Copyright 1987, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
2000, 2001, 2003
Free Software Foundation, Inc.
This file is part of GAS, the GNU Assembler.
GAS is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GAS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GAS; see the file COPYING. If not, write to the Free
Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
02110-1301, USA. */
#include <errno.h>
#include "as.h"
#include "input-file.h"
#include "sb.h"
#include "listing.h"
* O/S independent module to supply buffers of sanitised source code
* to rest of assembler. We get sanitised input data of arbitrary length.
* We break these buffers on line boundaries, recombine pieces that
* were broken across buffers, and return a buffer of full lines to
* the caller.
* The last partial line begins the next buffer we build and return to caller.
* The buffer returned to caller is preceded by BEFORE_STRING and followed
* by AFTER_STRING, as sentinels. The last character before AFTER_STRING
* is a newline.
* Also looks after line numbers, for e.g. error messages.
*/
* We don't care how filthy our buffers are, but our callers assume
* that the following sanitation has already been done.
*
* No comments, reduce a comment to a space.
* Reduce a tab to a space unless it is 1st char of line.
* All multiple tabs and spaces collapsed into 1 char. Tab only
* legal if 1st char of line.
* # line file statements converted to .line x;.file y; statements.
* Escaped newlines at end of line: remove them but add as many newlines
* to end of statement as you removed in the middle, to synch line numbers.
*/
#define BEFORE_STRING ("\n")
#define AFTER_STRING ("\0") /* memcpy of 0 chars might choke. */
#define BEFORE_SIZE (1)
#define AFTER_SIZE (1)
static char *buffer_start;
static char *partial_where;
static int partial_size;
1st part of partial line. So we preserve 1st part of partial line
here. */
static char save_source[AFTER_SIZE];
could return to us? */
static unsigned int buffer_length;
static int sb_index = -1;
static sb from_sb;
static int from_sb_is_expansion = 1;
int macro_nest;
but the latest one are saved off in a struct input_save. These files remain
open, so we are limited by the number of open files allowed by the
underlying OS. We may also sequentially read more than one source file in an
assembly. */
track a "logical" file and line number corresponding to (C?) compiler
source line numbers. Whenever we open a file we must fill in
physical_input_file. So if it is NULL we have not opened any files yet. */
static char *physical_input_file;
static char *logical_input_file;
typedef unsigned int line_numberT;
static line_numberT physical_input_line;
static int logical_input_line;
struct input_save {
char * buffer_start;
char * partial_where;
int partial_size;
char save_source[AFTER_SIZE];
unsigned int buffer_length;
char * physical_input_file;
char * logical_input_file;
line_numberT physical_input_line;
int logical_input_line;
int sb_index;
sb from_sb;
int from_sb_is_expansion;
struct input_save * next_saved_file;
char * input_file_save;
char * saved_position;
};
static struct input_save *input_scrub_push (char *saved_position);
static char *input_scrub_pop (struct input_save *arg);
we automatically pop to that file. */
static struct input_save *next_saved_file;
The return value is a 'void *' (fudged for old compilers) to a save
area, which can be restored by passing it to input_scrub_pop(). */
static struct input_save *
input_scrub_push (char *saved_position)
{
register struct input_save *saved;
saved = (struct input_save *) xmalloc (sizeof *saved);
saved->saved_position = saved_position;
saved->buffer_start = buffer_start;
saved->partial_where = partial_where;
saved->partial_size = partial_size;
saved->buffer_length = buffer_length;
saved->physical_input_file = physical_input_file;
saved->logical_input_file = logical_input_file;
saved->physical_input_line = physical_input_line;
saved->logical_input_line = logical_input_line;
saved->sb_index = sb_index;
saved->from_sb = from_sb;
saved->from_sb_is_expansion = from_sb_is_expansion;
memcpy (saved->save_source, save_source, sizeof (save_source));
saved->next_saved_file = next_saved_file;
saved->input_file_save = input_file_push ();
input_file_begin ();
logical_input_line = -1;
logical_input_file = (char *) NULL;
buffer_length = input_file_buffer_size ();
sb_index = -1;
buffer_start = xmalloc ((BEFORE_SIZE + buffer_length + buffer_length + AFTER_SIZE));
memcpy (buffer_start, BEFORE_STRING, (int) BEFORE_SIZE);
return saved;
}
static char *
input_scrub_pop (struct input_save *saved)
{
char *saved_position;
input_scrub_end ();
input_file_pop (saved->input_file_save);
saved_position = saved->saved_position;
buffer_start = saved->buffer_start;
buffer_length = saved->buffer_length;
physical_input_file = saved->physical_input_file;
logical_input_file = saved->logical_input_file;
physical_input_line = saved->physical_input_line;
logical_input_line = saved->logical_input_line;
sb_index = saved->sb_index;
from_sb = saved->from_sb;
from_sb_is_expansion = saved->from_sb_is_expansion;
partial_where = saved->partial_where;
partial_size = saved->partial_size;
next_saved_file = saved->next_saved_file;
