Copyright (C) 1987, 1992, 1994, 1995, 1997, 1998, 1999, 2000, 2001,
2002, 2004, 2008, 2009 Free Software Foundation.
Contributed by Per Bothner, 1994.
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "cpplib.h"
#include "internal.h"
#define PART_PRECISION (sizeof (cpp_num_part) * CHAR_BIT)
#define HALF_MASK (~(cpp_num_part) 0 >> (PART_PRECISION / 2))
#define LOW_PART(num_part) (num_part & HALF_MASK)
#define HIGH_PART(num_part) (num_part >> (PART_PRECISION / 2))
struct op
{
const cpp_token *token;
cpp_num value;
source_location loc;
enum cpp_ttype op;
};
#define num_zerop(num) ((num.low | num.high) == 0)
#define num_eq(num1, num2) (num1.low == num2.low && num1.high == num2.high)
static bool num_positive (cpp_num, size_t);
static bool num_greater_eq (cpp_num, cpp_num, size_t);
static cpp_num num_trim (cpp_num, size_t);
static cpp_num num_part_mul (cpp_num_part, cpp_num_part);
static cpp_num num_unary_op (cpp_reader *, cpp_num, enum cpp_ttype);
static cpp_num num_binary_op (cpp_reader *, cpp_num, cpp_num, enum cpp_ttype);
static cpp_num num_negate (cpp_num, size_t);
static cpp_num num_bitwise_op (cpp_reader *, cpp_num, cpp_num, enum cpp_ttype);
static cpp_num num_inequality_op (cpp_reader *, cpp_num, cpp_num,
enum cpp_ttype);
static cpp_num num_equality_op (cpp_reader *, cpp_num, cpp_num,
enum cpp_ttype);
static cpp_num num_mul (cpp_reader *, cpp_num, cpp_num);
static cpp_num num_div_op (cpp_reader *, cpp_num, cpp_num, enum cpp_ttype);
static cpp_num num_lshift (cpp_num, size_t, size_t);
static cpp_num num_rshift (cpp_num, size_t, size_t);
static cpp_num append_digit (cpp_num, int, int, size_t);
static cpp_num parse_defined (cpp_reader *);
static cpp_num eval_token (cpp_reader *, const cpp_token *);
static struct op *reduce (cpp_reader *, struct op *, enum cpp_ttype);
static unsigned int interpret_float_suffix (const uchar *, size_t);
static unsigned int interpret_int_suffix (const uchar *, size_t);
static void check_promotion (cpp_reader *, const struct op *);
#define CPP_UPLUS ((enum cpp_ttype) (CPP_LAST_CPP_OP + 1))
#define CPP_UMINUS ((enum cpp_ttype) (CPP_LAST_CPP_OP + 2))
message load and subsequent jump completely out of the main path. */
#define SYNTAX_ERROR(msgid) \
do { cpp_error (pfile, CPP_DL_ERROR, msgid); goto syntax_error; } while(0)
#define SYNTAX_ERROR2(msgid, arg) \
do { cpp_error (pfile, CPP_DL_ERROR, msgid, arg); goto syntax_error; } \
while(0)
length LEN, possibly zero. Returns 0 for an invalid suffix, or a
flag vector describing the suffix. */
static unsigned int
interpret_float_suffix (const uchar *s, size_t len)
{
size_t f, l, w, q, i, d;
size_t r, k, u, h;
f = l = w = q = i = d = 0;
r = k = u = h = 0;
while (len--)
switch (s[len])
{
case 'r': case 'R': r++; break;
case 'k': case 'K': k++; break;
case 'u': case 'U': u++; break;
case 'h': case 'H': h++; break;
case 'f': case 'F':
if (d > 0)
return 0;
f++;
break;
case 'l': case 'L':
if (d > 0)
return 0;
l++;
if (l == 2 && s[len] != s[len + 1])
return 0;
break;
case 'w': case 'W':
if (d > 0)
return 0;
w++;
break;
case 'q': case 'Q':
if (d > 0)
return 0;
q++;
break;
case 'i': case 'I':
case 'j': case 'J': i++; break;
case 'd': case 'D': d++; break;
default:
return 0;
}
if (r + k > 1 || h > 1 || l > 2 || u > 1)
return 0;
if (r == 1)
{
if (f || i || d || w || q)
return 0;
return (CPP_N_FRACT
| (u ? CPP_N_UNSIGNED : 0)
| (h ? CPP_N_SMALL :
l == 2 ? CPP_N_LARGE :
l == 1 ? CPP_N_MEDIUM : 0));
}
if (k == 1)
{
if (f || i || d || w || q)
return 0;
return (CPP_N_ACCUM
| (u ? CPP_N_UNSIGNED : 0)
| (h ? CPP_N_SMALL :
l == 2 ? CPP_N_LARGE :
l == 1 ? CPP_N_MEDIUM : 0));
}
if (f + l + w + q > 1 || i > 1 || h + u > 0)
return 0;
if (d && ((d + f + l != 2) || i))
return 0;
return ((i ? CPP_N_IMAGINARY : 0)
| (f ? CPP_N_SMALL :
l ? CPP_N_LARGE :
w ? CPP_N_MD_W :
q ? CPP_N_MD_Q : CPP_N_MEDIUM)
| (d ? CPP_N_DFLOAT : 0));
}
of length LEN, possibly zero. Returns 0 for an invalid suffix, or a
flag vector describing the suffix. */
static unsigned int
interpret_int_suffix (const uchar *s, size_t len)
{
size_t u, l, i;
u = l = i = 0;
while (len--)
switch (s[len])
{
case 'u': case 'U': u++; break;
case 'i': case 'I':
case 'j': case 'J': i++; break;
case 'l': case 'L': l++;
if (l == 2 && s[len] != s[len + 1])
return 0;
break;
default:
return 0;
}
if (l > 2 || u > 1 || i > 1)
return 0;
return ((i ? CPP_N_IMAGINARY : 0)
| (u ? CPP_N_UNSIGNED : 0)
| ((l == 0) ? CPP_N_SMALL
: (l == 1) ? CPP_N_MEDIUM : CPP_N_LARGE));
}
floating point, or invalid), radix (decimal, octal, hexadecimal),
and type suffixes. */
unsigned int
cpp_classify_number (cpp_reader *pfile, const cpp_token *token)
{
const uchar *str = token->val.str.text;
const uchar *limit;
unsigned int max_digit, result, radix;
enum {NOT_FLOAT = 0, AFTER_POINT, AFTER_EXPON} float_flag;
digit. Fast-path this very common case. */
if (token->val.str.len == 1)
return CPP_N_INTEGER | CPP_N_SMALL | CPP_N_DECIMAL;
limit = str + token->val.str.len;
float_flag = NOT_FLOAT;
max_digit = 0;
radix = 10;
if (*str == '0')
{
radix = 8;
str++;
if ((*str == 'x' || *str == 'X')
&& (str[1] == '.' || ISXDIGIT (str[1])))
{
radix = 16;
str++;
}
else if ((*str == 'b' || *str == 'B') && (str[1] == '0' || str[1] == '1'))
{
radix = 2;
str++;
}
}
for (;;)
{
unsigned int c = *str++;
if (ISDIGIT (c) || (ISXDIGIT (c) && radix == 16))
{
c = hex_value (c);
if (c > max_digit)
max_digit = c;
}
else if (c == '.')
