Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
This file is part of BFD, the Binary File Descriptor library.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
MA 02110-1301, USA. */
SECTION
ELF backends
BFD support for ELF formats is being worked on.
Currently, the best supported back ends are for sparc and i386
(running svr4 or Solaris 2).
Documentation of the internals of the support code still needs
to be written. The code is changing quickly enough that we
haven't bothered yet. */
#define _SYSCALL32
#include "sysdep.h"
#include "bfd.h"
#include "bfdlink.h"
#include "libbfd.h"
#define ARCH_SIZE 0
#include "elf-bfd.h"
#include "libiberty.h"
#include "safe-ctype.h"
static int elf_sort_sections (const void *, const void *);
static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
static bfd_boolean prep_headers (bfd *);
static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
file_ptr offset);
currently size independent. If that ever changes, this code will
need to move into elfcode.h. */
void
_bfd_elf_swap_verdef_in (bfd *abfd,
const Elf_External_Verdef *src,
Elf_Internal_Verdef *dst)
{
dst->vd_version = H_GET_16 (abfd, src->vd_version);
dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
dst->vd_next = H_GET_32 (abfd, src->vd_next);
}
void
_bfd_elf_swap_verdef_out (bfd *abfd,
const Elf_Internal_Verdef *src,
Elf_External_Verdef *dst)
{
H_PUT_16 (abfd, src->vd_version, dst->vd_version);
H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
H_PUT_32 (abfd, src->vd_next, dst->vd_next);
}
void
_bfd_elf_swap_verdaux_in (bfd *abfd,
const Elf_External_Verdaux *src,
Elf_Internal_Verdaux *dst)
{
dst->vda_name = H_GET_32 (abfd, src->vda_name);
dst->vda_next = H_GET_32 (abfd, src->vda_next);
}
void
_bfd_elf_swap_verdaux_out (bfd *abfd,
const Elf_Internal_Verdaux *src,
Elf_External_Verdaux *dst)
{
H_PUT_32 (abfd, src->vda_name, dst->vda_name);
H_PUT_32 (abfd, src->vda_next, dst->vda_next);
}
void
_bfd_elf_swap_verneed_in (bfd *abfd,
const Elf_External_Verneed *src,
Elf_Internal_Verneed *dst)
{
dst->vn_version = H_GET_16 (abfd, src->vn_version);
dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
dst->vn_file = H_GET_32 (abfd, src->vn_file);
dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
dst->vn_next = H_GET_32 (abfd, src->vn_next);
}
void
_bfd_elf_swap_verneed_out (bfd *abfd,
const Elf_Internal_Verneed *src,
Elf_External_Verneed *dst)
{
H_PUT_16 (abfd, src->vn_version, dst->vn_version);
H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
H_PUT_32 (abfd, src->vn_file, dst->vn_file);
H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
H_PUT_32 (abfd, src->vn_next, dst->vn_next);
}
void
_bfd_elf_swap_vernaux_in (bfd *abfd,
const Elf_External_Vernaux *src,
Elf_Internal_Vernaux *dst)
{
dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
dst->vna_other = H_GET_16 (abfd, src->vna_other);
dst->vna_name = H_GET_32 (abfd, src->vna_name);
dst->vna_next = H_GET_32 (abfd, src->vna_next);
}
void
_bfd_elf_swap_vernaux_out (bfd *abfd,
const Elf_Internal_Vernaux *src,
Elf_External_Vernaux *dst)
{
H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
H_PUT_16 (abfd, src->vna_other, dst->vna_other);
H_PUT_32 (abfd, src->vna_name, dst->vna_name);
H_PUT_32 (abfd, src->vna_next, dst->vna_next);
}
void
_bfd_elf_swap_versym_in (bfd *abfd,
const Elf_External_Versym *src,
Elf_Internal_Versym *dst)
{
dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
}
void
_bfd_elf_swap_versym_out (bfd *abfd,
const Elf_Internal_Versym *src,
Elf_External_Versym *dst)
{
H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
}
cause invalid hash tables to be generated. */
unsigned long
bfd_elf_hash (const char *namearg)
{
const unsigned char *name = (const unsigned char *) namearg;
unsigned long h = 0;
unsigned long g;
int ch;
while ((ch = *name++) != '\0')
{
h = (h << 4) + ch;
if ((g = (h & 0xf0000000)) != 0)
{
h ^= g >> 24;
this case and on some machines one insn instead of two. */
h ^= g;
}
}
return h & 0xffffffff;
}
cause invalid hash tables to be generated. */
unsigned long
bfd_elf_gnu_hash (const char *namearg)
{
const unsigned char *name = (const unsigned char *) namearg;
unsigned long h = 5381;
unsigned char ch;
while ((ch = *name++) != '\0')
h = (h << 5) + h + ch;
return h & 0xffffffff;
}
the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
bfd_boolean
bfd_elf_allocate_object (bfd *abfd,
size_t object_size,
enum elf_object_id object_id)
{
BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
abfd->tdata.any = bfd_zalloc (abfd, object_size);
if (abfd->tdata.any == NULL)
return FALSE;
elf_object_id (abfd) = object_id;
elf_program_header_size (abfd) = (bfd_size_type) -1;
return TRUE;
}
bfd_boolean
bfd_elf_make_generic_object (bfd *abfd)
{
return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
GENERIC_ELF_TDATA);
}
bfd_boolean
bfd_elf_mkcorefile (bfd *abfd)
{
return bfd_elf_make_generic_object (abfd);
}
char *
bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
{
Elf_Internal_Shdr **i_shdrp;
bfd_byte *shstrtab = NULL;
file_ptr offset;
bfd_size_type shstrtabsize;
i_shdrp = elf_elfsections (abfd);
if (i_shdrp == 0
|| shindex >= elf_numsections (abfd)
|| i_shdrp[shindex] == 0)
return NULL;
shstrtab = i_shdrp[shindex]->contents;
if (shstrtab == NULL)
{
offset = i_shdrp[shindex]->sh_offset;
shstrtabsize = i_shdrp[shindex]->sh_size;
in case the string table is not terminated. */
if (shstrtabsize + 1 <= 1
|| (shstrtab = bfd_alloc (abfd, shstrtabsize + 1)) == NULL
|| bfd_seek (abfd, offset, SEEK_SET) != 0)
shstrtab = NULL;
else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
{
if (bfd_get_error () != bfd_error_system_call)
bfd_set_error (bfd_error_file_truncated);
shstrtab = NULL;
trying. Otherwise, we'll keep allocating space for
the string table over and over. */
i_shdrp[shindex]->sh_size = 0;
}
else
shstrtab[shstrtabsize] = '\0';
i_shdrp[shindex]->contents = shstrtab;
}
return (char *) shstrtab;
}
char *
bfd_elf_string_from_elf_section (bfd *abfd,
unsigned int shindex,
unsigned int strindex)
{
Elf_Internal_Shdr *hdr;
if (strindex == 0)
return "";
if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
return NULL;
hdr = elf_elfsections (abfd)[shindex];
if (hdr->contents == NULL
&& bfd_elf_get_str_section (abfd, shindex) == NULL)
return NULL;
if (strindex >= hdr->sh_size)
{
unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
(*_bfd_error_handler)
(_("%B: invalid string offset %u >= %lu for section `%s'"),
abfd, strindex, (unsigned long) hdr->sh_size,
(shindex == shstrndx && strindex == hdr->sh_name
? ".shstrtab"
: bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
return "";
}
return ((char *) hdr->contents) + strindex;
}
SYMCOUNT specifies the number of symbols to read, starting from
symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
are non-NULL, they are used to store the internal symbols, external
symbols, and symbol section index extensions, respectively.
Returns a pointer to the internal symbol buffer (malloced if necessary)
or NULL if there were no symbols or some kind of problem. */
Elf_Internal_Sym *
bfd_elf_get_elf_syms (bfd *ibfd,
Elf_Internal_Shdr *symtab_hdr,
size_t symcount,
size_t symoffset,
Elf_Internal_Sym *intsym_buf,
void *extsym_buf,
Elf_External_Sym_Shndx *extshndx_buf)
{
Elf_Internal_Shdr *shndx_hdr;
void *alloc_ext;
const bfd_byte *esym;
Elf_External_Sym_Shndx *alloc_extshndx;
Elf_External_Sym_Shndx *shndx;
Elf_Internal_Sym *alloc_intsym;
Elf_Internal_Sym *isym;
Elf_Internal_Sym *isymend;
const struct elf_backend_data *bed;
size_t extsym_size;
bfd_size_type amt;
file_ptr pos;
if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
abort ();
if (symcount == 0)
return intsym_buf;
shndx_hdr = NULL;
if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
alloc_ext = NULL;
alloc_extshndx = NULL;
alloc_intsym = NULL;
bed = get_elf_backend_data (ibfd);
extsym_size = bed->s->sizeof_sym;
amt = symcount * extsym_size;
pos = symtab_hdr->sh_offset + symoffset * extsym_size;
if (extsym_buf == NULL)
{
alloc_ext = bfd_malloc2 (symcount, extsym_size);
extsym_buf = alloc_ext;
}
if (extsym_buf == NULL
|| bfd_seek (ibfd, pos, SEEK_SET) != 0
|| bfd_bread (extsym_buf, amt, ibfd) != amt)
{
intsym_buf = NULL;
goto out;
}
if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
extshndx_buf = NULL;
else
{
amt = symcount * sizeof (Elf_External_Sym_Shndx);
pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
if (extshndx_buf == NULL)
{
alloc_extshndx = bfd_malloc2 (symcount,
sizeof (Elf_External_Sym_Shndx));
extshndx_buf = alloc_extshndx;
}
if (extshndx_buf == NULL
|| bfd_seek (ibfd, pos, SEEK_SET) != 0
|| bfd_bread (extshndx_buf, amt, ibfd) != amt)
{
intsym_buf = NULL;
goto out;
}
}
if (intsym_buf == NULL)
{
alloc_intsym = bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
intsym_buf = alloc_intsym;
if (intsym_buf == NULL)
goto out;
}
isymend = intsym_buf + symcount;
for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
isym < isymend;
esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
{
symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
(*_bfd_error_handler) (_("%B symbol number %lu references "
"nonexistent SHT_SYMTAB_SHNDX section"),
ibfd, (unsigned long) symoffset);
if (alloc_intsym != NULL)
free (alloc_intsym);
intsym_buf = NULL;
goto out;
}
out:
if (alloc_ext != NULL)
free (alloc_ext);
if (alloc_extshndx != NULL)
free (alloc_extshndx);
return intsym_buf;
}
const char *
bfd_elf_sym_name (bfd *abfd,
Elf_Internal_Shdr *symtab_hdr,
Elf_Internal_Sym *isym,
asection *sym_sec)
{
const char *name;
unsigned int iname = isym->st_name;
unsigned int shindex = symtab_hdr->sh_link;
if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
&& isym->st_shndx < elf_numsections (abfd))
{
iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
shindex = elf_elfheader (abfd)->e_shstrndx;
}
name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
if (name == NULL)
name = "(null)";
else if (sym_sec && *name == '\0')
name = bfd_section_name (abfd, sym_sec);
return name;
}
sections. The first element is the flags, the rest are section
pointers. */
typedef union elf_internal_group {
Elf_Internal_Shdr *shdr;
unsigned int flags;
} Elf_Internal_Group;
signature just a string? */
static const char *
group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
{
Elf_Internal_Shdr *hdr;
unsigned char esym[sizeof (Elf64_External_Sym)];
Elf_External_Sym_Shndx eshndx;
Elf_Internal_Sym isym;
that it is a symbol table section. */
if (ghdr->sh_link >= elf_numsections (abfd))
return NULL;
hdr = elf_elfsections (abfd) [ghdr->sh_link];
if (hdr->sh_type != SHT_SYMTAB
|| ! bfd_section_from_shdr (abfd, ghdr->sh_link))
return NULL;
hdr = &elf_tdata (abfd)->symtab_hdr;
