int cnt_l;
cy = mpn_mul_1 (tmp, frac, fracsize, 10);
tmpsize = fracsize;
assert (cy == 0 || tmp[tmpsize - 1] < 20);
count_trailing_zeros (cnt_l, tmp[0]);
if (cnt_l < MIN (4, exponent))
{
cy = mpn_lshift (frac, tmp, tmpsize,
BITS_PER_MP_LIMB - MIN (4, exponent));
if (cy != 0)
frac[tmpsize++] = cy;
}
else
(void) mpn_rshift (frac, tmp, tmpsize, MIN (4, exponent));
fracsize = tmpsize;
exp10 |= 1;
assert (frac[fracsize - 1] < 10);
}
exponent = exp10;
}
else
{
numbers are in the range of 1.0 <= |fp| < 8.0. We simply
shift it to the right place and divide it by 1.0 to get the
leading digit. (Of course this division is not really made.) */
assert (0 <= exponent && exponent < 3 &&
exponent + to_shift < BITS_PER_MP_LIMB);
cy = mpn_lshift (frac, fp_input, fracsize, (exponent + to_shift));
frac[fracsize++] = cy;
exponent = 0;
}
{
int width = info->width;
wchar_t *wstartp, *wcp;
size_t chars_needed;
int expscale;
int intdig_max, intdig_no = 0;
int fracdig_min;
int fracdig_max;
int dig_max;
int significant;
int ngroups = 0;
char spec = tolower (info->spec);
if (spec == 'e')
{
type = info->spec;
intdig_max = 1;
fracdig_min = fracdig_max = info->prec < 0 ? 6 : info->prec;
chars_needed = 1 + 1 + (size_t) fracdig_max + 1 + 1 + 4;
dig_max = __INT_MAX__;
significant = 1;
}
else if (spec == 'f')
{
type = 'f';
fracdig_min = fracdig_max = info->prec < 0 ? 6 : info->prec;
dig_max = __INT_MAX__;
significant = 1;
if (expsign == 0)
{
intdig_max = exponent + 1;
chars_needed = (size_t) exponent + 1 + 1 + (size_t) fracdig_max;
}
else
{
intdig_max = 1;
chars_needed = 1 + 1 + (size_t) fracdig_max;
}
}
else
{
dig_max = info->prec < 0 ? 6 : (info->prec == 0 ? 1 : info->prec);
if ((expsign == 0 && exponent >= dig_max)
|| (expsign != 0 && exponent > 4))
{
if ('g' - 'G' == 'e' - 'E')
type = 'E' + (info->spec - 'G');
else
type = isupper (info->spec) ? 'E' : 'e';
fracdig_max = dig_max - 1;
intdig_max = 1;
chars_needed = 1 + 1 + (size_t) fracdig_max + 1 + 1 + 4;
}
else
{
type = 'f';
intdig_max = expsign == 0 ? exponent + 1 : 0;
fracdig_max = dig_max - intdig_max;
for leading zeros when < 1.0. The number of leading
zeros can be as many as would be required for
exponential notation with a negative two-digit
exponent, which is 4. */
chars_needed = (size_t) dig_max + 1 + 4;
}
fracdig_min = info->alt ? fracdig_max : 0;
significant = 0;
}
if (grouping)
{
many spaces we need for separator characters. */
ngroups = guess_grouping (intdig_max, grouping);
number of groups. */
chars_needed += ngroups + 1;
}
it is possible that we need two more characters in front of all the
other output. If the amount of memory we have to allocate is too
large use `malloc' instead of `alloca'. */
if (__builtin_expect (chars_needed >= (size_t) -1 / sizeof (wchar_t) - 2
|| chars_needed < fracdig_max, 0))
{
#if defined HAVE_ERRNO_H && defined ERANGE
errno = ERANGE;
#endif
return -1;
}
size_t wbuffer_to_alloc = (2 + chars_needed) * sizeof (wchar_t);
buffer_malloced = wbuffer_to_alloc >= 4096;
if (__builtin_expect (buffer_malloced, 0))
{
wbuffer = (wchar_t *) malloc (wbuffer_to_alloc);
if (wbuffer == NULL)
return -1;
}
else
wbuffer = (wchar_t *) alloca (wbuffer_to_alloc);
wcp = wstartp = wbuffer + 2;
if (expsign == 0 || type != 'f')
{