{
if (float_flag == NOT_FLOAT)
float_flag = AFTER_POINT;
else
SYNTAX_ERROR ("too many decimal points in number");
}
else if ((radix <= 10 && (c == 'e' || c == 'E'))
|| (radix == 16 && (c == 'p' || c == 'P')))
{
float_flag = AFTER_EXPON;
break;
}
else
{
str--;
break;
}
}
if (radix != 16 && float_flag == NOT_FLOAT)
{
result = interpret_float_suffix (str, limit - str);
if ((result & CPP_N_FRACT) || (result & CPP_N_ACCUM))
{
result |= CPP_N_FLOATING;
if (radix == 8)
radix = 10;
if (CPP_PEDANTIC (pfile))
cpp_error (pfile, CPP_DL_PEDWARN,
"fixed-point constants are a GCC extension");
goto syntax_ok;
}
else
result = 0;
}
if (float_flag != NOT_FLOAT && radix == 8)
radix = 10;
if (max_digit >= radix)
{
if (radix == 2)
SYNTAX_ERROR2 ("invalid digit \"%c\" in binary constant", '0' + max_digit);
else
SYNTAX_ERROR2 ("invalid digit \"%c\" in octal constant", '0' + max_digit);
}
if (float_flag != NOT_FLOAT)
{
if (radix == 2)
{
cpp_error (pfile, CPP_DL_ERROR,
"invalid prefix \"0b\" for floating constant");
return CPP_N_INVALID;
}
if (radix == 16 && CPP_PEDANTIC (pfile) && !CPP_OPTION (pfile, c99))
cpp_error (pfile, CPP_DL_PEDWARN,
"use of C99 hexadecimal floating constant");
if (float_flag == AFTER_EXPON)
{
if (*str == '+' || *str == '-')
str++;
if (!ISDIGIT (*str))
SYNTAX_ERROR ("exponent has no digits");
do
str++;
while (ISDIGIT (*str));
}
else if (radix == 16)
SYNTAX_ERROR ("hexadecimal floating constants require an exponent");
result = interpret_float_suffix (str, limit - str);
if (result == 0)
{
cpp_error (pfile, CPP_DL_ERROR,
"invalid suffix \"%.*s\" on floating constant",
(int) (limit - str), str);
return CPP_N_INVALID;
}
if (limit != str
&& CPP_WTRADITIONAL (pfile)
&& ! cpp_sys_macro_p (pfile))
cpp_error (pfile, CPP_DL_WARNING,
"traditional C rejects the \"%.*s\" suffix",
(int) (limit - str), str);
if ((result & CPP_N_DFLOAT) && radix != 10)
{
cpp_error (pfile, CPP_DL_ERROR,
"invalid suffix \"%.*s\" with hexadecimal floating constant",
(int) (limit - str), str);
return CPP_N_INVALID;
}
if ((result & (CPP_N_FRACT | CPP_N_ACCUM)) && CPP_PEDANTIC (pfile))
cpp_error (pfile, CPP_DL_PEDWARN,
"fixed-point constants are a GCC extension");
if ((result & CPP_N_DFLOAT) && CPP_PEDANTIC (pfile))
cpp_error (pfile, CPP_DL_PEDWARN,
"decimal float constants are a GCC extension");
result |= CPP_N_FLOATING;
}
else
{
result = interpret_int_suffix (str, limit - str);
if (result == 0)
{
cpp_error (pfile, CPP_DL_ERROR,
"invalid suffix \"%.*s\" on integer constant",
(int) (limit - str), str);
return CPP_N_INVALID;
}
Suppress warning about 'LL' with -Wno-long-long. */
if (CPP_WTRADITIONAL (pfile) && ! cpp_sys_macro_p (pfile))
{
int u_or_i = (result & (CPP_N_UNSIGNED|CPP_N_IMAGINARY));
int large = (result & CPP_N_WIDTH) == CPP_N_LARGE;
if (u_or_i || (large && CPP_OPTION (pfile, warn_long_long)))
cpp_error (pfile, CPP_DL_WARNING,
"traditional C rejects the \"%.*s\" suffix",
(int) (limit - str), str);
}
if ((result & CPP_N_WIDTH) == CPP_N_LARGE
&& ! CPP_OPTION (pfile, c99)
&& CPP_OPTION (pfile, warn_long_long))
cpp_error (pfile, CPP_DL_PEDWARN,
"use of C99 long long integer constant");
result |= CPP_N_INTEGER;
}
syntax_ok:
if ((result & CPP_N_IMAGINARY) && CPP_PEDANTIC (pfile))
cpp_error (pfile, CPP_DL_PEDWARN,
"imaginary constants are a GCC extension");
if (radix == 2 && CPP_PEDANTIC (pfile))
cpp_error (pfile, CPP_DL_PEDWARN,
"binary constants are a GCC extension");
if (radix == 10)
result |= CPP_N_DECIMAL;
else if (radix == 16)
result |= CPP_N_HEX;
else if (radix == 2)
result |= CPP_N_BINARY;
else
result |= CPP_N_OCTAL;
return result;
syntax_error:
return CPP_N_INVALID;
}
of precision options->precision.