if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
&isym, esym, &eshndx) == NULL)
return NULL;
return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
}
static bfd_boolean
setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
{
unsigned int num_group = elf_tdata (abfd)->num_group;
is set to -1 if there are no SHT_GROUP sections. */
if (num_group == 0)
{
unsigned int i, shnum;
section with just a flag word (ie. sh_size is 4), ignore it. */
shnum = elf_numsections (abfd);
num_group = 0;
#define IS_VALID_GROUP_SECTION_HEADER(shdr) \
( (shdr)->sh_type == SHT_GROUP \
&& (shdr)->sh_size >= (2 * GRP_ENTRY_SIZE) \
&& (shdr)->sh_entsize == GRP_ENTRY_SIZE \
&& ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
for (i = 0; i < shnum; i++)
{
Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
if (IS_VALID_GROUP_SECTION_HEADER (shdr))
num_group += 1;
}
if (num_group == 0)
{
num_group = (unsigned) -1;
elf_tdata (abfd)->num_group = num_group;
}
else
{
so we can find them quickly. */
bfd_size_type amt;
elf_tdata (abfd)->num_group = num_group;
elf_tdata (abfd)->group_sect_ptr
= bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
if (elf_tdata (abfd)->group_sect_ptr == NULL)
return FALSE;
num_group = 0;
for (i = 0; i < shnum; i++)
{
Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
if (IS_VALID_GROUP_SECTION_HEADER (shdr))
{
unsigned char *src;
Elf_Internal_Group *dest;
elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
num_group += 1;
BFD_ASSERT (sizeof (*dest) >= 4);
amt = shdr->sh_size * sizeof (*dest) / 4;
shdr->contents = bfd_alloc2 (abfd, shdr->sh_size,
sizeof (*dest) / 4);
if (shdr->contents == NULL)
{
_bfd_error_handler
(_("%B: Corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
bfd_set_error (bfd_error_bad_value);
return FALSE;
}
memset (shdr->contents, 0, amt);
if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
|| (bfd_bread (shdr->contents, shdr->sh_size, abfd)
!= shdr->sh_size))
return FALSE;
array of elf section indices all in target byte order,
to the flag word followed by an array of elf section
pointers. */
src = shdr->contents + shdr->sh_size;
dest = (Elf_Internal_Group *) (shdr->contents + amt);
while (1)
{
unsigned int idx;
src -= 4;
--dest;
idx = H_GET_32 (abfd, src);
if (src == shdr->contents)
{
dest->flags = idx;
if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
shdr->bfd_section->flags
|= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
break;
}
if (idx >= shnum)
{
((*_bfd_error_handler)
(_("%B: invalid SHT_GROUP entry"), abfd));
idx = 0;
}
dest->shdr = elf_elfsections (abfd)[idx];
}
}
}
}
}
if (num_group != (unsigned) -1)
{
unsigned int i;
for (i = 0; i < num_group; i++)
{
Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
unsigned int n_elt = shdr->sh_size / 4;
section is a member. */
while (--n_elt != 0)
if ((++idx)->shdr == hdr)
{
asection *s = NULL;
other members to see if any others are linked via
next_in_group. */
idx = (Elf_Internal_Group *) shdr->contents;
n_elt = shdr->sh_size / 4;
while (--n_elt != 0)
if ((s = (++idx)->shdr->bfd_section) != NULL
&& elf_next_in_group (s) != NULL)
break;
if (n_elt != 0)
{
insert current section in circular list. */
elf_group_name (newsect) = elf_group_name (s);
elf_next_in_group (newsect) = elf_next_in_group (s);
elf_next_in_group (s) = newsect;
}
else
{
const char *gname;
gname = group_signature (abfd, shdr);
if (gname == NULL)
return FALSE;
elf_group_name (newsect) = gname;
elf_next_in_group (newsect) = newsect;
}
new member. */
if (shdr->bfd_section != NULL)
elf_next_in_group (shdr->bfd_section) = newsect;
i = num_group - 1;
break;
}
}
}
if (elf_group_name (newsect) == NULL)
{
(*_bfd_error_handler) (_("%B: no group info for section %A"),
abfd, newsect);
}
return TRUE;
}
bfd_boolean
_bfd_elf_setup_sections (bfd *abfd)
{
unsigned int i;
unsigned int num_group = elf_tdata (abfd)->num_group;
bfd_boolean result = TRUE;
asection *s;
for (s = abfd->sections; s != NULL; s = s->next)
{
Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
{
unsigned int elfsec = this_hdr->sh_link;
not set the sh_link or sh_info fields. Hence we could
get the situation where elfsec is 0. */
if (elfsec == 0)
{
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
if (bed->link_order_error_handler)
bed->link_order_error_handler
(_("%B: warning: sh_link not set for section `%A'"),
abfd, s);
}
else
{
asection *link = NULL;
if (elfsec < elf_numsections (abfd))
{
this_hdr = elf_elfsections (abfd)[elfsec];
link = this_hdr->bfd_section;
}
Some strip/objcopy may leave an incorrect value in
sh_link. We don't want to proceed. */
if (link == NULL)
{
(*_bfd_error_handler)
(_("%B: sh_link [%d] in section `%A' is incorrect"),
s->owner, s, elfsec);
result = FALSE;
}
elf_linked_to_section (s) = link;
}
}
}
if (num_group == (unsigned) -1)
return result;
for (i = 0; i < num_group; i++)
{
Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
unsigned int n_elt = shdr->sh_size / 4;
while (--n_elt != 0)
if ((++idx)->shdr->bfd_section)
elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
else if (idx->shdr->sh_type == SHT_RELA
|| idx->shdr->sh_type == SHT_REL)
output object files. We adjust the group section size here
so that relocatable link will work correctly when
relocation sections are in section group in input object
files. */
shdr->bfd_section->size -= 4;
else
{
(*_bfd_error_handler)
(_("%B: unknown [%d] section `%s' in group [%s]"),
abfd,
(unsigned int) idx->shdr->sh_type,
bfd_elf_string_from_elf_section (abfd,
(elf_elfheader (abfd)
->e_shstrndx),
idx->shdr->sh_name),
shdr->bfd_section->name);
result = FALSE;
}
}
return result;
}
bfd_boolean
bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
{
return elf_next_in_group (sec) != NULL;
}
BFD section in the bfd_section field of the header. */
bfd_boolean
_bfd_elf_make_section_from_shdr (bfd *abfd,
Elf_Internal_Shdr *hdr,
const char *name,
int shindex)
{
asection *newsect;
flagword flags;
const struct elf_backend_data *bed;
if (hdr->bfd_section != NULL)
{
BFD_ASSERT (strcmp (name,
bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
return TRUE;
}
newsect = bfd_make_section_anyway (abfd, name);
if (newsect == NULL)
return FALSE;
hdr->bfd_section = newsect;
elf_section_data (newsect)->this_hdr = *hdr;
elf_section_data (newsect)->this_idx = shindex;
elf_section_type (newsect) = hdr->sh_type;
elf_section_flags (newsect) = hdr->sh_flags;
newsect->filepos = hdr->sh_offset;
if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
|| ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
|| ! bfd_set_section_alignment (abfd, newsect,
bfd_log2 (hdr->sh_addralign)))
return FALSE;
flags = SEC_NO_FLAGS;
if (hdr->sh_type != SHT_NOBITS)
flags |= SEC_HAS_CONTENTS;
if (hdr->sh_type == SHT_GROUP)
flags |= SEC_GROUP | SEC_EXCLUDE;
if ((hdr->sh_flags & SHF_ALLOC) != 0)
{
flags |= SEC_ALLOC;
if (hdr->sh_type != SHT_NOBITS)
flags |= SEC_LOAD;
}
if ((hdr->sh_flags & SHF_WRITE) == 0)
flags |= SEC_READONLY;
if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
flags |= SEC_CODE;
else if ((flags & SEC_LOAD) != 0)
flags |= SEC_DATA;
if ((hdr->sh_flags & SHF_MERGE) != 0)
{
flags |= SEC_MERGE;
newsect->entsize = hdr->sh_entsize;
if ((hdr->sh_flags & SHF_STRINGS) != 0)
flags |= SEC_STRINGS;
}
if (hdr->sh_flags & SHF_GROUP)
if (!setup_group (abfd, hdr, newsect))
return FALSE;
if ((hdr->sh_flags & SHF_TLS) != 0)
flags |= SEC_THREAD_LOCAL;
if ((flags & SEC_ALLOC) == 0)
{
not any sort of flag. Their SEC_ALLOC bits are cleared. */
static const struct
{
const char *name;
int len;
} debug_sections [] =
{
{ STRING_COMMA_LEN ("debug") },
{ NULL, 0 },
{ NULL, 0 },
{ STRING_COMMA_LEN ("gnu.linkonce.wi.") },
{ NULL, 0 },
{ NULL, 0 },
{ NULL, 0 },
{ NULL, 0 },
{ STRING_COMMA_LEN ("line") },
{ NULL, 0 },
{ NULL, 0 },
{ NULL, 0 },
{ NULL, 0 },
{ NULL, 0 },
{ NULL, 0 },
{ STRING_COMMA_LEN ("stab") },
{ NULL, 0 },
{ NULL, 0 },
{ NULL, 0 },
{ NULL, 0 },
{ NULL, 0 },
{ NULL, 0 },
{ STRING_COMMA_LEN ("zdebug") }
};
if (name [0] == '.')
{
int i = name [1] - 'd';
if (i >= 0
&& i < (int) ARRAY_SIZE (debug_sections)
&& debug_sections [i].name != NULL
&& strncmp (&name [1], debug_sections [i].name,
debug_sections [i].len) == 0)
flags |= SEC_DEBUGGING;
}
}
only link a single copy of the section. This is used to support
g++. g++ will emit each template expansion in its own section.
The symbols will be defined as weak, so that multiple definitions
are permitted. The GNU linker extension is to actually discard
all but one of the sections. */
if (CONST_STRNEQ (name, ".gnu.linkonce")
&& elf_next_in_group (newsect) == NULL)
flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
bed = get_elf_backend_data (abfd);
if (bed->elf_backend_section_flags)
if (! bed->elf_backend_section_flags (&flags, hdr))
return FALSE;
if (! bfd_set_section_flags (abfd, newsect, flags))
return FALSE;
separate debug info files which may have the segments offsets corrupted.
PT_NOTEs from the core files are currently not parsed using BFD. */
if (hdr->sh_type == SHT_NOTE)
{
bfd_byte *contents;
if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
return FALSE;
elf_parse_notes (abfd, (char *) contents, hdr->sh_size, -1);
free (contents);
}
if ((flags & SEC_ALLOC) != 0)
{
Elf_Internal_Phdr *phdr;
unsigned int i, nload;
p_paddr fields zero. If we have such a binary with more than
one PT_LOAD header, then leave the section lma equal to vma
so that we don't create sections with overlapping lma. */
phdr = elf_tdata (abfd)->phdr;
for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
if (phdr->p_paddr != 0)
break;
else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
++nload;
if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
return TRUE;
phdr = elf_tdata (abfd)->phdr;
for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
{
offset plus size lies within the segment's memory
span and, if the section is loaded, the extent of the
loaded data lies within the extent of the segment.
Note - we used to check the p_paddr field as well, and
refuse to set the LMA if it was 0. This is wrong
though, as a perfectly valid initialised segment can
have a p_paddr of zero. Some architectures, eg ARM,
place special significance on the address 0 and
executables need to be able to have a segment which
covers this address. */
if (phdr->p_type == PT_LOAD
&& (bfd_vma) hdr->sh_offset >= phdr->p_offset
&& (hdr->sh_offset + hdr->sh_size
<= phdr->p_offset + phdr->p_memsz)
&& ((flags & SEC_LOAD) == 0
|| (hdr->sh_offset + hdr->sh_size
<= phdr->p_offset + phdr->p_filesz)))
{
if ((flags & SEC_LOAD) == 0)
newsect->lma = (phdr->p_paddr
+ hdr->sh_addr - phdr->p_vaddr);
else
sections, but that doesn't work if the segment
is packed with code from multiple VMAs.
