Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
Contributed by the Arenaire and Cacao projects, INRIA.
Contributed by Alain Delplanque and Paul Zimmermann.
This file is part of the GNU MPFR Library.
The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"
stored in exp_r. The computed value is rounded toward zero (truncated).
It returns an integer f such that the final error is bounded by 2^f ulps,
that is:
a*2^exp_r <= b^e <= 2^exp_r (a + 2^f),
where a represents {a, n}, i.e. the integer
a[0] + a[1]*B + ... + a[n-1]*B^(n-1) where B=2^GMP_NUMB_BITS
Return -1 is the result is exact.
Return -2 if an overflow occurred in the computation of exp_r.
*/
long
mpfr_mpn_exp (mp_limb_t *a, mpfr_exp_t *exp_r, int b, mpfr_exp_t e, size_t n)
{
mp_limb_t *c, B;
mpfr_exp_t f, h;
int i;
unsigned long t;
unsigned long bits;
size_t n1;
unsigned int error;
int err_s_a2 = 0;
int err_s_ab = 0;
MPFR_TMP_DECL(marker);
MPFR_ASSERTN(e > 0);
MPFR_ASSERTN((2 <= b) && (b <= 62));
MPFR_TMP_MARK(marker);
B = (mp_limb_t) b;
count_leading_zeros (h, B);
bits = GMP_NUMB_BITS - h;
B = B << h;
h = - h;
c = (mp_limb_t*) MPFR_TMP_ALLOC(2 * n * BYTES_PER_MP_LIMB);
a [n - 1] = B;
MPN_ZERO (a, n - 1);
f = h - (n - 1) * GMP_NUMB_BITS;
count_leading_zeros (t, (mp_limb_t) e);
t = GMP_NUMB_BITS - t;
error = t;
MPN_ZERO (c, 2 * n);
for (i = t - 2; i >= 0; i--)
{
bits = n * GMP_NUMB_BITS - mpn_scan1 (a, 0);
n1 = (n * GMP_NUMB_BITS - bits) / GMP_NUMB_BITS;
mpn_sqr_n (c + 2 * n1, a + n1, n - n1);
if (MPFR_UNLIKELY(f < MPFR_EXP_MIN/2 || f > MPFR_EXP_MAX/2))
{
overflow:
MPFR_TMP_FREE(marker);
return -2;
}
f = 2*f;
MPFR_SADD_OVERFLOW (f, f, n * GMP_NUMB_BITS,
mpfr_exp_t, mpfr_uexp_t,
MPFR_EXP_MIN, MPFR_EXP_MAX,
goto overflow, goto overflow);
if ((c[2*n - 1] & MPFR_LIMB_HIGHBIT) == 0)
{
mpn_lshift (a, c + n, n, 1);
a[0] |= mpn_lshift (c + n - 1, c + n - 1, 1, 1);
f --;
if (error != t)
err_s_a2 ++;
}
else
MPN_COPY (a, c + n, n);
if ((error == t) && (2 * n1 <= n) &&
(mpn_scan1 (c + 2 * n1, 0) < (n - 2 * n1) * GMP_NUMB_BITS))
error = i;
if (e & ((mpfr_exp_t) 1 << i))
{
c[2 * n - 1] = mpn_mul_1 (c + n - 1, a, n, B);
f += h + GMP_NUMB_BITS;
if ((c[2 * n - 1] & MPFR_LIMB_HIGHBIT) == 0)
{
mpn_lshift (a, c + n, n, 1);
a[0] |= mpn_lshift (c + n - 1, c + n - 1, 1, 1);
f --;
}
else
{
MPN_COPY (a, c + n, n);
if (error != t)
err_s_ab ++;
}
if ((error == t) && (c[n - 1] != 0))
error = i;
}
}
MPFR_TMP_FREE(marker);
*exp_r = f;
if (error == t)
return -1;
else
err_s_ab, err_s_a2 <= t-1 */
{
j shifts in a^2 and l shifts in a*b, then the final error is
at most 2^(p+ceil((j+1)/2)+l+1)*ulp(res).
This is bounded by 2^(5/2*t-1/2) where t is the number of bits of e.
*/
error = error + err_s_ab + err_s_a2 / 2 + 3;
#if 0
if ((error - 1) >= ((n * GMP_NUMB_BITS - 1) / 2))
error = n * GMP_NUMB_BITS;
this is very unlikely since error is
at most 5/2*log_2(e), and
n * GMP_NUMB_BITS is at least
3*log_2(e) */
#endif
return error;
}
}