We do not provide any interface for decimal->float conversion,
because the preprocessor doesn't need it and we don't want to
drag in GCC's floating point emulator. */
cpp_num
cpp_interpret_integer (cpp_reader *pfile, const cpp_token *token,
unsigned int type)
{
const uchar *p, *end;
cpp_num result;
result.low = 0;
result.high = 0;
result.unsignedp = !!(type & CPP_N_UNSIGNED);
result.overflow = false;
p = token->val.str.text;
end = p + token->val.str.len;
if (token->val.str.len == 1)
result.low = p[0] - '0';
else
{
cpp_num_part max;
size_t precision = CPP_OPTION (pfile, precision);
unsigned int base = 10, c = 0;
bool overflow = false;
if ((type & CPP_N_RADIX) == CPP_N_OCTAL)
{
base = 8;
p++;
}
else if ((type & CPP_N_RADIX) == CPP_N_HEX)
{
base = 16;
p += 2;
}
else if ((type & CPP_N_RADIX) == CPP_N_BINARY)
{
base = 2;
p += 2;
}
needing the precision and slowness of double integers. */
max = ~(cpp_num_part) 0;
if (precision < PART_PRECISION)
max >>= PART_PRECISION - precision;
max = (max - base + 1) / base + 1;
for (; p < end; p++)
{
c = *p;
if (ISDIGIT (c) || (base == 16 && ISXDIGIT (c)))
c = hex_value (c);
else
break;
if (result.low < max)
result.low = result.low * base + c;
else
{
result = append_digit (result, c, base, precision);
overflow |= result.overflow;
max = 0;
}
}
if (overflow)
cpp_error (pfile, CPP_DL_PEDWARN,
"integer constant is too large for its type");
decimal numbers. Traditional numbers were always signed (but
we still honor an explicit U suffix); but we only have
traditional semantics in directives. */
else if (!result.unsignedp
&& !(CPP_OPTION (pfile, traditional)
&& pfile->state.in_directive)
&& !num_positive (result, precision))
{
if (base == 10)
cpp_error (pfile, CPP_DL_WARNING,
"integer constant is so large that it is unsigned");
result.unsignedp = true;
}
}
return result;
}
static cpp_num
append_digit (cpp_num num, int digit, int base, size_t precision)
{
cpp_num result;
unsigned int shift;
bool overflow;
cpp_num_part add_high, add_low;
need to worry about add_high overflowing. */
switch (base)
{
case 2:
shift = 1;
break;
case 16:
shift = 4;
break;
default:
shift = 3;
}
overflow = !!(num.high >> (PART_PRECISION - shift));
result.high = num.high << shift;
result.low = num.low << shift;
result.high |= num.low >> (PART_PRECISION - shift);
result.unsignedp = num.unsignedp;
if (base == 10)
{
add_low = num.low << 1;
add_high = (num.high << 1) + (num.low >> (PART_PRECISION - 1));
}
else
add_high = add_low = 0;
if (add_low + digit < add_low)
add_high++;
add_low += digit;
if (result.low + add_low < result.low)
add_high++;
if (result.high + add_high < result.high)
overflow = true;
result.low += add_low;
result.high += add_high;
result.overflow = overflow;
overflow of the (possibly shorter) target precision. */
num.low = result.low;
num.high = result.high;
result = num_trim (result, precision);
if (!num_eq (result, num))
result.overflow = true;
return result;
}
static cpp_num
parse_defined (cpp_reader *pfile)
{
cpp_num result;
int paren = 0;
cpp_hashnode *node = 0;
const cpp_token *token;
cpp_context *initial_context = pfile->context;
pfile->state.prevent_expansion++;
token = cpp_get_token (pfile);
if (token->type == CPP_OPEN_PAREN)
{
paren = 1;
token = cpp_get_token (pfile);
}
if (token->type == CPP_NAME)
{
node = token->val.node;
if (paren && cpp_get_token (pfile)->type != CPP_CLOSE_PAREN)
{
cpp_error (pfile, CPP_DL_ERROR, "missing ')' after \"defined\"");
node = 0;
}
}
else
{
cpp_error (pfile, CPP_DL_ERROR,
"operator \"defined\" requires an identifier");
if (token->flags & NAMED_OP)
{
cpp_token op;
op.flags = 0;
op.type = token->type;
cpp_error (pfile, CPP_DL_ERROR,
"(\"%s\" is an alternative token for \"%s\" in C++)",
cpp_token_as_text (pfile, token),
cpp_token_as_text (pfile, &op));
}
}
if (node)
{
if (pfile->context != initial_context && CPP_PEDANTIC (pfile))
cpp_error (pfile, CPP_DL_WARNING,
"this use of \"defined\" may not be portable");
_cpp_mark_macro_used (node);
if (!(node->flags & NODE_USED))
{
node->flags |= NODE_USED;
if (node->type == NT_MACRO)
{
if (pfile->cb.used_define)
pfile->cb.used_define (pfile, pfile->directive_line, node);
}
else
{
if (pfile->cb.used_undef)
pfile->cb.used_undef (pfile, pfile->directive_line, node);
}
}
_cpp_parse_expr checks there was no other junk on the line. */
pfile->mi_ind_cmacro = node;
}
pfile->state.prevent_expansion--;