Instead we calculate the section LMA based on
the segment LMA. It is assumed that the
segment will contain sections with contiguous
LMAs, even if the VMAs are not. */
newsect->lma = (phdr->p_paddr
+ hdr->sh_offset - phdr->p_offset);
offsets whether a section with zero size should
be placed at the end of one segment or the
beginning of the next. Decide based on vaddr. */
if (hdr->sh_addr >= phdr->p_vaddr
&& (hdr->sh_addr + hdr->sh_size
<= phdr->p_vaddr + phdr->p_memsz))
break;
}
}
}
return TRUE;
}
INTERNAL_FUNCTION
bfd_elf_find_section
SYNOPSIS
struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
DESCRIPTION
Helper functions for GDB to locate the string tables.
Since BFD hides string tables from callers, GDB needs to use an
internal hook to find them. Sun's .stabstr, in particular,
isn't even pointed to by the .stab section, so ordinary
mechanisms wouldn't work to find it, even if we had some.
*/
struct elf_internal_shdr *
bfd_elf_find_section (bfd *abfd, char *name)
{
Elf_Internal_Shdr **i_shdrp;
char *shstrtab;
unsigned int max;
unsigned int i;
i_shdrp = elf_elfsections (abfd);
if (i_shdrp != NULL)
{
shstrtab = bfd_elf_get_str_section (abfd,
elf_elfheader (abfd)->e_shstrndx);
if (shstrtab != NULL)
{
max = elf_numsections (abfd);
for (i = 1; i < max; i++)
if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
return i_shdrp[i];
}
}
return 0;
}
const char *const bfd_elf_section_type_names[] = {
"SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
"SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
"SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
};
output, and the reloc is against an external symbol, and nothing
has given us any additional addend, the resulting reloc will also
be against the same symbol. In such a case, we don't want to
change anything about the way the reloc is handled, since it will
all be done at final link time. Rather than put special case code
into bfd_perform_relocation, all the reloc types use this howto
function. It just short circuits the reloc if producing
relocatable output against an external symbol. */
bfd_reloc_status_type
bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
arelent *reloc_entry,
asymbol *symbol,
void *data ATTRIBUTE_UNUSED,
asection *input_section,
bfd *output_bfd,
char **error_message ATTRIBUTE_UNUSED)
{
if (output_bfd != NULL
&& (symbol->flags & BSF_SECTION_SYM) == 0
&& (! reloc_entry->howto->partial_inplace
|| reloc_entry->addend == 0))
{
reloc_entry->address += input_section->output_offset;
return bfd_reloc_ok;
}
return bfd_reloc_continue;
}
another. */
bfd_boolean
_bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
{
if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
|| bfd_get_flavour (obfd) != bfd_target_elf_flavour)
return TRUE;
BFD_ASSERT (!elf_flags_init (obfd)
|| (elf_elfheader (obfd)->e_flags
== elf_elfheader (ibfd)->e_flags));
elf_gp (obfd) = elf_gp (ibfd);
elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
elf_flags_init (obfd) = TRUE;
_bfd_elf_copy_obj_attributes (ibfd, obfd);
return TRUE;
}
static const char *
get_segment_type (unsigned int p_type)
{
const char *pt;
switch (p_type)
{
case PT_NULL: pt = "NULL"; break;
case PT_LOAD: pt = "LOAD"; break;
case PT_DYNAMIC: pt = "DYNAMIC"; break;
case PT_INTERP: pt = "INTERP"; break;
case PT_NOTE: pt = "NOTE"; break;
case PT_SHLIB: pt = "SHLIB"; break;
case PT_PHDR: pt = "PHDR"; break;
case PT_TLS: pt = "TLS"; break;
case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
case PT_GNU_STACK: pt = "STACK"; break;
case PT_GNU_RELRO: pt = "RELRO"; break;
default: pt = NULL; break;
}
return pt;
}
bfd_boolean
_bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
{
FILE *f = farg;
Elf_Internal_Phdr *p;
asection *s;
bfd_byte *dynbuf = NULL;
p = elf_tdata (abfd)->phdr;
if (p != NULL)
{
unsigned int i, c;
fprintf (f, _("\nProgram Header:\n"));
c = elf_elfheader (abfd)->e_phnum;
for (i = 0; i < c; i++, p++)
{
const char *pt = get_segment_type (p->p_type);
char buf[20];
if (pt == NULL)
{
sprintf (buf, "0x%lx", p->p_type);
pt = buf;
}
fprintf (f, "%8s off 0x", pt);
bfd_fprintf_vma (abfd, f, p->p_offset);
fprintf (f, " vaddr 0x");
bfd_fprintf_vma (abfd, f, p->p_vaddr);
fprintf (f, " paddr 0x");
bfd_fprintf_vma (abfd, f, p->p_paddr);
fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
fprintf (f, " filesz 0x");
bfd_fprintf_vma (abfd, f, p->p_filesz);
fprintf (f, " memsz 0x");
bfd_fprintf_vma (abfd, f, p->p_memsz);
fprintf (f, " flags %c%c%c",
(p->p_flags & PF_R) != 0 ? 'r' : '-',
(p->p_flags & PF_W) != 0 ? 'w' : '-',
(p->p_flags & PF_X) != 0 ? 'x' : '-');
if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
fprintf (f, "\n");
}
}
s = bfd_get_section_by_name (abfd, ".dynamic");
if (s != NULL)
{
unsigned int elfsec;
unsigned long shlink;
bfd_byte *extdyn, *extdynend;
size_t extdynsize;
void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
fprintf (f, _("\nDynamic Section:\n"));
if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
goto error_return;
elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
if (elfsec == SHN_BAD)
goto error_return;
shlink = elf_elfsections (abfd)[elfsec]->sh_link;
extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
extdyn = dynbuf;
extdynend = extdyn + s->size;
for (; extdyn < extdynend; extdyn += extdynsize)
{
Elf_Internal_Dyn dyn;
const char *name = "";
char ab[20];
bfd_boolean stringp;
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
(*swap_dyn_in) (abfd, extdyn, &dyn);
if (dyn.d_tag == DT_NULL)
break;
stringp = FALSE;
switch (dyn.d_tag)
{
default:
if (bed->elf_backend_get_target_dtag)
name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
if (!strcmp (name, ""))
{
sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
name = ab;
}
break;
case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
case DT_PLTRELSZ: name = "PLTRELSZ"; break;
case DT_PLTGOT: name = "PLTGOT"; break;
case DT_HASH: name = "HASH"; break;
case DT_STRTAB: name = "STRTAB"; break;
case DT_SYMTAB: name = "SYMTAB"; break;
case DT_RELA: name = "RELA"; break;
case DT_RELASZ: name = "RELASZ"; break;
case DT_RELAENT: name = "RELAENT"; break;
case DT_STRSZ: name = "STRSZ"; break;
case DT_SYMENT: name = "SYMENT"; break;
case DT_INIT: name = "INIT"; break;
case DT_FINI: name = "FINI"; break;
case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
case DT_SYMBOLIC: name = "SYMBOLIC"; break;
case DT_REL: name = "REL"; break;
case DT_RELSZ: name = "RELSZ"; break;
case DT_RELENT: name = "RELENT"; break;
case DT_PLTREL: name = "PLTREL"; break;
case DT_DEBUG: name = "DEBUG"; break;
case DT_TEXTREL: name = "TEXTREL"; break;
case DT_JMPREL: name = "JMPREL"; break;
case DT_BIND_NOW: name = "BIND_NOW"; break;
case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
case DT_FLAGS: name = "FLAGS"; break;
case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
case DT_CHECKSUM: name = "CHECKSUM"; break;
case DT_PLTPADSZ: name = "PLTPADSZ"; break;
case DT_MOVEENT: name = "MOVEENT"; break;
case DT_MOVESZ: name = "MOVESZ"; break;
case DT_FEATURE: name = "FEATURE"; break;
case DT_POSFLAG_1: name = "POSFLAG_1"; break;
case DT_SYMINSZ: name = "SYMINSZ"; break;
case DT_SYMINENT: name = "SYMINENT"; break;
case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
case DT_PLTPAD: name = "PLTPAD"; break;
case DT_MOVETAB: name = "MOVETAB"; break;
case DT_SYMINFO: name = "SYMINFO"; break;
case DT_RELACOUNT: name = "RELACOUNT"; break;
case DT_RELCOUNT: name = "RELCOUNT"; break;
case DT_FLAGS_1: name = "FLAGS_1"; break;
case DT_VERSYM: name = "VERSYM"; break;
case DT_VERDEF: name = "VERDEF"; break;
case DT_VERDEFNUM: name = "VERDEFNUM"; break;
case DT_VERNEED: name = "VERNEED"; break;
case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
case DT_USED: name = "USED"; break;
case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
case DT_GNU_HASH: name = "GNU_HASH"; break;
}
fprintf (f, " %-20s ", name);
if (! stringp)
{
fprintf (f, "0x");
bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
}
else
{
const char *string;
unsigned int tagv = dyn.d_un.d_val;
string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
if (string == NULL)
goto error_return;
fprintf (f, "%s", string);
}
fprintf (f, "\n");
}
free (dynbuf);
dynbuf = NULL;
}
if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
|| (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
{
if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
return FALSE;
}
if (elf_dynverdef (abfd) != 0)
{
Elf_Internal_Verdef *t;
fprintf (f, _("\nVersion definitions:\n"));
for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
{
fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
t->vd_flags, t->vd_hash,
t->vd_nodename ? t->vd_nodename : "<corrupt>");
if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
{
Elf_Internal_Verdaux *a;
fprintf (f, "\t");
for (a = t->vd_auxptr->vda_nextptr;
a != NULL;
a = a->vda_nextptr)
fprintf (f, "%s ",
a->vda_nodename ? a->vda_nodename : "<corrupt>");
fprintf (f, "\n");
}
}
}
if (elf_dynverref (abfd) != 0)
{
Elf_Internal_Verneed *t;
fprintf (f, _("\nVersion References:\n"));
for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
{
Elf_Internal_Vernaux *a;
fprintf (f, _(" required from %s:\n"),
t->vn_filename ? t->vn_filename : "<corrupt>");
for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
a->vna_flags, a->vna_other,
a->vna_nodename ? a->vna_nodename : "<corrupt>");
}
}
return TRUE;
error_return:
if (dynbuf != NULL)
free (dynbuf);
return FALSE;
}
void
bfd_elf_print_symbol (bfd *abfd,
void *filep,
asymbol *symbol,
bfd_print_symbol_type how)
{
FILE *file = filep;
switch (how)
{
case bfd_print_symbol_name:
fprintf (file, "%s", symbol->name);
break;
case bfd_print_symbol_more:
fprintf (file, "elf ");
bfd_fprintf_vma (abfd, file, symbol->value);
fprintf (file, " %lx", (unsigned long) symbol->flags);
break;
case bfd_print_symbol_all:
{
const char *section_name;
const char *name = NULL;
const struct elf_backend_data *bed;
unsigned char st_other;
bfd_vma val;
section_name = symbol->section ? symbol->section->name : "(*none*)";
bed = get_elf_backend_data (abfd);
if (bed->elf_backend_print_symbol_all)
name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
if (name == NULL)
{
name = symbol->name;
bfd_print_symbol_vandf (abfd, file, symbol);
}
fprintf (file, " %s\t", section_name);
we've already printed the size; now print the alignment.