memcpy (save_source, saved->save_source, sizeof (save_source));
free (saved);
return saved_position;
}
void
input_scrub_begin (void)
{
know (strlen (BEFORE_STRING) == BEFORE_SIZE);
know (strlen (AFTER_STRING) == AFTER_SIZE
|| (AFTER_STRING[0] == '\0' && AFTER_SIZE == 1));
input_file_begin ();
buffer_length = input_file_buffer_size ();
buffer_start = xmalloc ((BEFORE_SIZE + buffer_length + buffer_length + AFTER_SIZE));
memcpy (buffer_start, BEFORE_STRING, (int) BEFORE_SIZE);
logical_input_line = -1;
logical_input_file = (char *) NULL;
physical_input_file = NULL;
next_saved_file = NULL;
do_scrub_begin (flag_m68k_mri);
}
void
input_scrub_end (void)
{
if (buffer_start)
{
free (buffer_start);
buffer_start = 0;
input_file_end ();
}
}
Return start of caller's part of buffer. */
char *
input_scrub_new_file (char *filename)
{
input_file_open (filename, !flag_no_comments);
physical_input_file = filename[0] ? filename : _("{standard input}");
physical_input_line = 0;
partial_size = 0;
return (buffer_start + BEFORE_SIZE);
}
be restored on EOF, and begin handling a new file. Same result as
input_scrub_new_file. */
char *
input_scrub_include_file (char *filename, char *position)
{
next_saved_file = input_scrub_push (position);
return input_scrub_new_file (filename);
}
expanding a macro. */
void
input_scrub_include_sb (sb *from, char *position, int is_expansion)
{
if (macro_nest > max_macro_nest)
as_fatal (_("macros nested too deeply"));
++macro_nest;
#ifdef md_macro_start
if (is_expansion)
{
md_macro_start ();
}
#endif
next_saved_file = input_scrub_push (position);
sb_new (&from_sb);
from_sb_is_expansion = is_expansion;
if (from->len >= 1 && from->ptr[0] != '\n')
{
sb_add_char (&from_sb, '\n');
}
sb_scrub_and_add_sb (&from_sb, from);
sb_index = 1;
since we are, after all, still at the same point in the file. */
logical_input_line = next_saved_file->logical_input_line;
logical_input_file = next_saved_file->logical_input_file;
}
void
input_scrub_close (void)
{
input_file_close ();
}
char *
input_scrub_next_buffer (char **bufp)
{
register char *limit;
if (sb_index >= 0)
{
if (sb_index >= from_sb.len)
{
sb_kill (&from_sb);
if (from_sb_is_expansion
)
{
cond_finish_check (macro_nest);
#ifdef md_macro_end
data. */
md_macro_end ();
#endif
}
--macro_nest;
partial_where = NULL;
if (next_saved_file != NULL)
*bufp = input_scrub_pop (next_saved_file);
return partial_where;
}
partial_where = from_sb.ptr + from_sb.len;
partial_size = 0;
*bufp = from_sb.ptr + sb_index;
sb_index = from_sb.len;
return partial_where;
}
*bufp = buffer_start + BEFORE_SIZE;
if (partial_size)
{
memcpy (buffer_start + BEFORE_SIZE, partial_where,
(unsigned int) partial_size);
memcpy (buffer_start + BEFORE_SIZE, save_source, AFTER_SIZE);
}
limit = input_file_give_next_buffer (buffer_start
+ BEFORE_SIZE
+ partial_size);
if (limit)
{
register char *p;
for (p = limit - 1; *p != '\n'; --p)
;
++p;
while (p <= buffer_start + BEFORE_SIZE)
{
int limoff;
limoff = limit - buffer_start;
buffer_length += input_file_buffer_size ();
buffer_start = xrealloc (buffer_start,
(BEFORE_SIZE
+ 2 * buffer_length
+ AFTER_SIZE));
*bufp = buffer_start + BEFORE_SIZE;
limit = input_file_give_next_buffer (buffer_start + limoff);
if (limit == NULL)
{
as_warn (_("partial line at end of file ignored"));
partial_where = NULL;
if (next_saved_file)
*bufp = input_scrub_pop (next_saved_file);
return NULL;
}
for (p = limit - 1; *p != '\n'; --p)
;
++p;
}
partial_where = p;
partial_size = limit - p;
memcpy (save_source, partial_where, (int) AFTER_SIZE);
memcpy (partial_where, AFTER_STRING, (int) AFTER_SIZE);
}
else
{
partial_where = 0;
if (partial_size > 0)
{
as_warn (_("partial line at end of file ignored"));
}
LISTING_EOF ();
if (next_saved_file)
{
*bufp = input_scrub_pop (next_saved_file);
}
}
return (partial_where);
}
messages and so on. Return TRUE if we opened any file. */
int
seen_at_least_1_file (void)
{
return (physical_input_file != NULL);
}
void
bump_line_counters (void)
{
if (sb_index < 0)
{
++physical_input_line;
if (logical_input_line >= 0)
++logical_input_line;
}
}
If the line_number is -1, we don't change the current logical line
number. If it is -2, we decrement the logical line number (this is
to support the .appfile pseudo-op inserted into the stream by
do_scrub_chars).
If the fname is NULL, we don't change the current logical file name.
Returns nonzero if the filename actually changes. */
int
new_logical_line (char *fname,
int line_number)
{
if (line_number >= 0)
logical_input_line = line_number;
else if (line_number == -2 && logical_input_line > 0)
--logical_input_line;
if (fname
&& (logical_input_file == NULL
|| strcmp (logical_input_file, fname)))
{
logical_input_file = fname;
return 1;
}
else
return 0;
}
namep should be char * const *, but there are compilers which screw
up declarations like that, and it's easier to avoid it. */
void
as_where (char **namep, unsigned int *linep)
{
if (logical_input_file != NULL
&& (linep == NULL || logical_input_line >= 0))
{
*namep = logical_input_file;
if (linep != NULL)
*linep = logical_input_line;
}
else if (physical_input_file != NULL)
{
*namep = physical_input_file;
if (linep != NULL)
*linep = physical_input_line;
}
else
{
*namep = 0;
if (linep != NULL)
*linep = 0;
}
}