result.unsignedp = false;
result.high = 0;
result.overflow = false;
result.low = node && node->type == NT_MACRO;
return result;
}
number or character constant, or the result of the "defined" or "#"
operators). */
static cpp_num
eval_token (cpp_reader *pfile, const cpp_token *token)
{
cpp_num result;
unsigned int temp;
int unsignedp = 0;
result.unsignedp = false;
result.overflow = false;
switch (token->type)
{
case CPP_NUMBER:
temp = cpp_classify_number (pfile, token);
switch (temp & CPP_N_CATEGORY)
{
case CPP_N_FLOATING:
cpp_error (pfile, CPP_DL_ERROR,
"floating constant in preprocessor expression");
break;
case CPP_N_INTEGER:
if (!(temp & CPP_N_IMAGINARY))
return cpp_interpret_integer (pfile, token, temp);
cpp_error (pfile, CPP_DL_ERROR,
"imaginary number in preprocessor expression");
break;
case CPP_N_INVALID:
break;
}
result.high = result.low = 0;
break;
case CPP_WCHAR:
case CPP_CHAR:
case CPP_CHAR16:
case CPP_CHAR32:
{
cppchar_t cc = cpp_interpret_charconst (pfile, token,
&temp, &unsignedp);
result.high = 0;
result.low = cc;
if (!unsignedp && (cppchar_signed_t) cc < 0)
{
if (PART_PRECISION > BITS_PER_CPPCHAR_T)
result.low |= ~(~(cpp_num_part) 0
>> (PART_PRECISION - BITS_PER_CPPCHAR_T));
result.high = ~(cpp_num_part) 0;
result = num_trim (result, CPP_OPTION (pfile, precision));
}
}
break;
case CPP_NAME:
if (token->val.node == pfile->spec_nodes.n_defined)
return parse_defined (pfile);
else if (CPP_OPTION (pfile, cplusplus)
&& (token->val.node == pfile->spec_nodes.n_true
|| token->val.node == pfile->spec_nodes.n_false))
{
result.high = 0;
result.low = (token->val.node == pfile->spec_nodes.n_true);
}
else
{
result.high = 0;
result.low = 0;
if (CPP_OPTION (pfile, warn_undef) && !pfile->state.skip_eval)
cpp_error (pfile, CPP_DL_WARNING, "\"%s\" is not defined",
NODE_NAME (token->val.node));
}
break;
case CPP_HASH:
if (!pfile->state.skipping)
{
warning here. */
if (CPP_PEDANTIC (pfile))
cpp_error (pfile, CPP_DL_PEDWARN,
"assertions are a GCC extension");
else if (CPP_OPTION (pfile, warn_deprecated))
cpp_error (pfile, CPP_DL_WARNING,
"assertions are a deprecated extension");
}
_cpp_test_assertion (pfile, &temp);
result.high = 0;
result.low = temp;
break;
default:
abort ();
}
result.unsignedp = !!unsignedp;
return result;
}
After an operator is returned from the lexer, if it has priority less
than the operator on the top of the stack, we reduce the stack by one
operator and repeat the test. Since equal priorities do not reduce,
this is naturally right-associative.
We handle left-associative operators by decrementing the priority of
just-lexed operators by one, but retaining the priority of operators
already on the stack.
The remaining cases are '(' and ')'. We handle '(' by skipping the
reduction phase completely. ')' is given lower priority than
everything else, including '(', effectively forcing a reduction of the
parenthesized expression. If there is a matching '(', the routine
reduce() exits immediately. If the normal exit route sees a ')', then
there cannot have been a matching '(' and an error message is output.
The parser assumes all shifted operators require a left operand unless
the flag NO_L_OPERAND is set. These semantics are automatic; any
extra semantics need to be handled with operator-specific code. */
operand changes because of integer promotions. */
#define NO_L_OPERAND (1 << 0)
#define LEFT_ASSOC (1 << 1)
#define CHECK_PROMOTION (1 << 2)
N entries of enum cpp_ttype. */
static const struct cpp_operator
{
uchar prio;
uchar flags;
} optab[] =
{
{0, 0},
{16, NO_L_OPERAND},
{12, LEFT_ASSOC | CHECK_PROMOTION},
{12, LEFT_ASSOC | CHECK_PROMOTION},
{14, LEFT_ASSOC | CHECK_PROMOTION},
{14, LEFT_ASSOC | CHECK_PROMOTION},
{15, LEFT_ASSOC | CHECK_PROMOTION},
{15, LEFT_ASSOC | CHECK_PROMOTION},
{15, LEFT_ASSOC | CHECK_PROMOTION},
{9, LEFT_ASSOC | CHECK_PROMOTION},
{7, LEFT_ASSOC | CHECK_PROMOTION},
{8, LEFT_ASSOC | CHECK_PROMOTION},
{13, LEFT_ASSOC},
{13, LEFT_ASSOC},
{16, NO_L_OPERAND},
{6, LEFT_ASSOC},
{5, LEFT_ASSOC},
However, there are some special cases for these in reduce(). */
{4, 0},
{4, LEFT_ASSOC | CHECK_PROMOTION},
{4, LEFT_ASSOC},
{1, NO_L_OPERAND},
{0, 0},
{0, 0},
{11, LEFT_ASSOC},
{11, LEFT_ASSOC},
{12, LEFT_ASSOC | CHECK_PROMOTION},
{12, LEFT_ASSOC | CHECK_PROMOTION},
{16, NO_L_OPERAND},
{16, NO_L_OPERAND}
};
Returns the truth value of the expression.