For other symbols, we have no specified alignment, and
we've printed the address; now print the size. */
if (symbol->section && bfd_is_com_section (symbol->section))
val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
else
val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
bfd_fprintf_vma (abfd, file, val);
if (elf_tdata (abfd)->dynversym_section != 0
&& (elf_tdata (abfd)->dynverdef_section != 0
|| elf_tdata (abfd)->dynverref_section != 0))
{
unsigned int vernum;
const char *version_string;
vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
if (vernum == 0)
version_string = "";
else if (vernum == 1)
version_string = "Base";
else if (vernum <= elf_tdata (abfd)->cverdefs)
version_string =
elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
else
{
Elf_Internal_Verneed *t;
version_string = "";
for (t = elf_tdata (abfd)->verref;
t != NULL;
t = t->vn_nextref)
{
Elf_Internal_Vernaux *a;
for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
{
if (a->vna_other == vernum)
{
version_string = a->vna_nodename;
break;
}
}
}
}
if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
fprintf (file, " %-11s", version_string);
else
{
int i;
fprintf (file, " (%s)", version_string);
for (i = 10 - strlen (version_string); i > 0; --i)
putc (' ', file);
}
}
st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
switch (st_other)
{
case 0: break;
case STV_INTERNAL: fprintf (file, " .internal"); break;
case STV_HIDDEN: fprintf (file, " .hidden"); break;
case STV_PROTECTED: fprintf (file, " .protected"); break;
default:
everything hex. */
fprintf (file, " 0x%02x", (unsigned int) st_other);
}
fprintf (file, " %s", name);
}
break;
}
}
struct bfd_strtab_hash *
_bfd_elf_stringtab_init (void)
{
struct bfd_strtab_hash *ret;
ret = _bfd_stringtab_init ();
if (ret != NULL)
{
bfd_size_type loc;
loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
if (loc == (bfd_size_type) -1)
{
_bfd_stringtab_free (ret);
ret = NULL;
}
}
return ret;
}
bfd_boolean
bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
{
Elf_Internal_Shdr *hdr;
Elf_Internal_Ehdr *ehdr;
const struct elf_backend_data *bed;
const char *name;
if (shindex >= elf_numsections (abfd))
return FALSE;
hdr = elf_elfsections (abfd)[shindex];
ehdr = elf_elfheader (abfd);
name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
hdr->sh_name);
if (name == NULL)
return FALSE;
bed = get_elf_backend_data (abfd);
switch (hdr->sh_type)
{
case SHT_NULL:
return TRUE;
case SHT_PROGBITS:
case SHT_NOBITS:
case SHT_HASH:
case SHT_NOTE:
case SHT_INIT_ARRAY:
case SHT_FINI_ARRAY:
case SHT_PREINIT_ARRAY:
case SHT_GNU_LIBLIST:
case SHT_GNU_HASH:
return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
case SHT_DYNAMIC:
if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
return FALSE;
if (hdr->sh_link > elf_numsections (abfd)
|| elf_elfsections (abfd)[hdr->sh_link] == NULL)
return FALSE;
if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
{
Elf_Internal_Shdr *dynsymhdr;
sh_link field for the ".dynamic" section. Find the
string table for the ".dynsym" section instead. */
if (elf_dynsymtab (abfd) != 0)
{
dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
hdr->sh_link = dynsymhdr->sh_link;
}
else
{
unsigned int i, num_sec;
num_sec = elf_numsections (abfd);
for (i = 1; i < num_sec; i++)
{
dynsymhdr = elf_elfsections (abfd)[i];
if (dynsymhdr->sh_type == SHT_DYNSYM)
{
hdr->sh_link = dynsymhdr->sh_link;
break;
}
}
}
}
break;
case SHT_SYMTAB:
if (elf_onesymtab (abfd) == shindex)
return TRUE;
if (hdr->sh_entsize != bed->s->sizeof_sym)
return FALSE;
BFD_ASSERT (elf_onesymtab (abfd) == 0);
elf_onesymtab (abfd) = shindex;
elf_tdata (abfd)->symtab_hdr = *hdr;
elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
abfd->flags |= HAS_SYMS;
SHF_ALLOC is set, and this is a shared object, then we also
treat this section as a BFD section. We can not base the
decision purely on SHF_ALLOC, because that flag is sometimes
set in a relocatable object file, which would confuse the
linker. */
if ((hdr->sh_flags & SHF_ALLOC) != 0
&& (abfd->flags & DYNAMIC) != 0
&& ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
shindex))
return FALSE;
can't read symbols without that section loaded as well. It
is most likely specified by the next section header. */
if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
{
unsigned int i, num_sec;
num_sec = elf_numsections (abfd);
for (i = shindex + 1; i < num_sec; i++)
{
Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
if (hdr2->sh_type == SHT_SYMTAB_SHNDX
&& hdr2->sh_link == shindex)
break;
}
if (i == num_sec)
for (i = 1; i < shindex; i++)
{
Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
if (hdr2->sh_type == SHT_SYMTAB_SHNDX
&& hdr2->sh_link == shindex)
break;
}
if (i != shindex)
return bfd_section_from_shdr (abfd, i);
}
return TRUE;
case SHT_DYNSYM:
if (elf_dynsymtab (abfd) == shindex)
return TRUE;
if (hdr->sh_entsize != bed->s->sizeof_sym)
return FALSE;
BFD_ASSERT (elf_dynsymtab (abfd) == 0);
elf_dynsymtab (abfd) = shindex;
elf_tdata (abfd)->dynsymtab_hdr = *hdr;
elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
abfd->flags |= HAS_SYMS;
section, so that objcopy can handle it. */
return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
case SHT_SYMTAB_SHNDX:
if (elf_symtab_shndx (abfd) == shindex)
return TRUE;
BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
elf_symtab_shndx (abfd) = shindex;
elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
return TRUE;
case SHT_STRTAB:
if (hdr->bfd_section != NULL)
return TRUE;
if (ehdr->e_shstrndx == shindex)
{
elf_tdata (abfd)->shstrtab_hdr = *hdr;
elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
return TRUE;
}
if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
{
symtab_strtab:
elf_tdata (abfd)->strtab_hdr = *hdr;
elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
return TRUE;
}
if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
{
dynsymtab_strtab:
elf_tdata (abfd)->dynstrtab_hdr = *hdr;
hdr = &elf_tdata (abfd)->dynstrtab_hdr;
elf_elfsections (abfd)[shindex] = hdr;
can handle it. */
return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
shindex);
}
regular section. We need to scan all the headers to be sure,
just in case this strtab section appeared before the above. */
if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
{
unsigned int i, num_sec;
num_sec = elf_numsections (abfd);
for (i = 1; i < num_sec; i++)
{
Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
if (hdr2->sh_link == shindex)
{
if (i == shindex)
return FALSE;
if (! bfd_section_from_shdr (abfd, i))
return FALSE;
if (elf_onesymtab (abfd) == i)
goto symtab_strtab;
if (elf_dynsymtab (abfd) == i)
goto dynsymtab_strtab;
}
}
}
return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
case SHT_REL:
case SHT_RELA:
{
asection *target_sect;
Elf_Internal_Shdr *hdr2;
unsigned int num_sec = elf_numsections (abfd);
if (hdr->sh_entsize
!= (bfd_size_type) (hdr->sh_type == SHT_REL
? bed->s->sizeof_rel : bed->s->sizeof_rela))
return FALSE;
if (hdr->sh_link >= num_sec)
{
((*_bfd_error_handler)
(_("%B: invalid link %lu for reloc section %s (index %u)"),
abfd, hdr->sh_link, name, shindex));
return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
shindex);
}
libraries for Solaris in which some of the objects have
bogus sh_link fields. It would be nice if we could just
reject them, but, unfortunately, some people need to use
them. We scan through the section headers; if we find only
one suitable symbol table, we clobber the sh_link to point
to it. I hope this doesn't break anything. */
if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
&& elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
{
unsigned int scan;
int found;
found = 0;
for (scan = 1; scan < num_sec; scan++)
{
if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
|| elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
{
if (found != 0)
{
found = 0;
break;
}
found = scan;
}
}
if (found != 0)
hdr->sh_link = found;
}
if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
|| elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
&& ! bfd_section_from_shdr (abfd, hdr->sh_link))
return FALSE;
don't treat it as a reloc section. BFD can't adequately
represent such a section, so at least for now, we don't
try. We just present it as a normal section. We also
can't use it as a reloc section if it points to the null
section, an invalid section, or another reloc section. */
if (hdr->sh_link != elf_onesymtab (abfd)
|| hdr->sh_info == SHN_UNDEF
|| hdr->sh_info >= num_sec
|| elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
|| elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
shindex);
if (! bfd_section_from_shdr (abfd, hdr->sh_info))
return FALSE;
target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
if (target_sect == NULL)
return FALSE;
if ((target_sect->flags & SEC_RELOC) == 0
|| target_sect->reloc_count == 0)
hdr2 = &elf_section_data (target_sect)->rel_hdr;
else
{
bfd_size_type amt;
BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
amt = sizeof (*hdr2);
hdr2 = bfd_alloc (abfd, amt);
if (hdr2 == NULL)
return FALSE;
elf_section_data (target_sect)->rel_hdr2 = hdr2;
}
*hdr2 = *hdr;
elf_elfsections (abfd)[shindex] = hdr2;
target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
target_sect->flags |= SEC_RELOC;
target_sect->relocation = NULL;
target_sect->rel_filepos = hdr->sh_offset;
its relocations are of the REL or RELA variety. */
if (hdr->sh_size != 0)
target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
abfd->flags |= HAS_RELOC;
return TRUE;
}
case SHT_GNU_verdef:
elf_dynverdef (abfd) = shindex;
elf_tdata (abfd)->dynverdef_hdr = *hdr;
return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
case SHT_GNU_versym:
if (hdr->sh_entsize != sizeof (Elf_External_Versym))
return FALSE;
elf_dynversym (abfd) = shindex;
elf_tdata (abfd)->dynversym_hdr = *hdr;
return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
case SHT_GNU_verneed:
elf_dynverref (abfd) = shindex;
elf_tdata (abfd)->dynverref_hdr = *hdr;
return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
case SHT_SHLIB:
return TRUE;
case SHT_GROUP:
and it's handy to have the signature available as the section
name. */
if (! IS_VALID_GROUP_SECTION_HEADER (hdr))
return FALSE;
name = group_signature (abfd, hdr);
if (name == NULL)
return FALSE;
if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
return FALSE;
if (hdr->contents != NULL)
{
Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
unsigned int n_elt = hdr->sh_size / GRP_ENTRY_SIZE;
asection *s;
if (idx->flags & GRP_COMDAT)
hdr->bfd_section->flags
|= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
idx += n_elt;
while (--n_elt != 0)
{
--idx;
if (idx->shdr != NULL
&& (s = idx->shdr->bfd_section) != NULL
&& elf_next_in_group (s) != NULL)
{
elf_next_in_group (hdr->bfd_section) = s;
break;
}
}
}
break;
default:
if (hdr->sh_type == SHT_GNU_ATTRIBUTES
|| hdr->sh_type == bed->obj_attrs_section_type)
{
if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
return FALSE;
_bfd_elf_parse_attributes (abfd, hdr);
return TRUE;
}
if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
return TRUE;
if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
{
if ((hdr->sh_flags & SHF_ALLOC) != 0)
for applications? */
(*_bfd_error_handler)
(_("%B: don't know how to handle allocated, application "
"specific section `%s' [0x%8x]"),
abfd, name, hdr->sh_type);
else
return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
shindex);
}
else if (hdr->sh_type >= SHT_LOPROC
&& hdr->sh_type <= SHT_HIPROC)
(*_bfd_error_handler)
(_("%B: don't know how to handle processor specific section "
"`%s' [0x%8x]"),
abfd, name, hdr->sh_type);
else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
{
if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
required to correctly process the section and the file should
be rejected with an error message. */
(*_bfd_error_handler)
(_("%B: don't know how to handle OS specific section "
