CGEN: Cpu tools GENerator
THIS FILE IS MACHINE GENERATED WITH CGEN.
- the resultant file is machine generated, cgen-asm.in isn't
Copyright (C) 1996-2014 Free Software Foundation, Inc.
This file is part of libopcodes.
This library is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
It is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
Keep that in mind. */
#include "sysdep.h"
#include <stdio.h>
#include "ansidecl.h"
#include "bfd.h"
#include "symcat.h"
#include "or1k-desc.h"
#include "or1k-opc.h"
#include "opintl.h"
#include "xregex.h"
#include "libiberty.h"
#include "safe-ctype.h"
#undef min
#define min(a,b) ((a) < (b) ? (a) : (b))
#undef max
#define max(a,b) ((a) > (b) ? (a) : (b))
static const char * parse_insn_normal
(CGEN_CPU_DESC, const CGEN_INSN *, const char **, CGEN_FIELDS *);
static const char * MISSING_CLOSING_PARENTHESIS = N_("missing `)'");
#define CGEN_VERBOSE_ASSEMBLER_ERRORS
static const char *
parse_disp26 (CGEN_CPU_DESC cd,
const char ** strp,
int opindex,
int opinfo,
enum cgen_parse_operand_result * resultp,
bfd_vma * valuep)
{
const char *errmsg = NULL;
enum cgen_parse_operand_result result_type;
if (strncasecmp (*strp, "plt(", 4) == 0)
{
bfd_vma value;
*strp += 4;
errmsg = cgen_parse_address (cd, strp, opindex, BFD_RELOC_OR1K_PLT26,
& result_type, & value);
if (**strp != ')')
return MISSING_CLOSING_PARENTHESIS;
++*strp;
if (errmsg == NULL
&& result_type == CGEN_PARSE_OPERAND_RESULT_NUMBER)
value = (value >> 2) & 0xffff;
*valuep = value;
return errmsg;
}
return cgen_parse_address (cd, strp, opindex, opinfo, resultp, valuep);
}
static const char *
parse_simm16 (CGEN_CPU_DESC cd, const char ** strp, int opindex, long * valuep)
{
const char *errmsg;
enum cgen_parse_operand_result result_type;
long ret;
if (**strp == '#')
++*strp;
if (strncasecmp (*strp, "hi(", 3) == 0)
{
bfd_vma value;
*strp += 3;
errmsg = cgen_parse_address (cd, strp, opindex, BFD_RELOC_HI16,
& result_type, & value);
if (**strp != ')')
errmsg = MISSING_CLOSING_PARENTHESIS;
++*strp;
ret = value;
if (errmsg == NULL
&& result_type == CGEN_PARSE_OPERAND_RESULT_NUMBER)
{
ret >>= 16;
ret &= 0xffff;
ret = (ret ^ 0x8000) - 0x8000;
}
}
else if (strncasecmp (*strp, "lo(", 3) == 0)
{
bfd_vma value;
*strp += 3;
errmsg = cgen_parse_address (cd, strp, opindex, BFD_RELOC_LO16,
& result_type, & value);
if (**strp != ')')
return MISSING_CLOSING_PARENTHESIS;
++*strp;
ret = value;
if (result_type == CGEN_PARSE_OPERAND_RESULT_NUMBER)
{
ret &= 0xffff;
ret = (ret ^ 0x8000) - 0x8000;
}
}
else if (strncasecmp (*strp, "got(", 4) == 0)
{
bfd_vma value;
*strp += 4;
errmsg = cgen_parse_address (cd, strp, opindex, BFD_RELOC_OR1K_GOT16,
& result_type, & value);
if (**strp != ')')
return MISSING_CLOSING_PARENTHESIS;
++*strp;
if (errmsg == NULL
&& result_type == CGEN_PARSE_OPERAND_RESULT_NUMBER)
value &= 0xffff;
*valuep = value;
return errmsg;
}
else if (strncasecmp (*strp, "gotpchi(", 8) == 0)
{
bfd_vma value;
*strp += 8;
errmsg = cgen_parse_address (cd, strp, opindex,