assert (expsign == 0 || intdig_max == 1);
while (intdig_no < intdig_max)
{
++intdig_no;
*wcp++ = hack_digit ();
}
significant = 1;
if (info->alt
|| fracdig_min > 0
|| (fracdig_max > 0 && (fracsize > 1 || frac[0] != 0)))
*wcp++ = decimalwc;
}
else
{
in the buffer. */
*wcp++ = L_('0');
--exponent;
*wcp++ = decimalwc;
}
int fracdig_no = 0;
int added_zeros = 0;
while (fracdig_no < fracdig_min + added_zeros
|| (fracdig_no < fracdig_max && (fracsize > 1 || frac[0] != 0)))
{
++fracdig_no;
*wcp = hack_digit ();
if (*wcp++ != L_('0'))
significant = 1;
else if (significant == 0)
{
++fracdig_max;
if (fracdig_min > 0)
++added_zeros;
}
}
digit = hack_digit ();
if (digit > L_('4'))
{
wchar_t *wtp = wcp;
if (digit == L_('5')
&& ((*(wcp - 1) != decimalwc && (*(wcp - 1) & 1) == 0)
|| ((*(wcp - 1) == decimalwc && (*(wcp - 2) & 1) == 0))))
{
if (fracsize == 1 && frac[0] == 0)
(IEEE 754-1985 4.1 says this is the default rounding.) */
goto do_expo;
else if (scalesize == 0)
{
normalization happened. */
size_t lcnt = fracsize;
while (lcnt >= 1 && frac[lcnt - 1] == 0)
--lcnt;
if (lcnt == 0)
(IEEE 754-1985 4.1 says this is the default rounding.) */
goto do_expo;
}
}
if (fracdig_no > 0)
{
radix character is reached. */
int removed = 0;
while (*--wtp != decimalwc && *wtp == L_('9'))
{
*wtp = L_('0');
++removed;
}
if (removed == fracdig_min && added_zeros > 0)
--added_zeros;
if (*wtp != decimalwc)
(*wtp)++;
else if (__builtin_expect (spec == 'g' && type == 'f' && info->alt
&& wtp == wstartp + 1
&& wstartp[0] == L_('0'),
0))
the format is 'g' or 'G', and the alternative format
is selected. This means the result must be "1.". */
--added_zeros;
}
if (fracdig_no == 0 || *wtp == decimalwc)
{
if (*(wtp - 1) == decimalwc)
--wtp;
while (--wtp >= wstartp && *wtp == L_('9'))
*wtp = L_('0');
if (wtp >= wstartp)
(*wtp)++;
else
{
if (type != 'f')
{
*wstartp = '1';
exponent += expsign == 0 ? 1 : -1;
e.g. for 0.999999999. Make sure exponent 0 always
uses + sign. */
if (exponent == 0)
expsign = 0;
}
else if (intdig_no == dig_max)
{
really in the range for %f output but after rounding
the number of digits is too big. */
*--wstartp = decimalwc;
*--wstartp = L_('1');
if (info->alt || fracdig_no > 0)
{
wstartp[intdig_no + 2] = L_('0');
++fracdig_no;
}
fracdig_no += intdig_no;
intdig_no = 1;
fracdig_max = intdig_max - intdig_no;
++exponent;
type = isupper (info->spec) ? 'E' : 'e';
}
else
{
radix. */
*--wstartp = L_('1');
++intdig_no;
}
If the number now exceeds the limits remove some
fractional digits. */
if (intdig_no + fracdig_no > dig_max)
{
wcp -= intdig_no + fracdig_no - dig_max;
fracdig_no -= intdig_no + fracdig_no - dig_max;
}
}
}
}
do_expo:
while (fracdig_no > fracdig_min + added_zeros && *(wcp - 1) == L_('0'))
{
--wcp;
--fracdig_no;
}
the radix character. */
if (fracdig_no == 0 && !info->alt && *(wcp - 1) == decimalwc)
--wcp;
if (grouping)
{
enough memory but we need here the correct number of groups. */
if (intdig_no != intdig_max)
ngroups = guess_grouping (intdig_no, grouping);
wcp = group_number (wstartp, wcp, intdig_no, grouping, thousands_sepwc,
ngroups);
}
if (type != 'f')
{
if (__builtin_expect (expsign != 0 && exponent == 4 && spec == 'g', 0))
{
really smaller than -4, which requires the 'e'/'E' format.