"`%s' [0x%8x]"),
abfd, name, hdr->sh_type);
else
return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
}
else
(*_bfd_error_handler)
(_("%B: don't know how to handle section `%s' [0x%8x]"),
abfd, name, hdr->sh_type);
return FALSE;
}
return TRUE;
}
Return SEC for sections that have no elf section, and NULL on error. */
asection *
bfd_section_from_r_symndx (bfd *abfd,
struct sym_sec_cache *cache,
asection *sec,
unsigned long r_symndx)
{
unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
asection *s;
if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
{
Elf_Internal_Shdr *symtab_hdr;
unsigned char esym[sizeof (Elf64_External_Sym)];
Elf_External_Sym_Shndx eshndx;
Elf_Internal_Sym isym;
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
&isym, esym, &eshndx) == NULL)
return NULL;
if (cache->abfd != abfd)
{
memset (cache->indx, -1, sizeof (cache->indx));
cache->abfd = abfd;
}
cache->indx[ent] = r_symndx;
cache->shndx[ent] = isym.st_shndx;
}
s = bfd_section_from_elf_index (abfd, cache->shndx[ent]);
if (s != NULL)
return s;
return sec;
}
section. */
asection *
bfd_section_from_elf_index (bfd *abfd, unsigned int index)
{
if (index >= elf_numsections (abfd))
return NULL;
return elf_elfsections (abfd)[index]->bfd_section;
}
static const struct bfd_elf_special_section special_sections_b[] =
{
{ STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
{ NULL, 0, 0, 0, 0 }
};
static const struct bfd_elf_special_section special_sections_c[] =
{
{ STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
{ NULL, 0, 0, 0, 0 }
};
static const struct bfd_elf_special_section special_sections_d[] =
{
{ STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
{ STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
{ STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
{ STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
{ STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
{ STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
{ STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
{ STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
{ STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
{ STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
{ NULL, 0, 0, 0, 0 }
};
static const struct bfd_elf_special_section special_sections_f[] =
{
{ STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
{ STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
{ NULL, 0, 0, 0, 0 }
};
static const struct bfd_elf_special_section special_sections_g[] =
{
{ STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
{ STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
{ STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
{ STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
{ STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
{ STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
{ STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
{ STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
{ NULL, 0, 0, 0, 0 }
};
static const struct bfd_elf_special_section special_sections_h[] =
{
{ STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
{ NULL, 0, 0, 0, 0 }
};
static const struct bfd_elf_special_section special_sections_i[] =
{
{ STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
{ STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
{ STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
{ NULL, 0, 0, 0, 0 }
};
static const struct bfd_elf_special_section special_sections_l[] =
{
{ STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
{ NULL, 0, 0, 0, 0 }
};
static const struct bfd_elf_special_section special_sections_n[] =
{
{ STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
{ STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
{ NULL, 0, 0, 0, 0 }
};
static const struct bfd_elf_special_section special_sections_p[] =
{
{ STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
{ STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
{ NULL, 0, 0, 0, 0 }
};
static const struct bfd_elf_special_section special_sections_r[] =
{
{ STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
{ STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
{ STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
{ STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
{ NULL, 0, 0, 0, 0 }
};
static const struct bfd_elf_special_section special_sections_s[] =
{
{ STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
{ STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
{ STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
this special case where .prefix_length != strlen (.prefix). */
{ ".stabstr", 5, 3, SHT_STRTAB, 0 },
{ NULL, 0, 0, 0, 0 }
};
static const struct bfd_elf_special_section special_sections_t[] =
{
{ STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
{ STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
{ STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
{ NULL, 0, 0, 0, 0 }
};
static const struct bfd_elf_special_section special_sections_z[] =
{
{ STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
{ STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
{ STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
{ STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
{ NULL, 0, 0, 0, 0 }
};
static const struct bfd_elf_special_section *special_sections[] =
{
special_sections_b,
special_sections_c,
special_sections_d,
NULL,
special_sections_f,
special_sections_g,
special_sections_h,
special_sections_i,
NULL,
NULL,
special_sections_l,
NULL,
special_sections_n,
NULL,
special_sections_p,
NULL,
special_sections_r,
special_sections_s,
special_sections_t,
NULL,
NULL,
NULL,
NULL,
NULL,
special_sections_z
};
const struct bfd_elf_special_section *
_bfd_elf_get_special_section (const char *name,
const struct bfd_elf_special_section *spec,
unsigned int rela)
{
int i;
int len;
len = strlen (name);
for (i = 0; spec[i].prefix != NULL; i++)
{
int suffix_len;
int prefix_len = spec[i].prefix_length;
if (len < prefix_len)
continue;
if (memcmp (name, spec[i].prefix, prefix_len) != 0)
continue;
suffix_len = spec[i].suffix_length;
if (suffix_len <= 0)
{
if (name[prefix_len] != 0)
{
if (suffix_len == 0)
continue;
if (name[prefix_len] != '.'
&& (suffix_len == -2
|| (rela && spec[i].type == SHT_REL)))
continue;
}
}
else
{
if (len < prefix_len + suffix_len)
continue;
if (memcmp (name + len - suffix_len,
spec[i].prefix + prefix_len,
suffix_len) != 0)
continue;
}
return &spec[i];
}
return NULL;
}
const struct bfd_elf_special_section *
_bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
{
int i;
const struct bfd_elf_special_section *spec;
const struct elf_backend_data *bed;
if (sec->name == NULL)
return NULL;
bed = get_elf_backend_data (abfd);
spec = bed->special_sections;
if (spec)
{
spec = _bfd_elf_get_special_section (sec->name,
bed->special_sections,
sec->use_rela_p);
if (spec != NULL)
return spec;
}
if (sec->name[0] != '.')
return NULL;
i = sec->name[1] - 'b';
if (i < 0 || i > 'z' - 'b')
return NULL;
spec = special_sections[i];
if (spec == NULL)
return NULL;
return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
}
bfd_boolean
_bfd_elf_new_section_hook (bfd *abfd, asection *sec)
{
struct bfd_elf_section_data *sdata;
const struct elf_backend_data *bed;
const struct bfd_elf_special_section *ssect;
sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
if (sdata == NULL)
{
sdata = bfd_zalloc (abfd, sizeof (*sdata));
if (sdata == NULL)
return FALSE;
sec->used_by_bfd = sdata;
}
bed = get_elf_backend_data (abfd);
sec->use_rela_p = bed->default_use_rela_p;
flags. They will be overridden in _bfd_elf_make_section_from_shdr
anyway. We will set ELF section type and flags for all linker
created sections. If user specifies BFD section flags, we will
set ELF section type and flags based on BFD section flags in
elf_fake_sections. */
if ((!sec->flags && abfd->direction != read_direction)
|| (sec->flags & SEC_LINKER_CREATED) != 0)
{
ssect = (*bed->get_sec_type_attr) (abfd, sec);
if (ssect != NULL)
{
elf_section_type (sec) = ssect->type;
elf_section_flags (sec) = ssect->attr;
}
}
return _bfd_generic_new_section_hook (abfd, sec);
}
Since program segments have no names, we generate a synthetic name
of the form segment<NUM>, where NUM is generally the index in the
program header table. For segments that are split (see below) we
generate the names segment<NUM>a and segment<NUM>b.
Note that some program segments may have a file size that is different than
(less than) the memory size. All this means is that at execution the
system must allocate the amount of memory specified by the memory size,
but only initialize it with the first "file size" bytes read from the
file. This would occur for example, with program segments consisting
of combined data+bss.
To handle the above situation, this routine generates TWO bfd sections
for the single program segment. The first has the length specified by
the file size of the segment, and the second has the length specified
by the difference between the two sizes. In effect, the segment is split
into its initialized and uninitialized parts.
*/
bfd_boolean
_bfd_elf_make_section_from_phdr (bfd *abfd,
Elf_Internal_Phdr *hdr,
int index,
const char *typename)
{
asection *newsect;
char *name;
char namebuf[64];
size_t len;
int split;
split = ((hdr->p_memsz > 0)
&& (hdr->p_filesz > 0)
&& (hdr->p_memsz > hdr->p_filesz));
if (hdr->p_filesz > 0)
{
sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
len = strlen (namebuf) + 1;
name = bfd_alloc (abfd, len);
if (!name)
return FALSE;
memcpy (name, namebuf, len);
newsect = bfd_make_section (abfd, name);
if (newsect == NULL)
return FALSE;
newsect->vma = hdr->p_vaddr;
newsect->lma = hdr->p_paddr;
newsect->size = hdr->p_filesz;
newsect->filepos = hdr->p_offset;
newsect->flags |= SEC_HAS_CONTENTS;
newsect->alignment_power = bfd_log2 (hdr->p_align);
if (hdr->p_type == PT_LOAD)
{
newsect->flags |= SEC_ALLOC;
newsect->flags |= SEC_LOAD;
if (hdr->p_flags & PF_X)
{
may be data. */
newsect->flags |= SEC_CODE;
}
}
if (!(hdr->p_flags & PF_W))
{
newsect->flags |= SEC_READONLY;
}
}
if (hdr->p_memsz > hdr->p_filesz)
{
bfd_vma align;
sprintf (namebuf, "%s%d%s", typename, index, split ? "b" : "");
len = strlen (namebuf) + 1;
name = bfd_alloc (abfd, len);
if (!name)
return FALSE;
memcpy (name, namebuf, len);
newsect = bfd_make_section (abfd, name);
if (newsect == NULL)
return FALSE;
newsect->vma = hdr->p_vaddr + hdr->p_filesz;
newsect->lma = hdr->p_paddr + hdr->p_filesz;
newsect->size = hdr->p_memsz - hdr->p_filesz;
newsect->filepos = hdr->p_offset + hdr->p_filesz;
align = newsect->vma & -newsect->vma;
if (align == 0 || align > hdr->p_align)
align = hdr->p_align;
newsect->alignment_power = bfd_log2 (align);
if (hdr->p_type == PT_LOAD)
{
not have their contents written to a core file, on the
assumption that a debugger can find the contents in the
executable. We flag this case by setting the fake
section size to zero. Note that "real" bss sections will
always have their contents dumped to the core file. */
if (bfd_get_format (abfd) == bfd_core)
newsect->size = 0;
newsect->flags |= SEC_ALLOC;
if (hdr->p_flags & PF_X)
newsect->flags |= SEC_CODE;
}
if (!(hdr->p_flags & PF_W))
newsect->flags |= SEC_READONLY;
}
return TRUE;
}
bfd_boolean
bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
{
const struct elf_backend_data *bed;
switch (hdr->p_type)
{
case PT_NULL:
return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
case PT_LOAD:
return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
case PT_DYNAMIC:
return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
case PT_INTERP:
return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
case PT_NOTE:
if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
return FALSE;
if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
return FALSE;
return TRUE;
case PT_SHLIB:
return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
case PT_PHDR:
return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
case PT_GNU_EH_FRAME:
return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
"eh_frame_hdr");
case PT_GNU_STACK:
return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
case PT_GNU_RELRO:
return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
default:
bed = get_elf_backend_data (abfd);
return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
}
}
relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
relocations; otherwise, we use REL relocations. */
bfd_boolean
_bfd_elf_init_reloc_shdr (bfd *abfd,
Elf_Internal_Shdr *rel_hdr,
asection *asect,
bfd_boolean use_rela_p)
{
char *name;
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
name = bfd_alloc (abfd, amt);
if (name == NULL)
return FALSE;
sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
rel_hdr->sh_name =
(unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
FALSE);
if (rel_hdr->sh_name == (unsigned int) -1)
return FALSE;
rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
rel_hdr->sh_entsize = (use_rela_p
? bed->s->sizeof_rela
: bed->s->sizeof_rel);
rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
rel_hdr->sh_flags = 0;
rel_hdr->sh_addr = 0;
rel_hdr->sh_size = 0;
rel_hdr->sh_offset = 0;
return TRUE;
}
static void
elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
{
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
bfd_boolean *failedptr = failedptrarg;
Elf_Internal_Shdr *this_hdr;
unsigned int sh_type;
if (*failedptr)
{
loop. */
return;
}
this_hdr = &elf_section_data (asect)->this_hdr;
this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
asect->name, FALSE);
if (this_hdr->sh_name == (unsigned int) -1)
{
*failedptr = TRUE;
return;
}
if ((asect->flags & SEC_ALLOC) != 0
|| asect->user_set_vma)
this_hdr->sh_addr = asect->vma;
else
this_hdr->sh_addr = 0;
this_hdr->sh_offset = 0;
this_hdr->sh_size = asect->size;
this_hdr->sh_link = 0;
this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
copy_private_section_data. */
this_hdr->bfd_section = asect;
this_hdr->contents = NULL;
asect->flags. */
if ((asect->flags & SEC_GROUP) != 0)
sh_type = SHT_GROUP;
else if ((asect->flags & SEC_ALLOC) != 0
&& (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
|| (asect->flags & SEC_NEVER_LOAD) != 0))
sh_type = SHT_NOBITS;
else
sh_type = SHT_PROGBITS;
if (this_hdr->sh_type == SHT_NULL)
this_hdr->sh_type = sh_type;
else if (this_hdr->sh_type == SHT_NOBITS
&& sh_type == SHT_PROGBITS
&& (asect->flags & SEC_ALLOC) != 0)
{
allow the link to proceed. This can happen when users link
non-bss input sections to bss output sections, or emit data
to a bss output section via a linker script. */
(*_bfd_error_handler)
(_("warning: section `%A' type changed to PROGBITS"), asect);
this_hdr->sh_type = sh_type;
}
switch (this_hdr->sh_type)
{
default:
break;
case SHT_STRTAB:
case SHT_INIT_ARRAY:
case SHT_FINI_ARRAY:
case SHT_PREINIT_ARRAY:
case SHT_NOTE:
case SHT_NOBITS:
case SHT_PROGBITS:
break;
case SHT_HASH:
this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
break;
case SHT_DYNSYM:
this_hdr->sh_entsize = bed->s->sizeof_sym;
break;
case SHT_DYNAMIC:
this_hdr->sh_entsize = bed->s->sizeof_dyn;
break;
case SHT_RELA:
if (get_elf_backend_data (abfd)->may_use_rela_p)
this_hdr->sh_entsize = bed->s->sizeof_rela;
break;
case SHT_REL:
if (get_elf_backend_data (abfd)->may_use_rel_p)
this_hdr->sh_entsize = bed->s->sizeof_rel;
break;
case SHT_GNU_versym:
this_hdr->sh_entsize = sizeof (Elf_External_Versym);
break;
case SHT_GNU_verdef:
this_hdr->sh_entsize = 0;
cverdefs. The linker will set cverdefs, but sh_info will be
zero. */
if (this_hdr->sh_info == 0)
this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
else
BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
|| this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
break;
case SHT_GNU_verneed:
this_hdr->sh_entsize = 0;
cverrefs. The linker will set cverrefs, but sh_info will be
zero. */
if (this_hdr->sh_info == 0)
this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
else
BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
|| this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
break;
case SHT_GROUP:
this_hdr->sh_entsize = GRP_ENTRY_SIZE;
break;
case SHT_GNU_HASH:
this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
break;
}
if ((asect->flags & SEC_ALLOC) != 0)
this_hdr->sh_flags |= SHF_ALLOC;
if ((asect->flags & SEC_READONLY) == 0)
this_hdr->sh_flags |= SHF_WRITE;
if ((asect->flags & SEC_CODE) != 0)
this_hdr->sh_flags |= SHF_EXECINSTR;
if ((asect->flags & SEC_MERGE) != 0)
{
this_hdr->sh_flags |= SHF_MERGE;
this_hdr->sh_entsize = asect->entsize;
if ((asect->flags & SEC_STRINGS) != 0)
this_hdr->sh_flags |= SHF_STRINGS;
}
if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
this_hdr->sh_flags |= SHF_GROUP;
if ((asect->flags & SEC_THREAD_LOCAL) != 0)
{
this_hdr->sh_flags |= SHF_TLS;
if (asect->size == 0
&& (asect->flags & SEC_HAS_CONTENTS) == 0)
{
struct bfd_link_order *o = asect->map_tail.link_order;
this_hdr->sh_size = 0;
if (o != NULL)
{
this_hdr->sh_size = o->offset + o->size;
if (this_hdr->sh_size != 0)
this_hdr->sh_type = SHT_NOBITS;
}
}
}
sh_type = this_hdr->sh_type;
if (bed->elf_backend_fake_sections
&& !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
*failedptr = TRUE;
if (sh_type == SHT_NOBITS && asect->size != 0)
{
called for objcopy --only-keep-debug. */
this_hdr->sh_type = sh_type;
}
SHT_REL[A] section. If two relocation sections are required for
this section, it is up to the processor-specific back-end to
create the other. */
if ((asect->flags & SEC_RELOC) != 0
&& !_bfd_elf_init_reloc_shdr (abfd,
&elf_section_data (asect)->rel_hdr,
asect,
asect->use_rela_p))
*failedptr = TRUE;
}
void
bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
{
bfd_boolean *failedptr = failedptrarg;
unsigned long symindx;
asection *elt, *first;
unsigned char *loc;
bfd_boolean gas;
elfxx-ia64.c. */
if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
|| *failedptr)
return;
symindx = 0;
if (elf_group_id (sec) != NULL)
symindx = elf_group_id (sec)->udata.i;
if (symindx == 0)
{
elf_section_syms; If called for "ld -r", use target_index. */
if (elf_section_syms (abfd) != NULL)
symindx = elf_section_syms (abfd)[sec->index]->udata.i;
else
symindx = sec->target_index;
}
elf_section_data (sec)->this_hdr.sh_info = symindx;
gas = TRUE;
if (sec->contents == NULL)
{
gas = FALSE;
sec->contents = bfd_alloc (abfd, sec->size);
elf_section_data (sec)->this_hdr.contents = sec->contents;
if (sec->contents == NULL)
{
*failedptr = TRUE;
return;
}
}
loc = sec->contents + sec->size;
squirreled away here. objcopy arranges for this to be set to the
start of the input section group. */
first = elt = elf_next_in_group (sec);
indices for all the sections of the group. Write them backwards
just to keep the group in the same order as given in .section
directives, not that it matters. */
while (elt != NULL)
{
asection *s;
unsigned int idx;
loc -= 4;
s = elt;
if (!gas)
s = s->output_section;
idx = 0;
if (s != NULL)
idx = elf_section_data (s)->this_idx;
H_PUT_32 (abfd, idx, loc);
elt = elf_next_in_group (elt);
if (elt == first)
break;
}
if ((loc -= 4) != sec->contents)
abort ();
H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
}
too. The link/info pointers for the standard section types are filled
in here too, while we're at it. */
static bfd_boolean
assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
{
struct elf_obj_tdata *t = elf_tdata (abfd);
asection *sec;
unsigned int section_number, secn;
Elf_Internal_Shdr **i_shdrp;
struct bfd_elf_section_data *d;
section_number = 1;
_bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
if (link_info == NULL || link_info->relocatable)
{
for (sec = abfd->sections; sec != NULL; sec = sec->next)
{
d = elf_section_data (sec);
if (d->this_hdr.sh_type == SHT_GROUP)
{
if (sec->flags & SEC_LINKER_CREATED)
{
bfd_section_list_remove (abfd, sec);
abfd->section_count--;
}
else
d->this_idx = section_number++;
}
}
}
for (sec = abfd->sections; sec; sec = sec->next)
{
d = elf_section_data (sec);
if (d->this_hdr.sh_type != SHT_GROUP)
d->this_idx = section_number++;
_bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
if ((sec->flags & SEC_RELOC) == 0)
d->rel_idx = 0;
else
{
d->rel_idx = section_number++;
_bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
}
if (d->rel_hdr2)
{
d->rel_idx2 = section_number++;
_bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
}
else
d->rel_idx2 = 0;
}
t->shstrtab_section = section_number++;
_bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
if (bfd_get_symcount (abfd) > 0)
{
t->symtab_section = section_number++;
_bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
{
t->symtab_shndx_section = section_number++;
t->symtab_shndx_hdr.sh_name
= (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
".symtab_shndx", FALSE);
if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
return FALSE;
}
t->strtab_section = section_number++;
_bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
}
_bfd_elf_strtab_finalize (elf_shstrtab (abfd));
t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
elf_numsections (abfd) = section_number;
elf_elfheader (abfd)->e_shnum = section_number;
indices. */
i_shdrp = bfd_zalloc2 (abfd, section_number, sizeof (Elf_Internal_Shdr *));
if (i_shdrp == NULL)
return FALSE;
i_shdrp[0] = bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr));
if (i_shdrp[0] == NULL)
{
bfd_release (abfd, i_shdrp);
return FALSE;
}
elf_elfsections (abfd) = i_shdrp;
i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
if (bfd_get_symcount (abfd) > 0)
{
i_shdrp[t->symtab_section] = &t->symtab_hdr;
if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
{
i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
t->symtab_shndx_hdr.sh_link = t->symtab_section;
}
i_shdrp[t->strtab_section] = &t->strtab_hdr;
t->symtab_hdr.sh_link = t->strtab_section;
}
for (sec = abfd->sections; sec; sec = sec->next)
{
struct bfd_elf_section_data *d = elf_section_data (sec);
asection *s;
const char *name;
i_shdrp[d->this_idx] = &d->this_hdr;
if (d->rel_idx != 0)
i_shdrp[d->rel_idx] = &d->rel_hdr;
if (d->rel_idx2 != 0)
i_shdrp[d->rel_idx2] = d->rel_hdr2;
table. sh_info is the section index of the section to which
the relocation entries apply. */
if (d->rel_idx != 0)
{
d->rel_hdr.sh_link = t->symtab_section;
d->rel_hdr.sh_info = d->this_idx;
}
if (d->rel_idx2 != 0)
{
d->rel_hdr2->sh_link = t->symtab_section;
d->rel_hdr2->sh_info = d->this_idx;
}
if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
{
s = elf_linked_to_section (sec);
if (s)
{
if (link_info != NULL)
{
if (elf_discarded_section (s))
{
asection *kept;
(*_bfd_error_handler)
(_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
abfd, d->this_hdr.bfd_section,
s, s->owner);
size as the discarded one. */
kept = _bfd_elf_check_kept_section (s, link_info);
if (kept == NULL)
{
bfd_set_error (bfd_error_bad_value);
return FALSE;
}
s = kept;
}
s = s->output_section;
BFD_ASSERT (s != NULL);
}
else
{
if (s->output_section == NULL)
{
(*_bfd_error_handler)
(_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
abfd, d->this_hdr.bfd_section, s, s->owner);
bfd_set_error (bfd_error_bad_value);
return FALSE;
}
s = s->output_section;
}
d->this_hdr.sh_link = elf_section_data (s)->this_idx;
}
else
{
The Intel C compiler generates SHT_IA_64_UNWIND with
SHF_LINK_ORDER. But it doesn't set the sh_link or
sh_info fields. Hence we could get the situation
where s is NULL. */
const struct elf_backend_data *bed
= get_elf_backend_data (abfd);
if (bed->link_order_error_handler)
bed->link_order_error_handler
(_("%B: warning: sh_link not set for section `%A'"),
abfd, sec);
}
}
switch (d->this_hdr.sh_type)
{
case SHT_REL:
case SHT_RELA:
section. sh_link is the section index of the symbol
table. sh_info is the section index of the section to
which the relocation entries apply. We assume that an
allocated reloc section uses the dynamic symbol table.