BFD_RELOC_OR1K_GOTPC_HI16,
& result_type, & value);
if (**strp != ')')
return MISSING_CLOSING_PARENTHESIS;
++*strp;
if (errmsg == NULL
&& result_type == CGEN_PARSE_OPERAND_RESULT_NUMBER)
value = (value >> 16) & 0xffff;
*valuep = value;
return errmsg;
}
else if (strncasecmp (*strp, "gotpclo(", 8) == 0)
{
bfd_vma value;
*strp += 8;
errmsg = cgen_parse_address (cd, strp, opindex,
BFD_RELOC_OR1K_GOTPC_LO16,
&result_type, &value);
if (**strp != ')')
return MISSING_CLOSING_PARENTHESIS;
++*strp;
if (errmsg == NULL
&& result_type == CGEN_PARSE_OPERAND_RESULT_NUMBER)
value &= 0xffff;
*valuep = value;
return errmsg;
}
else if (strncasecmp (*strp, "gotoffhi(", 9) == 0)
{
bfd_vma value;
*strp += 9;
errmsg = cgen_parse_address (cd, strp, opindex,
BFD_RELOC_OR1K_GOTOFF_HI16,
& result_type, & value);
if (**strp != ')')
return MISSING_CLOSING_PARENTHESIS;
++*strp;
if (errmsg == NULL
&& result_type == CGEN_PARSE_OPERAND_RESULT_NUMBER)
value = (value >> 16) & 0xffff;
*valuep = value;
return errmsg;
}
else if (strncasecmp (*strp, "gotofflo(", 9) == 0)
{
bfd_vma value;
*strp += 9;
errmsg = cgen_parse_address (cd, strp, opindex,
BFD_RELOC_OR1K_GOTOFF_LO16,
&result_type, &value);
if (**strp != ')')
return MISSING_CLOSING_PARENTHESIS;
++*strp;
if (errmsg == NULL
&& result_type == CGEN_PARSE_OPERAND_RESULT_NUMBER)
value &= 0xffff;
*valuep = value;
return errmsg;
}
else if (strncasecmp (*strp, "tlsgdhi(", 8) == 0)
{
bfd_vma value;
*strp += 8;
errmsg = cgen_parse_address (cd, strp, opindex,
BFD_RELOC_OR1K_TLS_GD_HI16,
& result_type, & value);
if (**strp != ')')
return MISSING_CLOSING_PARENTHESIS;
++*strp;
if (errmsg == NULL
&& result_type == CGEN_PARSE_OPERAND_RESULT_NUMBER)
value = (value >> 16) & 0xffff;
*valuep = value;
return errmsg;
}
else if (strncasecmp (*strp, "tlsgdlo(", 8) == 0)
{
bfd_vma value;
*strp += 8;
errmsg = cgen_parse_address (cd, strp, opindex,
BFD_RELOC_OR1K_TLS_GD_LO16,
&result_type, &value);
if (**strp != ')')
return MISSING_CLOSING_PARENTHESIS;
++*strp;
if (errmsg == NULL
&& result_type == CGEN_PARSE_OPERAND_RESULT_NUMBER)
value &= 0xffff;
*valuep = value;
return errmsg;
}
else if (strncasecmp (*strp, "tlsldmhi(", 9) == 0)
{
bfd_vma value;
*strp += 9;
errmsg = cgen_parse_address (cd, strp, opindex,
BFD_RELOC_OR1K_TLS_LDM_HI16,
& result_type, & value);
if (**strp != ')')
return MISSING_CLOSING_PARENTHESIS;
++*strp;
if (errmsg == NULL
&& result_type == CGEN_PARSE_OPERAND_RESULT_NUMBER)
value = (value >> 16) & 0xffff;
*valuep = value;
return errmsg;
}
else if (strncasecmp (*strp, "tlsldmlo(", 9) == 0)
{
bfd_vma value;
*strp += 9;
errmsg = cgen_parse_address (cd, strp, opindex,
BFD_RELOC_OR1K_TLS_LDM_LO16,
&result_type, &value);
if (**strp != ')')
return MISSING_CLOSING_PARENTHESIS;
++*strp;
if (errmsg == NULL
&& result_type == CGEN_PARSE_OPERAND_RESULT_NUMBER)
value &= 0xffff;
*valuep = value;
return errmsg;
}
else if (strncasecmp (*strp, "dtpoffhi(", 9) == 0)
{
bfd_vma value;
*strp += 9;
errmsg = cgen_parse_address (cd, strp, opindex,