The implementation is an operator precedence parser, i.e. a
bottom-up parser, using a stack for not-yet-reduced tokens.
The stack base is op_stack, and the current stack pointer is 'top'.
There is a stack element for each operator (only), and the most
recently pushed operator is 'top->op'. An operand (value) is
stored in the 'value' field of the stack element of the operator
that precedes it. */
bool
_cpp_parse_expr (cpp_reader *pfile, bool is_if)
{
struct op *top = pfile->op_stack;
unsigned int lex_count;
bool saw_leading_not, want_value = true;
pfile->state.skip_eval = 0;
pfile->mi_ind_cmacro = 0;
saw_leading_not = false;
lex_count = 0;
top->op = CPP_EOF;
for (;;)
{
struct op op;
lex_count++;
op.token = cpp_get_token (pfile);
op.op = op.token->type;
op.loc = op.token->src_loc;
switch (op.op)
{
case CPP_NUMBER:
case CPP_CHAR:
case CPP_WCHAR:
case CPP_CHAR16:
case CPP_CHAR32:
case CPP_NAME:
case CPP_HASH:
if (!want_value)
SYNTAX_ERROR2 ("missing binary operator before token \"%s\"",
cpp_token_as_text (pfile, op.token));
want_value = false;
top->value = eval_token (pfile, op.token);
continue;
case CPP_NOT:
saw_leading_not = lex_count == 1;
break;
case CPP_PLUS:
if (want_value)
op.op = CPP_UPLUS;
break;
case CPP_MINUS:
if (want_value)
op.op = CPP_UMINUS;
break;
default:
if ((int) op.op <= (int) CPP_EQ || (int) op.op >= (int) CPP_PLUS_EQ)
SYNTAX_ERROR2 ("token \"%s\" is not valid in preprocessor expressions",
cpp_token_as_text (pfile, op.token));
break;
}
if (optab[op.op].flags & NO_L_OPERAND)
{
if (!want_value)
SYNTAX_ERROR2 ("missing binary operator before token \"%s\"",
cpp_token_as_text (pfile, op.token));
}
else if (want_value)
{
Try to emit a specific diagnostic. */
if (op.op == CPP_CLOSE_PAREN && top->op == CPP_OPEN_PAREN)
SYNTAX_ERROR ("missing expression between '(' and ')'");
if (op.op == CPP_EOF && top->op == CPP_EOF)
SYNTAX_ERROR2 ("%s with no expression", is_if ? "#if" : "#elif");
if (top->op != CPP_EOF && top->op != CPP_OPEN_PAREN)
SYNTAX_ERROR2 ("operator '%s' has no right operand",
cpp_token_as_text (pfile, top->token));
else if (op.op == CPP_CLOSE_PAREN || op.op == CPP_EOF)
;
else
SYNTAX_ERROR2 ("operator '%s' has no left operand",
cpp_token_as_text (pfile, op.token));
}
top = reduce (pfile, top, op.op);
if (!top)
goto syntax_error;
if (op.op == CPP_EOF)
break;
switch (op.op)
{
case CPP_CLOSE_PAREN:
continue;
case CPP_OR_OR:
if (!num_zerop (top->value))
pfile->state.skip_eval++;
break;
case CPP_AND_AND:
case CPP_QUERY:
if (num_zerop (top->value))
pfile->state.skip_eval++;
break;
case CPP_COLON:
if (top->op != CPP_QUERY)
SYNTAX_ERROR (" ':' without preceding '?'");
if (!num_zerop (top[-1].value))
pfile->state.skip_eval++;
else
pfile->state.skip_eval--;
default:
break;
}
want_value = true;
if (++top == pfile->op_limit)
top = _cpp_expand_op_stack (pfile);
top->op = op.op;
top->token = op.token;
top->loc = op.token->src_loc;
}
times: <!> <defined expression> and <EOF>. push_conditional ()
checks that we are at top-of-file. */
if (pfile->mi_ind_cmacro && !(saw_leading_not && lex_count == 3))
pfile->mi_ind_cmacro = 0;
if (top != pfile->op_stack)
{
cpp_error (pfile, CPP_DL_ICE, "unbalanced stack in %s",
is_if ? "#if" : "#elif");
syntax_error:
return false;
}
return !num_zerop (top->value);
}
pushing operator OP. Returns NULL on error, otherwise the top of
the stack. */
static struct op *
reduce (cpp_reader *pfile, struct op *top, enum cpp_ttype op)
{
unsigned int prio;
if (top->op <= CPP_EQ || top->op > CPP_LAST_CPP_OP + 2)
{
bad_op:
cpp_error (pfile, CPP_DL_ICE, "impossible operator '%u'", top->op);
return 0;
}
if (op == CPP_OPEN_PAREN)
return top;
reduction with operators of otherwise equal priority. */
prio = optab[op].prio - ((optab[op].flags & LEFT_ASSOC) != 0);
while (prio < optab[top->op].prio)
{
if (CPP_OPTION (pfile, warn_num_sign_change)
&& optab[top->op].flags & CHECK_PROMOTION)
check_promotion (pfile, top);
switch (top->op)
{
case CPP_UPLUS:
case CPP_UMINUS:
case CPP_NOT:
case CPP_COMPL:
top[-1].value = num_unary_op (pfile, top->value, top->op);
top[-1].loc = top->loc;
break;
case CPP_PLUS:
case CPP_MINUS:
case CPP_RSHIFT:
case CPP_LSHIFT:
case CPP_COMMA:
top[-1].value = num_binary_op (pfile, top[-1].value,
top->value, top->op);
top[-1].loc = top->loc;
break;
case CPP_GREATER:
case CPP_LESS:
case CPP_GREATER_EQ:
case CPP_LESS_EQ:
top[-1].value
= num_inequality_op (pfile, top[-1].value, top->value, top->op);
top[-1].loc = top->loc;
break;
case CPP_EQ_EQ:
case CPP_NOT_EQ:
top[-1].value
= num_equality_op (pfile, top[-1].value, top->value, top->op);
top[-1].loc = top->loc;
break;
case CPP_AND:
case CPP_OR:
case CPP_XOR:
top[-1].value
= num_bitwise_op (pfile, top[-1].value, top->value, top->op);
top[-1].loc = top->loc;
break;
case CPP_MULT:
top[-1].value = num_mul (pfile, top[-1].value, top->value);
top[-1].loc = top->loc;
break;
case CPP_DIV:
case CPP_MOD:
top[-1].value = num_div_op (pfile, top[-1].value,
top->value, top->op);
top[-1].loc = top->loc;
break;
case CPP_OR_OR:
top--;
if (!num_zerop (top->value))
pfile->state.skip_eval--;
top->value.low = (!num_zerop (top->value)
|| !num_zerop (top[1].value));
top->value.high = 0;
top->value.unsignedp = false;
top->value.overflow = false;
top->loc = top[1].loc;
continue;
case CPP_AND_AND:
top--;
if (num_zerop (top->value))
pfile->state.skip_eval--;
top->value.low = (!num_zerop (top->value)
&& !num_zerop (top[1].value));
top->value.high = 0;
top->value.unsignedp = false;
top->value.overflow = false;
top->loc = top[1].loc;
continue;
case CPP_OPEN_PAREN:
if (op != CPP_CLOSE_PAREN)
{
cpp_error_with_line (pfile, CPP_DL_ERROR,
top->token->src_loc,
0, "missing ')' in expression");
return 0;
}
top--;
top->value = top[1].value;
top->loc = top[1].loc;
return top;
case CPP_COLON:
top -= 2;
if (!num_zerop (top->value))
{
pfile->state.skip_eval--;
top->value = top[1].value;
top->loc = top[1].loc;
}
else
{
top->value = top[2].value;
top->loc = top[2].loc;
}
top->value.unsignedp = (top[1].value.unsignedp
|| top[2].value.unsignedp);
continue;
case CPP_QUERY:
if (op == CPP_COMMA || op == CPP_COLON)
return top;
cpp_error (pfile, CPP_DL_ERROR, "'?' without following ':'");
return 0;
default:
goto bad_op;
}
top--;
if (top->value.overflow && !pfile->state.skip_eval)
cpp_error (pfile, CPP_DL_PEDWARN,
"integer overflow in preprocessor expression");
}
if (op == CPP_CLOSE_PAREN)
{
cpp_error (pfile, CPP_DL_ERROR, "missing '(' in expression");
return 0;
}
return top;
}
struct op *
_cpp_expand_op_stack (cpp_reader *pfile)
{
size_t old_size = (size_t) (pfile->op_limit - pfile->op_stack);
size_t new_size = old_size * 2 + 20;
pfile->op_stack = XRESIZEVEC (struct op, pfile->op_stack, new_size);
pfile->op_limit = pfile->op_stack + new_size;
return pfile->op_stack + old_size;
}
changes because of integer promotions. */
static void
check_promotion (cpp_reader *pfile, const struct op *op)
{
if (op->value.unsignedp == op[-1].value.unsignedp)
return;
if (op->value.unsignedp)
{
if (!num_positive (op[-1].value, CPP_OPTION (pfile, precision)))
cpp_error_with_line (pfile, CPP_DL_WARNING, op[-1].loc, 0,
"the left operand of \"%s\" changes sign when promoted",
cpp_token_as_text (pfile, op->token));
}
else if (!num_positive (op->value, CPP_OPTION (pfile, precision)))
cpp_error_with_line (pfile, CPP_DL_WARNING, op->loc, 0,
"the right operand of \"%s\" changes sign when promoted",
cpp_token_as_text (pfile, op->token));
}
static cpp_num
num_trim (cpp_num num, size_t precision)
{
if (precision > PART_PRECISION)
{
precision -= PART_PRECISION;
if (precision < PART_PRECISION)
num.high &= ((cpp_num_part) 1 << precision) - 1;
}
else
{
if (precision < PART_PRECISION)
num.low &= ((cpp_num_part) 1 << precision) - 1;
num.high = 0;
}
return num;
}
static bool
num_positive (cpp_num num, size_t precision)
{
if (precision > PART_PRECISION)
{
precision -= PART_PRECISION;
return (num.high & (cpp_num_part) 1 << (precision - 1)) == 0;
}
return (num.low & (cpp_num_part) 1 << (precision - 1)) == 0;
}
others assumed clear, to fill out a cpp_num structure. */
cpp_num
cpp_num_sign_extend (cpp_num num, size_t precision)
{
if (!num.unsignedp)
{
if (precision > PART_PRECISION)
{
precision -= PART_PRECISION;
if (precision < PART_PRECISION
&& (num.high & (cpp_num_part) 1 << (precision - 1)))
num.high |= ~(~(cpp_num_part) 0 >> (PART_PRECISION - precision));
}
else if (num.low & (cpp_num_part) 1 << (precision - 1))
{
if (precision < PART_PRECISION)
num.low |= ~(~(cpp_num_part) 0 >> (PART_PRECISION - precision));
num.high = ~(cpp_num_part) 0;
}
}
return num;
}
static cpp_num
num_negate (cpp_num num, size_t precision)
{
cpp_num copy;
copy = num;