FIXME: How can we be sure? */
s = bfd_get_section_by_name (abfd, ".dynsym");
if (s != NULL)
d->this_hdr.sh_link = elf_section_data (s)->this_idx;
name = sec->name;
if (d->this_hdr.sh_type == SHT_REL)
name += 4;
else
name += 5;
s = bfd_get_section_by_name (abfd, name);
if (s != NULL)
d->this_hdr.sh_info = elf_section_data (s)->this_idx;
break;
case SHT_STRTAB:
string section. We look for a section with the same name
but without the trailing ``str'', and set its sh_link
field to point to this section. */
if (CONST_STRNEQ (sec->name, ".stab")
&& strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
{
size_t len;
char *alc;
len = strlen (sec->name);
alc = bfd_malloc (len - 2);
if (alc == NULL)
return FALSE;
memcpy (alc, sec->name, len - 3);
alc[len - 3] = '\0';
s = bfd_get_section_by_name (abfd, alc);
free (alc);
if (s != NULL)
{
elf_section_data (s)->this_hdr.sh_link = d->this_idx;
if (elf_section_data (s)->this_hdr.sh_entsize == 0)
elf_section_data (s)->this_hdr.sh_entsize
= 4 + 2 * bfd_get_arch_size (abfd) / 8;
}
}
break;
case SHT_DYNAMIC:
case SHT_DYNSYM:
case SHT_GNU_verneed:
case SHT_GNU_verdef:
used for the dynamic entries, or the symbol table, or the
version strings. */
s = bfd_get_section_by_name (abfd, ".dynstr");
if (s != NULL)
d->this_hdr.sh_link = elf_section_data (s)->this_idx;
break;
case SHT_GNU_LIBLIST:
list used for the dynamic entries, or the symbol table, or
the version strings. */
s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
? ".dynstr" : ".gnu.libstr");
if (s != NULL)
d->this_hdr.sh_link = elf_section_data (s)->this_idx;
break;
case SHT_HASH:
case SHT_GNU_HASH:
case SHT_GNU_versym:
this hash table or version table is for. */
s = bfd_get_section_by_name (abfd, ".dynsym");
if (s != NULL)
d->this_hdr.sh_link = elf_section_data (s)->this_idx;
break;
case SHT_GROUP:
d->this_hdr.sh_link = t->symtab_section;
}
}
for (secn = 1; secn < section_number; ++secn)
if (i_shdrp[secn] == NULL)
i_shdrp[secn] = i_shdrp[0];
else
i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
i_shdrp[secn]->sh_name);
return TRUE;
}
all local symbols to be at the head of the list. */
static bfd_boolean
sym_is_global (bfd *abfd, asymbol *sym)
{
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
if (bed->elf_backend_sym_is_global)
return (*bed->elf_backend_sym_is_global) (abfd, sym);
return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
|| bfd_is_und_section (bfd_get_section (sym))
|| bfd_is_com_section (bfd_get_section (sym)));
}
output. */
static bfd_boolean
ignore_section_sym (bfd *abfd, asymbol *sym)
{
return ((sym->flags & BSF_SECTION_SYM) != 0
&& !(sym->section->owner == abfd
|| (sym->section->output_section->owner == abfd
&& sym->section->output_offset == 0)));
}
static bfd_boolean
elf_map_symbols (bfd *abfd)
{
unsigned int symcount = bfd_get_symcount (abfd);
asymbol **syms = bfd_get_outsymbols (abfd);
asymbol **sect_syms;
unsigned int num_locals = 0;
unsigned int num_globals = 0;
unsigned int num_locals2 = 0;
unsigned int num_globals2 = 0;
int max_index = 0;
unsigned int idx;
asection *asect;
asymbol **new_syms;
#ifdef DEBUG
fprintf (stderr, "elf_map_symbols\n");
fflush (stderr);
#endif
for (asect = abfd->sections; asect; asect = asect->next)
{
if (max_index < asect->index)
max_index = asect->index;
}
max_index++;
sect_syms = bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
if (sect_syms == NULL)
return FALSE;
elf_section_syms (abfd) = sect_syms;
elf_num_section_syms (abfd) = max_index;
decided to output. */
for (idx = 0; idx < symcount; idx++)
{
asymbol *sym = syms[idx];
if ((sym->flags & BSF_SECTION_SYM) != 0
&& sym->value == 0
&& !ignore_section_sym (abfd, sym))
{
asection *sec = sym->section;
if (sec->owner != abfd)
sec = sec->output_section;
sect_syms[sec->index] = syms[idx];
}
}
for (idx = 0; idx < symcount; idx++)
{
if (ignore_section_sym (abfd, syms[idx]))
continue;
if (!sym_is_global (abfd, syms[idx]))
num_locals++;
else
num_globals++;
}
sections will already have a section symbol in outsymbols, but
eg. SHT_GROUP sections will not, and we need the section symbol mapped
at least in that case. */
for (asect = abfd->sections; asect; asect = asect->next)
{
if (sect_syms[asect->index] == NULL)
{
if (!sym_is_global (abfd, asect->symbol))
num_locals++;
else
num_globals++;
}
}
new_syms = bfd_alloc2 (abfd, num_locals + num_globals, sizeof (asymbol *));
if (new_syms == NULL)
return FALSE;
for (idx = 0; idx < symcount; idx++)
{
asymbol *sym = syms[idx];
unsigned int i;
if (ignore_section_sym (abfd, sym))
continue;
if (!sym_is_global (abfd, sym))
i = num_locals2++;
else
i = num_locals + num_globals2++;
new_syms[i] = sym;
sym->udata.i = i + 1;
}
for (asect = abfd->sections; asect; asect = asect->next)
{
if (sect_syms[asect->index] == NULL)
{
asymbol *sym = asect->symbol;
unsigned int i;
sect_syms[asect->index] = sym;
if (!sym_is_global (abfd, sym))
i = num_locals2++;
else
i = num_locals + num_globals2++;
new_syms[i] = sym;
sym->udata.i = i + 1;
}
}
bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
elf_num_locals (abfd) = num_locals;
elf_num_globals (abfd) = num_globals;
return TRUE;
}
ELF data structure. */
static inline file_ptr
align_file_position (file_ptr off, int align)
{
return (off + align - 1) & ~(align - 1);
}
required section alignment. */
file_ptr
_bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
file_ptr offset,
bfd_boolean align)
{
if (align && i_shdrp->sh_addralign > 1)
offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
i_shdrp->sh_offset = offset;
if (i_shdrp->bfd_section != NULL)
i_shdrp->bfd_section->filepos = offset;
if (i_shdrp->sh_type != SHT_NOBITS)
offset += i_shdrp->sh_size;
return offset;
}
otherwise prepare to begin writing out the ELF file. If LINK_INFO
is not NULL, this is being called by the ELF backend linker. */
bfd_boolean
_bfd_elf_compute_section_file_positions (bfd *abfd,
struct bfd_link_info *link_info)
{
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
bfd_boolean failed;
struct bfd_strtab_hash *strtab = NULL;
Elf_Internal_Shdr *shstrtab_hdr;
if (abfd->output_has_begun)
return TRUE;
if (bed->elf_backend_begin_write_processing)
(*bed->elf_backend_begin_write_processing) (abfd, link_info);
if (! prep_headers (abfd))
return FALSE;
if (bed->elf_backend_post_process_headers)
(*bed->elf_backend_post_process_headers) (abfd, link_info);
failed = FALSE;
bfd_map_over_sections (abfd, elf_fake_sections, &failed);
if (failed)
return FALSE;
if (!assign_section_numbers (abfd, link_info))
return FALSE;
if (link_info == NULL && bfd_get_symcount (abfd) > 0)
{
int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
if (! swap_out_syms (abfd, &strtab, relocatable_p))
return FALSE;
}
if (link_info == NULL)
{
bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
if (failed)
return FALSE;
}
shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
shstrtab_hdr->sh_type = SHT_STRTAB;
shstrtab_hdr->sh_flags = 0;
shstrtab_hdr->sh_addr = 0;
shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
shstrtab_hdr->sh_entsize = 0;
shstrtab_hdr->sh_link = 0;
shstrtab_hdr->sh_info = 0;
shstrtab_hdr->sh_addralign = 1;
if (!assign_file_positions_except_relocs (abfd, link_info))
return FALSE;
if (link_info == NULL && bfd_get_symcount (abfd) > 0)
{
file_ptr off;
Elf_Internal_Shdr *hdr;
off = elf_tdata (abfd)->next_file_pos;
hdr = &elf_tdata (abfd)->symtab_hdr;
off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
if (hdr->sh_size != 0)
off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
hdr = &elf_tdata (abfd)->strtab_hdr;
off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
elf_tdata (abfd)->next_file_pos = off;
out. */
if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
|| ! _bfd_stringtab_emit (abfd, strtab))
return FALSE;
_bfd_stringtab_free (strtab);
}
abfd->output_has_begun = TRUE;
return TRUE;
}
get the number wrong here, we'll redo section placement. */
static bfd_size_type
get_program_header_size (bfd *abfd, struct bfd_link_info *info)
{
size_t segs;
asection *s;
const struct elf_backend_data *bed;
and one for data. */
segs = 2;
s = bfd_get_section_by_name (abfd, ".interp");
if (s != NULL && (s->flags & SEC_LOAD) != 0)
{
PT_INTERP segment. In this case, assume we also need a
PT_PHDR segment, although that may not be true for all
targets. */
segs += 2;
}
if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
{
++segs;
}
if (info != NULL && info->relro)
{
++segs;
}
if (elf_tdata (abfd)->eh_frame_hdr)
{
++segs;
}
if (elf_tdata (abfd)->stack_flags)
{
++segs;
}
for (s = abfd->sections; s != NULL; s = s->next)
{
if ((s->flags & SEC_LOAD) != 0
&& CONST_STRNEQ (s->name, ".note"))
{
++segs;
for all adjacent loadable .note* sections.
gABI requires that within a PT_NOTE segment
(and also inside of each SHT_NOTE section)
each note is padded to a multiple of 4 size,
so we check whether the sections are correctly
aligned. */
if (s->alignment_power == 2)
while (s->next != NULL
&& s->next->alignment_power == 2
&& (s->next->flags & SEC_LOAD) != 0
&& CONST_STRNEQ (s->next->name, ".note"))
s = s->next;
}
}
for (s = abfd->sections; s != NULL; s = s->next)
{
if (s->flags & SEC_THREAD_LOCAL)
{
++segs;
break;
}
}
bed = get_elf_backend_data (abfd);
if (bed->elf_backend_additional_program_headers)
{
int a;
a = (*bed->elf_backend_additional_program_headers) (abfd, info);
if (a == -1)
abort ();
segs += a;
}
return segs * bed->s->sizeof_phdr;
}
Elf_Internal_Phdr *
_bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
{
struct elf_segment_map *m;
Elf_Internal_Phdr *p;
for (m = elf_tdata (abfd)->segment_map,
p = elf_tdata (abfd)->phdr;
m != NULL;
m = m->next, p++)
{
int i;
for (i = m->count - 1; i >= 0; i--)
if (m->sections[i] == section)
return p;
}
return NULL;
}
static struct elf_segment_map *
make_mapping (bfd *abfd,
asection **sections,
unsigned int from,
unsigned int to,
bfd_boolean phdr)
{
struct elf_segment_map *m;
unsigned int i;
asection **hdrpp;
bfd_size_type amt;
amt = sizeof (struct elf_segment_map);
amt += (to - from - 1) * sizeof (asection *);
m = bfd_zalloc (abfd, amt);
if (m == NULL)
return NULL;
m->next = NULL;
m->p_type = PT_LOAD;
for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
m->sections[i - from] = *hdrpp;
m->count = to - from;
if (from == 0 && phdr)
{
m->includes_filehdr = 1;
m->includes_phdrs = 1;
}
return m;
}
on failure. */
struct elf_segment_map *
_bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
{
struct elf_segment_map *m;
m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
if (m == NULL)
return NULL;
m->next = NULL;
m->p_type = PT_DYNAMIC;
m->count = 1;
m->sections[0] = dynsec;
return m;
}
static bfd_boolean
elf_modify_segment_map (bfd *abfd,
struct bfd_link_info *info,
bfd_boolean remove_empty_load)
{
struct elf_segment_map **m;
const struct elf_backend_data *bed;
not in PT_LOAD segments. We ensure this here by removing such
sections from the segment map. We also remove excluded
sections. Finally, any PT_LOAD segment without sections is
removed. */
m = &elf_tdata (abfd)->segment_map;
while (*m)
{
unsigned int i, new_count;
for (new_count = 0, i = 0; i < (*m)->count; i++)
{
if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
&& (((*m)->sections[i]->flags & SEC_ALLOC) != 0
|| (*m)->p_type != PT_LOAD))
{
(*m)->sections[new_count] = (*m)->sections[i];
new_count++;
}
}
(*m)->count = new_count;
if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0)
*m = (*m)->next;
else
m = &(*m)->next;
}
bed = get_elf_backend_data (abfd);
if (bed->elf_backend_modify_segment_map != NULL)
{
if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
return FALSE;
}
return TRUE;
}
bfd_boolean
_bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
{
unsigned int count;
struct elf_segment_map *m;
asection **sections = NULL;
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
bfd_boolean no_user_phdrs;
no_user_phdrs = elf_tdata (abfd)->segment_map == NULL;
if (no_user_phdrs && bfd_count_sections (abfd) != 0)
{
asection *s;
unsigned int i;
struct elf_segment_map *mfirst;
struct elf_segment_map **pm;
asection *last_hdr;
bfd_vma last_size;
unsigned int phdr_index;
bfd_vma maxpagesize;
asection **hdrpp;
bfd_boolean phdr_in_segment = TRUE;
bfd_boolean writable;
int tls_count = 0;
asection *first_tls = NULL;
asection *dynsec, *eh_frame_hdr;
bfd_size_type amt;
sections = bfd_malloc2 (bfd_count_sections (abfd), sizeof (asection *));
if (sections == NULL)
goto error_return;
i = 0;
for (s = abfd->sections; s != NULL; s = s->next)
{
if ((s->flags & SEC_ALLOC) != 0)
{
sections[i] = s;
++i;
}
}
BFD_ASSERT (i <= bfd_count_sections (abfd));
count = i;
qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
mfirst = NULL;
pm = &mfirst;
the program headers and a PT_INTERP segment for the .interp
section. */
s = bfd_get_section_by_name (abfd, ".interp");
if (s != NULL && (s->flags & SEC_LOAD) != 0)
{
amt = sizeof (struct elf_segment_map);
m = bfd_zalloc (abfd, amt);
if (m == NULL)
goto error_return;
m->next = NULL;
m->p_type = PT_PHDR;
m->p_flags = PF_R | PF_X;
m->p_flags_valid = 1;
m->includes_phdrs = 1;
*pm = m;
pm = &m->next;
amt = sizeof (struct elf_segment_map);
m = bfd_zalloc (abfd, amt);
if (m == NULL)
goto error_return;
m->next = NULL;
m->p_type = PT_INTERP;
m->count = 1;
m->sections[0] = s;
*pm = m;
pm = &m->next;
}
segment when the start of the second section can be placed within
a few bytes of the end of the first section. */
last_hdr = NULL;
last_size = 0;
phdr_index = 0;
maxpagesize = bed->maxpagesize;
writable = FALSE;
dynsec = bfd_get_section_by_name (abfd, ".dynamic");
if (dynsec != NULL
&& (dynsec->flags & SEC_LOAD) == 0)
dynsec = NULL;
is not adjacent to the program headers. This is an
approximation, since at this point we don't know exactly how many
program headers we will need. */
if (count > 0)
{
bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
if (phdr_size == (bfd_size_type) -1)
phdr_size = get_program_header_size (abfd, info);
if ((abfd->flags & D_PAGED) == 0
|| sections[0]->lma < phdr_size
|| sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
phdr_in_segment = FALSE;
}
for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
{
asection *hdr;
bfd_boolean new_segment;
hdr = *hdrpp;
segment. */
if (last_hdr == NULL)
{
one (we build the last one after this loop). */
new_segment = FALSE;
}
else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
{
virtual address and the load address, then we need a new
segment. */
new_segment = TRUE;
}
to the end of the address space. If the aligned address wraps
around to the start of the address space, then there are no more
pages left in memory and it is OK to assume that the current
section can be included in the current segment. */
else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
> last_hdr->lma)
&& (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
<= hdr->lma))
{
skip a page in the segment, then we need a new segment. */
new_segment = TRUE;
}
else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
&& (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
{
nonloadable section in the same segment.