BFD_RELOC_OR1K_TLS_LDO_HI16,
& result_type, & value);
if (**strp != ')')
return MISSING_CLOSING_PARENTHESIS;
++*strp;
if (errmsg == NULL
&& result_type == CGEN_PARSE_OPERAND_RESULT_NUMBER)
value = (value >> 16) & 0xffff;
*valuep = value;
return errmsg;
}
else if (strncasecmp (*strp, "dtpofflo(", 9) == 0)
{
bfd_vma value;
*strp += 9;
errmsg = cgen_parse_address (cd, strp, opindex,
BFD_RELOC_OR1K_TLS_LDO_LO16,
&result_type, &value);
if (**strp != ')')
return MISSING_CLOSING_PARENTHESIS;
++*strp;
if (errmsg == NULL
&& result_type == CGEN_PARSE_OPERAND_RESULT_NUMBER)
value &= 0xffff;
*valuep = value;
return errmsg;
}
else if (strncasecmp (*strp, "gottpoffhi(", 11) == 0)
{
bfd_vma value;
*strp += 11;
errmsg = cgen_parse_address (cd, strp, opindex,
BFD_RELOC_OR1K_TLS_IE_HI16,
& result_type, & value);
if (**strp != ')')
return MISSING_CLOSING_PARENTHESIS;
++*strp;
if (errmsg == NULL
&& result_type == CGEN_PARSE_OPERAND_RESULT_NUMBER)
value = (value >> 16) & 0xffff;
*valuep = value;
return errmsg;
}
else if (strncasecmp (*strp, "gottpofflo(", 11) == 0)
{
bfd_vma value;
*strp += 11;
errmsg = cgen_parse_address (cd, strp, opindex,
BFD_RELOC_OR1K_TLS_IE_LO16,
&result_type, &value);
if (**strp != ')')
return MISSING_CLOSING_PARENTHESIS;
++*strp;
if (errmsg == NULL
&& result_type == CGEN_PARSE_OPERAND_RESULT_NUMBER)
value &= 0xffff;
*valuep = value;
return errmsg;
}
else if (strncasecmp (*strp, "tpoffhi(", 8) == 0)
{
bfd_vma value;
*strp += 8;
errmsg = cgen_parse_address (cd, strp, opindex,
BFD_RELOC_OR1K_TLS_LE_HI16,
& result_type, & value);
if (**strp != ')')
return MISSING_CLOSING_PARENTHESIS;
++*strp;
if (errmsg == NULL
&& result_type == CGEN_PARSE_OPERAND_RESULT_NUMBER)
value = (value >> 16) & 0xffff;
*valuep = value;
return errmsg;
}
else if (strncasecmp (*strp, "tpofflo(", 8) == 0)
{
bfd_vma value;
*strp += 8;
errmsg = cgen_parse_address (cd, strp, opindex,
BFD_RELOC_OR1K_TLS_LE_LO16,
&result_type, &value);
if (**strp != ')')
return MISSING_CLOSING_PARENTHESIS;
++*strp;
if (errmsg == NULL
&& result_type == CGEN_PARSE_OPERAND_RESULT_NUMBER)
value &= 0xffff;
*valuep = value;
return errmsg;
}
else
{
long value;
errmsg = cgen_parse_signed_integer (cd, strp, opindex, &value);
ret = value;
}
if (errmsg == NULL)
*valuep = ret;
return errmsg;
}
static const char *
parse_uimm16 (CGEN_CPU_DESC cd, const char ** strp, int opindex, unsigned long * valuep)
{
const char *errmsg = parse_simm16(cd, strp, opindex, (long *) valuep);
if (errmsg == NULL)
*valuep &= 0xffff;
return errmsg;
}
const char * or1k_cgen_parse_operand
(CGEN_CPU_DESC, int, const char **, CGEN_FIELDS *);
This function is basically just a big switch statement. Earlier versions
used tables to look up the function to use, but
- if the table contains both assembler and disassembler functions then
the disassembler contains much of the assembler and vice-versa,
- there's a lot of inlining possibilities as things grow,
- using a switch statement avoids the function call overhead.