num.high = ~num.high;
num.low = ~num.low;
if (++num.low == 0)
num.high++;
num = num_trim (num, precision);
num.overflow = (!num.unsignedp && num_eq (num, copy) && !num_zerop (num));
return num;
}
static bool
num_greater_eq (cpp_num pa, cpp_num pb, size_t precision)
{
bool unsignedp;
unsignedp = pa.unsignedp || pb.unsignedp;
if (!unsignedp)
{
sign, the answer is the sign of A. */
unsignedp = num_positive (pa, precision);
if (unsignedp != num_positive (pb, precision))
return unsignedp;
}
return (pa.high > pb.high) || (pa.high == pb.high && pa.low >= pb.low);
}
static cpp_num
num_bitwise_op (cpp_reader *pfile ATTRIBUTE_UNUSED,
cpp_num lhs, cpp_num rhs, enum cpp_ttype op)
{
lhs.overflow = false;
lhs.unsignedp = lhs.unsignedp || rhs.unsignedp;
these operations cannot introduce a set bit there. */
if (op == CPP_AND)
{
lhs.low &= rhs.low;
lhs.high &= rhs.high;
}
else if (op == CPP_OR)
{
lhs.low |= rhs.low;
lhs.high |= rhs.high;
}
else
{
lhs.low ^= rhs.low;
lhs.high ^= rhs.high;
}
return lhs;
}
static cpp_num
num_inequality_op (cpp_reader *pfile, cpp_num lhs, cpp_num rhs,
enum cpp_ttype op)
{
bool gte = num_greater_eq (lhs, rhs, CPP_OPTION (pfile, precision));
if (op == CPP_GREATER_EQ)
lhs.low = gte;
else if (op == CPP_LESS)
lhs.low = !gte;
else if (op == CPP_GREATER)
lhs.low = gte && !num_eq (lhs, rhs);
else
lhs.low = !gte || num_eq (lhs, rhs);
lhs.high = 0;
lhs.overflow = false;
lhs.unsignedp = false;
return lhs;
}
static cpp_num
num_equality_op (cpp_reader *pfile ATTRIBUTE_UNUSED,
cpp_num lhs, cpp_num rhs, enum cpp_ttype op)
{
bool eq = num_eq (lhs, rhs);
if (op == CPP_NOT_EQ)
eq = !eq;
lhs.low = eq;
lhs.high = 0;
lhs.overflow = false;
lhs.unsignedp = false;
return lhs;
}
static cpp_num
num_rshift (cpp_num num, size_t precision, size_t n)
{
cpp_num_part sign_mask;
bool x = num_positive (num, precision);
if (num.unsignedp || x)
sign_mask = 0;
else
sign_mask = ~(cpp_num_part) 0;
if (n >= precision)
num.high = num.low = sign_mask;
else
{
if (precision < PART_PRECISION)
num.high = sign_mask, num.low |= sign_mask << precision;
else if (precision < 2 * PART_PRECISION)
num.high |= sign_mask << (precision - PART_PRECISION);
if (n >= PART_PRECISION)
{
n -= PART_PRECISION;
num.low = num.high;
num.high = sign_mask;
}
if (n)
{
num.low = (num.low >> n) | (num.high << (PART_PRECISION - n));
num.high = (num.high >> n) | (sign_mask << (PART_PRECISION - n));
}
}
num = num_trim (num, precision);
num.overflow = false;
return num;
}
static cpp_num
num_lshift (cpp_num num, size_t precision, size_t n)
{
if (n >= precision)
{
num.overflow = !num.unsignedp && !num_zerop (num);
num.high = num.low = 0;
}
else
{
cpp_num orig, maybe_orig;
size_t m = n;
orig = num;
if (m >= PART_PRECISION)
{
m -= PART_PRECISION;
num.high = num.low;
num.low = 0;
}
if (m)
{
num.high = (num.high << m) | (num.low >> (PART_PRECISION - m));
num.low <<= m;
}
num = num_trim (num, precision);
if (num.unsignedp)
num.overflow = false;
else
{
maybe_orig = num_rshift (num, precision, n);
num.overflow = !num_eq (orig, maybe_orig);
}
}
return num;
}
static cpp_num
num_unary_op (cpp_reader *pfile, cpp_num num, enum cpp_ttype op)
{
switch (op)
{
case CPP_UPLUS:
if (CPP_WTRADITIONAL (pfile) && !pfile->state.skip_eval)
cpp_error (pfile, CPP_DL_WARNING,
"traditional C rejects the unary plus operator");
num.overflow = false;
break;
case CPP_UMINUS:
num = num_negate (num, CPP_OPTION (pfile, precision));
break;
case CPP_COMPL:
num.high = ~num.high;
num.low = ~num.low;
num = num_trim (num, CPP_OPTION (pfile, precision));
num.overflow = false;
break;
default:
num.low = num_zerop (num);
num.high = 0;
num.overflow = false;
num.unsignedp = false;
break;
}
return num;
}
static cpp_num
num_binary_op (cpp_reader *pfile, cpp_num lhs, cpp_num rhs, enum cpp_ttype op)
{
cpp_num result;
size_t precision = CPP_OPTION (pfile, precision);
size_t n;
switch (op)
{
case CPP_LSHIFT:
case CPP_RSHIFT:
if (!rhs.unsignedp && !num_positive (rhs, precision))
{
if (op == CPP_LSHIFT)
op = CPP_RSHIFT;
else
op = CPP_LSHIFT;
rhs = num_negate (rhs, precision);
}
if (rhs.high)
n = ~0;
else
n = rhs.low;
if (op == CPP_LSHIFT)
lhs = num_lshift (lhs, precision, n);
else
lhs = num_rshift (lhs, precision, n);
break;
case CPP_MINUS:
rhs = num_negate (rhs, precision);
case CPP_PLUS:
result.low = lhs.low + rhs.low;
result.high = lhs.high + rhs.high;