But after rounding the number has an exponent of -4. */
assert (wcp >= wstartp + 1);
assert (wstartp[0] == L_('1'));
memcpy (wstartp, L_("0.0001"), 6 * sizeof (wchar_t));
wstartp[1] = decimalwc;
if (wcp >= wstartp + 2)
{
size_t cnt;
for (cnt = 0; cnt < wcp - (wstartp + 2); cnt++)
wstartp[6 + cnt] = L_('0');
wcp += 4;
}
else
wcp += 5;
}
else
{
*wcp++ = (wchar_t) type;
*wcp++ = expsign ? L_('-') : L_('+');
expscale = 10;
while (expscale <= exponent)
expscale *= 10;
if (exponent < 10)
*wcp++ = L_('0');
else
do
{
expscale /= 10;
*wcp++ = L_('0') + (exponent / expscale);
exponent %= expscale;
}
while (expscale > 10);
*wcp++ = L_('0') + exponent;
}
}
character. */
if (is_neg || info->showsign || info->space)
--width;
width -= wcp - wstartp;
if (!info->left && info->pad != '0' && width > 0)
PADN (info->pad, width);
if (is_neg)
outchar ('-');
else if (info->showsign)
outchar ('+');
else if (info->space)
outchar (' ');
if (!info->left && info->pad == '0' && width > 0)
PADN ('0', width);
{
char *buffer = NULL;
char *buffer_end __attribute__((__unused__)) = NULL;
char *cp = NULL;
char *tmpptr;
if (! wide)
{
size_t decimal_len;
size_t thousands_sep_len;
wchar_t *copywc;
#ifdef USE_I18N_NUMBER_H
size_t factor = (info->i18n
? nl_langinfo_wc (_NL_CTYPE_MB_CUR_MAX)
: 1);
#else
size_t factor = 1;
#endif
decimal_len = strlen (decimal);
if (thousands_sep == NULL)
thousands_sep_len = 0;
else
thousands_sep_len = strlen (thousands_sep);
size_t nbuffer = (2 + chars_needed * factor + decimal_len
+ ngroups * thousands_sep_len);
if (__builtin_expect (buffer_malloced, 0))
{
buffer = (char *) malloc (nbuffer);
if (buffer == NULL)
{
free (wbuffer);
return -1;
}
}
else
buffer = (char *) alloca (nbuffer);
buffer_end = buffer + nbuffer;
(except for the decimal point and thousands separator) must
be coming from the ASCII range we can esily convert the
string without mapping tables. */
for (cp = buffer, copywc = wstartp; copywc < wcp; ++copywc)
if (*copywc == decimalwc)
memcpy (cp, decimal, decimal_len), cp += decimal_len;
else if (*copywc == thousands_sepwc)
memcpy (cp, thousands_sep, thousands_sep_len), cp += thousands_sep_len;
else
*cp++ = (char) *copywc;
}
tmpptr = buffer;
#if USE_I18N_NUMBER_H
if (__builtin_expect (info->i18n, 0))
{
tmpptr = _i18n_number_rewrite (tmpptr, cp, buffer_end);
cp = buffer_end;
assert ((uintptr_t) buffer <= (uintptr_t) tmpptr);
assert ((uintptr_t) tmpptr < (uintptr_t) buffer_end);
}
#endif
PRINT (tmpptr, wstartp, wide ? wcp - wstartp : cp - tmpptr);
if (__builtin_expect (buffer_malloced, 0))
{
free (buffer);
free (wbuffer);
}
}
if (info->left && width > 0)
PADN (info->pad, width);
}
return done;
}
into a number with INTDIG_MAX integer digits. */
static unsigned int
guess_grouping (unsigned int intdig_max, const char *grouping)
{
unsigned int groups;
if (*grouping == CHAR_MAX || *grouping <= 0)
return 0;
groups = 0;
while (intdig_max > (unsigned int) *grouping)
{
++groups;
intdig_max -= *grouping++;
if (*grouping == 0)
{
groups += (intdig_max - 1) / grouping[-1];
break;
}
else if (*grouping == CHAR_MAX || *grouping <= 0)
break;
}
return groups;
}
There is guaranteed enough space past BUFEND to extend it.
Return the new end of buffer. */
static wchar_t *
group_number (wchar_t *buf, wchar_t *bufend, unsigned int intdig_no,
const char *grouping, wchar_t thousands_sep, int ngroups)
{
wchar_t *p;
if (ngroups == 0)
return bufend;
memmove (buf + intdig_no + ngroups, buf + intdig_no,
(bufend - (buf + intdig_no)) * sizeof (wchar_t));
p = buf + intdig_no + ngroups - 1;
do
{
unsigned int len = *grouping++;
do
*p-- = buf[--intdig_no];
while (--len > 0);
*p-- = thousands_sep;
if (*grouping == 0)
--grouping;
else if (*grouping == CHAR_MAX || *grouping <= 0)
break;
} while (intdig_no > (unsigned int) *grouping);
do
*p-- = buf[--intdig_no];
while (p > buf);
return bufend + ngroups;
}