This function could be moved into `parse_insn_normal', but keeping it
separate makes clear the interface between `parse_insn_normal' and each of
the handlers. */
const char *
or1k_cgen_parse_operand (CGEN_CPU_DESC cd,
int opindex,
const char ** strp,
CGEN_FIELDS * fields)
{
const char * errmsg = NULL;
long junk ATTRIBUTE_UNUSED;
switch (opindex)
{
case OR1K_OPERAND_DISP26 :
{
bfd_vma value = 0;
errmsg = parse_disp26 (cd, strp, OR1K_OPERAND_DISP26, 0, NULL, & value);
fields->f_disp26 = value;
}
break;
case OR1K_OPERAND_RA :
errmsg = cgen_parse_keyword (cd, strp, & or1k_cgen_opval_h_gpr, & fields->f_r2);
break;
case OR1K_OPERAND_RADF :
errmsg = cgen_parse_keyword (cd, strp, & or1k_cgen_opval_h_fdr, & fields->f_r1);
break;
case OR1K_OPERAND_RASF :
errmsg = cgen_parse_keyword (cd, strp, & or1k_cgen_opval_h_fsr, & fields->f_r2);
break;
case OR1K_OPERAND_RB :
errmsg = cgen_parse_keyword (cd, strp, & or1k_cgen_opval_h_gpr, & fields->f_r3);
break;
case OR1K_OPERAND_RBDF :
errmsg = cgen_parse_keyword (cd, strp, & or1k_cgen_opval_h_fdr, & fields->f_r1);
break;
case OR1K_OPERAND_RBSF :
errmsg = cgen_parse_keyword (cd, strp, & or1k_cgen_opval_h_fsr, & fields->f_r3);
break;
case OR1K_OPERAND_RD :
errmsg = cgen_parse_keyword (cd, strp, & or1k_cgen_opval_h_gpr, & fields->f_r1);
break;
case OR1K_OPERAND_RDDF :
errmsg = cgen_parse_keyword (cd, strp, & or1k_cgen_opval_h_fdr, & fields->f_r1);
break;
case OR1K_OPERAND_RDSF :
errmsg = cgen_parse_keyword (cd, strp, & or1k_cgen_opval_h_fsr, & fields->f_r1);
break;
case OR1K_OPERAND_SIMM16 :
errmsg = parse_simm16 (cd, strp, OR1K_OPERAND_SIMM16, (long *) (& fields->f_simm16));
break;
case OR1K_OPERAND_SIMM16_SPLIT :
errmsg = parse_simm16 (cd, strp, OR1K_OPERAND_SIMM16_SPLIT, (long *) (& fields->f_simm16_split));
break;
case OR1K_OPERAND_UIMM16 :
errmsg = parse_uimm16 (cd, strp, OR1K_OPERAND_UIMM16, (unsigned long *) (& fields->f_uimm16));
break;
case OR1K_OPERAND_UIMM16_SPLIT :
errmsg = parse_uimm16 (cd, strp, OR1K_OPERAND_UIMM16_SPLIT, (unsigned long *) (& fields->f_uimm16_split));
break;
case OR1K_OPERAND_UIMM6 :
errmsg = cgen_parse_unsigned_integer (cd, strp, OR1K_OPERAND_UIMM6, (unsigned long *) (& fields->f_uimm6));
break;
default :
fprintf (stderr, _("Unrecognized field %d while parsing.\n"), opindex);
abort ();
}
return errmsg;
}
cgen_parse_fn * const or1k_cgen_parse_handlers[] =
{
parse_insn_normal,
};
void
or1k_cgen_init_asm (CGEN_CPU_DESC cd)
{
or1k_cgen_init_opcode_table (cd);
or1k_cgen_init_ibld_table (cd);
cd->parse_handlers = & or1k_cgen_parse_handlers[0];
cd->parse_operand = or1k_cgen_parse_operand;
#ifdef CGEN_ASM_INIT_HOOK
CGEN_ASM_INIT_HOOK
#endif
}
This translates an opcode syntax string into a regex string,
by replacing any non-character syntax element (such as an
opcode) with the pattern '.*'
It then compiles the regex and stores it in the opcode, for
later use by or1k_cgen_assemble_insn
Returns NULL for success, an error message for failure. */
char *
or1k_cgen_build_insn_regex (CGEN_INSN *insn)
{
CGEN_OPCODE *opc = (CGEN_OPCODE *) CGEN_INSN_OPCODE (insn);
const char *mnem = CGEN_INSN_MNEMONIC (insn);
char rxbuf[CGEN_MAX_RX_ELEMENTS];
char *rx = rxbuf;
const CGEN_SYNTAX_CHAR_TYPE *syn;
int reg_err;
syn = CGEN_SYNTAX_STRING (CGEN_OPCODE_SYNTAX (opc));
if (! CGEN_SYNTAX_MNEMONIC_P (* syn))
return _("missing mnemonic in syntax string");
++syn;
insensitive matching in the "C" locale. We cannot generate a case
insensitive regular expression because in Turkish locales, 'i' and 'I'
are not equal modulo case conversion. */
for (; *mnem; mnem++)
{
char c = *mnem;
if (ISALPHA (c))
{
*rx++ = '[';
*rx++ = TOLOWER (c);
*rx++ = TOUPPER (c);
*rx++ = ']';
}
else
*rx++ = c;
}