if (result.low < lhs.low)
result.high++;
result.unsignedp = lhs.unsignedp || rhs.unsignedp;
result.overflow = false;
result = num_trim (result, precision);
if (!result.unsignedp)
{
bool lhsp = num_positive (lhs, precision);
result.overflow = (lhsp == num_positive (rhs, precision)
&& lhsp != num_positive (result, precision));
}
return result;
default:
if (CPP_PEDANTIC (pfile) && (!CPP_OPTION (pfile, c99)
|| !pfile->state.skip_eval))
cpp_error (pfile, CPP_DL_PEDWARN,
"comma operator in operand of #if");
lhs = rhs;
break;
}
return lhs;
}
cannot overflow. */
static cpp_num
num_part_mul (cpp_num_part lhs, cpp_num_part rhs)
{
cpp_num result;
cpp_num_part middle[2], temp;
result.low = LOW_PART (lhs) * LOW_PART (rhs);
result.high = HIGH_PART (lhs) * HIGH_PART (rhs);
middle[0] = LOW_PART (lhs) * HIGH_PART (rhs);
middle[1] = HIGH_PART (lhs) * LOW_PART (rhs);
temp = result.low;
result.low += LOW_PART (middle[0]) << (PART_PRECISION / 2);
if (result.low < temp)
result.high++;
temp = result.low;
result.low += LOW_PART (middle[1]) << (PART_PRECISION / 2);
if (result.low < temp)
result.high++;
result.high += HIGH_PART (middle[0]);
result.high += HIGH_PART (middle[1]);
result.unsignedp = true;
result.overflow = false;
return result;
}
static cpp_num
num_mul (cpp_reader *pfile, cpp_num lhs, cpp_num rhs)
{
cpp_num result, temp;
bool unsignedp = lhs.unsignedp || rhs.unsignedp;
bool overflow, negate = false;
size_t precision = CPP_OPTION (pfile, precision);
if (!unsignedp)
{
if (!num_positive (lhs, precision))
negate = !negate, lhs = num_negate (lhs, precision);
if (!num_positive (rhs, precision))
negate = !negate, rhs = num_negate (rhs, precision);
}
overflow = lhs.high && rhs.high;
result = num_part_mul (lhs.low, rhs.low);
temp = num_part_mul (lhs.high, rhs.low);
result.high += temp.low;
if (temp.high)
overflow = true;
temp = num_part_mul (lhs.low, rhs.high);
result.high += temp.low;
if (temp.high)
overflow = true;
temp.low = result.low, temp.high = result.high;
result = num_trim (result, precision);
if (!num_eq (result, temp))
overflow = true;
if (negate)
result = num_negate (result, precision);
if (unsignedp)
result.overflow = false;
else
result.overflow = overflow || (num_positive (result, precision) ^ !negate
&& !num_zerop (result));
result.unsignedp = unsignedp;
return result;
}
remainder depending upon OP. */
static cpp_num
num_div_op (cpp_reader *pfile, cpp_num lhs, cpp_num rhs, enum cpp_ttype op)
{
cpp_num result, sub;
cpp_num_part mask;
bool unsignedp = lhs.unsignedp || rhs.unsignedp;
bool negate = false, lhs_neg = false;
size_t i, precision = CPP_OPTION (pfile, precision);
if (!unsignedp)
{
if (!num_positive (lhs, precision))
negate = !negate, lhs_neg = true, lhs = num_negate (lhs, precision);
if (!num_positive (rhs, precision))
negate = !negate, rhs = num_negate (rhs, precision);
}
if (rhs.high)
{
i = precision - 1;
mask = (cpp_num_part) 1 << (i - PART_PRECISION);
for (; ; i--, mask >>= 1)
if (rhs.high & mask)
break;
}
else if (rhs.low)
{
if (precision > PART_PRECISION)
i = precision - PART_PRECISION - 1;
else
i = precision - 1;
mask = (cpp_num_part) 1 << i;
for (; ; i--, mask >>= 1)
if (rhs.low & mask)
break;
}
else
{
if (!pfile->state.skip_eval)
cpp_error (pfile, CPP_DL_ERROR, "division by zero in #if");
return lhs;
}
shifting the RHS fully left, and subtracting from LHS if LHS is
at least as big, and then repeating but with one less shift.
This is not very efficient, but is easy to understand. */
rhs.unsignedp = true;
lhs.unsignedp = true;
i = precision - i - 1;
sub = num_lshift (rhs, precision, i);
result.high = result.low = 0;
for (;;)
{
if (num_greater_eq (lhs, sub, precision))
{
lhs = num_binary_op (pfile, lhs, sub, CPP_MINUS);
if (i >= PART_PRECISION)
result.high |= (cpp_num_part) 1 << (i - PART_PRECISION);
else
result.low |= (cpp_num_part) 1 << i;
}
if (i-- == 0)
break;
sub.low = (sub.low >> 1) | (sub.high << (PART_PRECISION - 1));
sub.high >>= 1;
}
if (op == CPP_DIV)
{
result.unsignedp = unsignedp;
result.overflow = false;
if (!unsignedp)
{
if (negate)
result = num_negate (result, precision);
result.overflow = (num_positive (result, precision) ^ !negate
&& !num_zerop (result));
}
return result;
}
lhs.unsignedp = unsignedp;
lhs.overflow = false;
if (lhs_neg)
lhs = num_negate (lhs, precision);
return lhs;
}