for(; * syn != 0 && rx <= rxbuf + (CGEN_MAX_RX_ELEMENTS - 7 - 4); ++syn)
{
if (CGEN_SYNTAX_CHAR_P (* syn))
{
char c = CGEN_SYNTAX_CHAR (* syn);
switch (c)
{
case '.': case '[': case '\\':
case '*': case '^': case '$':
#ifdef CGEN_ESCAPE_EXTENDED_REGEX
case '?': case '{': case '}':
case '(': case ')': case '*':
case '|': case '+': case ']':
#endif
*rx++ = '\\';
*rx++ = c;
break;
default:
if (ISALPHA (c))
{
*rx++ = '[';
*rx++ = TOLOWER (c);
*rx++ = TOUPPER (c);
*rx++ = ']';
}
else
*rx++ = c;
break;
}
}
else
{
*rx++ = '.';
*rx++ = '*';
}
}
* rx++ = '[';
* rx++ = ' ';
* rx++ = '\t';
* rx++ = ']';
* rx++ = '*';
* rx++ = '$';
* rx = '\0';
CGEN_INSN_RX (insn) = xmalloc (sizeof (regex_t));
reg_err = regcomp ((regex_t *) CGEN_INSN_RX (insn), rxbuf, REG_NOSUB);
if (reg_err == 0)
return NULL;
else
{
static char msg[80];
regerror (reg_err, (regex_t *) CGEN_INSN_RX (insn), msg, 80);
regfree ((regex_t *) CGEN_INSN_RX (insn));
free (CGEN_INSN_RX (insn));
(CGEN_INSN_RX (insn)) = NULL;
return msg;
}
}
The syntax string is scanned and operands are parsed and stored in FIELDS.
Relocs are queued as we go via other callbacks.
??? Note that this is currently an all-or-nothing parser. If we fail to
parse the instruction, we return 0 and the caller will start over from
the beginning. Backtracking will be necessary in parsing subexpressions,
but that can be handled there. Not handling backtracking here may get
expensive in the case of the m68k. Deal with later.
Returns NULL for success, an error message for failure. */
static const char *
parse_insn_normal (CGEN_CPU_DESC cd,
const CGEN_INSN *insn,
const char **strp,
CGEN_FIELDS *fields)
{
const CGEN_SYNTAX *syntax = CGEN_INSN_SYNTAX (insn);
const char *str = *strp;
const char *errmsg;
const char *p;
const CGEN_SYNTAX_CHAR_TYPE * syn;
#ifdef CGEN_MNEMONIC_OPERANDS
int past_opcode_p;
#endif
We can parse it without needing to set up operand parsing.
GAS's input scrubber will ensure mnemonics are lowercase, but we may
not be called from GAS. */
p = CGEN_INSN_MNEMONIC (insn);
while (*p && TOLOWER (*p) == TOLOWER (*str))
++p, ++str;
if (* p)
return _("unrecognized instruction");
#ifndef CGEN_MNEMONIC_OPERANDS
if (* str && ! ISSPACE (* str))
return _("unrecognized instruction");
#endif
CGEN_INIT_PARSE (cd);
cgen_init_parse_operand (cd);
#ifdef CGEN_MNEMONIC_OPERANDS
past_opcode_p = 0;
#endif
any trailing fake arguments in the syntax string. */
syn = CGEN_SYNTAX_STRING (syntax);
if (! CGEN_SYNTAX_MNEMONIC_P (* syn))
abort ();
++syn;
while (* syn != 0)
{
if (CGEN_SYNTAX_CHAR_P (* syn))
{
first char after the mnemonic part is a space. */
GAS's input scrubber will remove extraneous blanks. */
if (TOLOWER (*str) == TOLOWER (CGEN_SYNTAX_CHAR (* syn)))
{
#ifdef CGEN_MNEMONIC_OPERANDS
if (CGEN_SYNTAX_CHAR(* syn) == ' ')
past_opcode_p = 1;
#endif
++ syn;
++ str;
}
else if (*str)
{
static char msg [80];
sprintf (msg, _("syntax error (expected char `%c', found `%c')"),
CGEN_SYNTAX_CHAR(*syn), *str);
return msg;
}
else
{
static char msg [80];
sprintf (msg, _("syntax error (expected char `%c', found end of instruction)"),
CGEN_SYNTAX_CHAR(*syn));
return msg;
}
continue;
}
#ifdef CGEN_MNEMONIC_OPERANDS
(void) past_opcode_p;
#endif
errmsg = cd->parse_operand (cd, CGEN_SYNTAX_FIELD (*syn), &str, fields);
if (errmsg)
return errmsg;
++ syn;
}
if (* syn == 0)
{
blanks now. IE: We needn't try again with a longer version of
the insn and it is assumed that longer versions of insns appear
before shorter ones (eg: lsr r2,r3,1 vs lsr r2,r3). */
while (ISSPACE (* str))
++ str;
if (* str != '\0')
return _("junk at end of line");
return NULL;
}
return _("unrecognized instruction");
}
This routine is called for each instruction to be assembled.
STR points to the insn to be assembled.
We assume all necessary tables have been initialized.
The assembled instruction, less any fixups, is stored in BUF.
Remember that if CGEN_INT_INSN_P then BUF is an int and thus the value
still needs to be converted to target byte order, otherwise BUF is an array
of bytes in target byte order.
The result is a pointer to the insn's entry in the opcode table,
or NULL if an error occured (an error message will have already been
printed).
Note that when processing (non-alias) macro-insns,
this function recurses.
??? It's possible to make this cpu-independent.
One would have to deal with a few minor things.
At this point in time doing so would be more of a curiosity than useful
[for example this file isn't _that_ big], but keeping the possibility in
mind helps keep the design clean. */
const CGEN_INSN *
or1k_cgen_assemble_insn (CGEN_CPU_DESC cd,
const char *str,
CGEN_FIELDS *fields,
CGEN_INSN_BYTES_PTR buf,
char **errmsg)
{
const char *start;
CGEN_INSN_LIST *ilist;
const char *parse_errmsg = NULL;
const char *insert_errmsg = NULL;
int recognized_mnemonic = 0;
while (ISSPACE (* str))
++ str;
Get the first in the list. */
ilist = CGEN_ASM_LOOKUP_INSN (cd, str);
start = str;
for ( ; ilist != NULL ; ilist = CGEN_ASM_NEXT_INSN (ilist))
{
const CGEN_INSN *insn = ilist->insn;
recognized_mnemonic = 1;
#ifdef CGEN_VALIDATE_INSN_SUPPORTED
shouldn't be in the hash lists. */
if (! or1k_cgen_insn_supported (cd, insn))
continue;
#endif
chosen immediately. Instead, it is used during assembler/linker
relaxation if possible. */
if (CGEN_INSN_ATTR_VALUE (insn, CGEN_INSN_RELAXED) != 0)
continue;
str = start;
if (CGEN_INSN_RX (insn) != NULL &&
regexec ((regex_t *) CGEN_INSN_RX (insn), str, 0, NULL, 0) == REG_NOMATCH)
continue;
CGEN_FIELDS_BITSIZE (fields) = CGEN_INSN_BITSIZE (insn);
parse_errmsg = CGEN_PARSE_FN (cd, insn) (cd, insn, & str, fields);
if (parse_errmsg != NULL)
continue;
insert_errmsg = CGEN_INSERT_FN (cd, insn) (cd, insn, fields, buf,
(bfd_vma) 0);
if (insert_errmsg != NULL)
continue;
queued relocs. */
return insn;
}
{
static char errbuf[150];
const char *tmp_errmsg;
#ifdef CGEN_VERBOSE_ASSEMBLER_ERRORS
#define be_verbose 1
#else
#define be_verbose 0
#endif
if (be_verbose)
{
Failing that, use parse_errmsg. */
tmp_errmsg = (insert_errmsg ? insert_errmsg :
parse_errmsg ? parse_errmsg :
recognized_mnemonic ?
_("unrecognized form of instruction") :
_("unrecognized instruction"));
if (strlen (start) > 50)
sprintf (errbuf, "%s `%.50s...'", tmp_errmsg, start);
else
sprintf (errbuf, "%s `%.50s'", tmp_errmsg, start);
}
else
{
if (strlen (start) > 50)
sprintf (errbuf, _("bad instruction `%.50s...'"), start);
else
sprintf (errbuf, _("bad instruction `%.50s'"), start);
}
*errmsg = errbuf;
return NULL;
}
}