Consider .tbss sections as loadable for this purpose. */
new_segment = TRUE;
}
else if ((abfd->flags & D_PAGED) == 0)
{
don't require the sections to be correctly aligned in the
file, then there is no other reason for a new segment. */
new_segment = FALSE;
}
else if (! writable
&& (hdr->flags & SEC_READONLY) == 0
&& (((last_hdr->lma + last_size - 1)
& ~(maxpagesize - 1))
!= (hdr->lma & ~(maxpagesize - 1))))
{
segment, unless they are on the same page in memory
anyhow. We already know that the last section does not
bring us past the current section on the page, so the
only case in which the new section is not on the same
page as the previous section is when the previous section
ends precisely on a page boundary. */
new_segment = TRUE;
}
else
{
new_segment = FALSE;
}
if (last_hdr != NULL
&& info != NULL
&& info->callbacks->override_segment_assignment != NULL)
new_segment
= info->callbacks->override_segment_assignment (info, abfd, hdr,
last_hdr,
new_segment);
if (! new_segment)
{
if ((hdr->flags & SEC_READONLY) == 0)
writable = TRUE;
last_hdr = hdr;
if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
!= SEC_THREAD_LOCAL)
last_size = hdr->size;
else
last_size = 0;
continue;
}
header holding all the sections from phdr_index until hdr. */
m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
if (m == NULL)
goto error_return;
*pm = m;
pm = &m->next;
if ((hdr->flags & SEC_READONLY) == 0)
writable = TRUE;
else
writable = FALSE;
last_hdr = hdr;
if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
last_size = hdr->size;
else
last_size = 0;
phdr_index = i;
phdr_in_segment = FALSE;
}
if (last_hdr != NULL)
{
m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
if (m == NULL)
goto error_return;
*pm = m;
pm = &m->next;
}
if (dynsec != NULL)
{
m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
if (m == NULL)
goto error_return;
*pm = m;
pm = &m->next;
}
add a PT_NOTE segment. We don't use bfd_get_section_by_name,
because if we link together nonloadable .note sections and
loadable .note sections, we will generate two .note sections
in the output file. FIXME: Using names for section types is
bogus anyhow. */
for (s = abfd->sections; s != NULL; s = s->next)
{
if ((s->flags & SEC_LOAD) != 0
&& CONST_STRNEQ (s->name, ".note"))
{
asection *s2;
unsigned count = 1;
amt = sizeof (struct elf_segment_map);
if (s->alignment_power == 2)
for (s2 = s; s2->next != NULL; s2 = s2->next)
{
if (s2->next->alignment_power == 2
&& (s2->next->flags & SEC_LOAD) != 0
&& CONST_STRNEQ (s2->next->name, ".note")
&& align_power (s2->vma + s2->size, 2)
== s2->next->vma)
count++;
else
break;
}
amt += (count - 1) * sizeof (asection *);
m = bfd_zalloc (abfd, amt);
if (m == NULL)
goto error_return;
m->next = NULL;
m->p_type = PT_NOTE;
m->count = count;
while (count > 1)
{
m->sections[m->count - count--] = s;
BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
s = s->next;
}
m->sections[m->count - 1] = s;
BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
*pm = m;
pm = &m->next;
}
if (s->flags & SEC_THREAD_LOCAL)
{
if (! tls_count)
first_tls = s;
tls_count++;
}
}
if (tls_count > 0)
{
int i;
amt = sizeof (struct elf_segment_map);
amt += (tls_count - 1) * sizeof (asection *);
m = bfd_zalloc (abfd, amt);
if (m == NULL)
goto error_return;
m->next = NULL;
m->p_type = PT_TLS;
m->count = tls_count;
m->p_flags = PF_R;
m->p_flags_valid = 1;
for (i = 0; i < tls_count; ++i)
{
BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
m->sections[i] = first_tls;
first_tls = first_tls->next;
}
*pm = m;
pm = &m->next;
}
segment. */
eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
if (eh_frame_hdr != NULL
&& (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
{
amt = sizeof (struct elf_segment_map);
m = bfd_zalloc (abfd, amt);
if (m == NULL)
goto error_return;
m->next = NULL;
m->p_type = PT_GNU_EH_FRAME;
m->count = 1;
m->sections[0] = eh_frame_hdr->output_section;
*pm = m;
pm = &m->next;
}
if (elf_tdata (abfd)->stack_flags)
{
amt = sizeof (struct elf_segment_map);
m = bfd_zalloc (abfd, amt);
if (m == NULL)
goto error_return;
m->next = NULL;
m->p_type = PT_GNU_STACK;
m->p_flags = elf_tdata (abfd)->stack_flags;
m->p_flags_valid = 1;
*pm = m;
pm = &m->next;
}
if (info != NULL && info->relro)
{
for (m = mfirst; m != NULL; m = m->next)
{
if (m->p_type == PT_LOAD)
{
asection *last = m->sections[m->count - 1];
bfd_vma vaddr = m->sections[0]->vma;
bfd_vma filesz = last->vma - vaddr + last->size;
if (vaddr < info->relro_end
&& vaddr >= info->relro_start
&& (vaddr + filesz) >= info->relro_end)
break;
}
}
if (m != NULL)
{
amt = sizeof (struct elf_segment_map);
m = bfd_zalloc (abfd, amt);
if (m == NULL)
goto error_return;
m->next = NULL;
m->p_type = PT_GNU_RELRO;
m->p_flags = PF_R;
m->p_flags_valid = 1;
*pm = m;
pm = &m->next;
}
}
free (sections);
elf_tdata (abfd)->segment_map = mfirst;
}
if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
return FALSE;
for (count = 0, m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
++count;
elf_tdata (abfd)->program_header_size = count * bed->s->sizeof_phdr;
return TRUE;
error_return:
if (sections != NULL)
free (sections);
return FALSE;
}
static int
elf_sort_sections (const void *arg1, const void *arg2)
{
const asection *sec1 = *(const asection **) arg1;
const asection *sec2 = *(const asection **) arg2;
bfd_size_type size1, size2;
place the section into a segment. */
if (sec1->lma < sec2->lma)
return -1;
else if (sec1->lma > sec2->lma)
return 1;
the same, and this will do nothing. */
if (sec1->vma < sec2->vma)
return -1;
else if (sec1->vma > sec2->vma)
return 1;
#define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
if (TOEND (sec1))
{
if (TOEND (sec2))
{
here, but continue to try the next comparison. */
if (sec1->target_index - sec2->target_index != 0)
return sec1->target_index - sec2->target_index;
}
else
return 1;
}
else if (TOEND (sec2))
return -1;
#undef TOEND
before others at the same address. */
size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
if (size1 < size2)
return -1;
if (size1 > size2)
return 1;
return sec1->target_index - sec2->target_index;
}
We shouldn't be using % with a negative signed number. That's just
not good. We have to make sure either that the number is not
negative, or that the number has an unsigned type. When the types
are all the same size they wind up as unsigned. When file_ptr is a
larger signed type, the arithmetic winds up as signed long long,
which is wrong.
What we're trying to say here is something like ``increase OFF by
the least amount that will cause it to be equal to the VMA modulo
the page size.'' */
vma_offset = m->sections[0]->vma % bed->maxpagesize;
off_offset = off % bed->maxpagesize;
if (vma_offset < off_offset)
adjustment = vma_offset + bed->maxpagesize - off_offset;
else
adjustment = vma_offset - off_offset;
which can can be collapsed into the expression below. */
static file_ptr
vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
{
return ((vma - off) % maxpagesize);
}
static void
print_segment_map (const struct elf_segment_map *m)
{
unsigned int j;
const char *pt = get_segment_type (m->p_type);
char buf[32];
if (pt == NULL)
{
if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
sprintf (buf, "LOPROC+%7.7x",
(unsigned int) (m->p_type - PT_LOPROC));
else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
sprintf (buf, "LOOS+%7.7x",
(unsigned int) (m->p_type - PT_LOOS));
else
snprintf (buf, sizeof (buf), "%8.8x",
(unsigned int) m->p_type);
pt = buf;
}
fprintf (stderr, "%s:", pt);
for (j = 0; j < m->count; j++)
fprintf (stderr, " %s", m->sections [j]->name);
putc ('\n',stderr);
}
sections to segments. This function also sets up some fields in
the file header. */
static bfd_boolean
assign_file_positions_for_load_sections (bfd *abfd,
struct bfd_link_info *link_info)
{
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
struct elf_segment_map *m;
Elf_Internal_Phdr *phdrs;
Elf_Internal_Phdr *p;
file_ptr off;
bfd_size_type maxpagesize;
unsigned int alloc;
unsigned int i, j;
if (link_info == NULL
&& !_bfd_elf_map_sections_to_segments (abfd, link_info))
return FALSE;
alloc = 0;
for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
++alloc;
elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
elf_elfheader (abfd)->e_phnum = alloc;
if (elf_tdata (abfd)->program_header_size == (bfd_size_type) -1)
elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
else
BFD_ASSERT (elf_tdata (abfd)->program_header_size
>= alloc * bed->s->sizeof_phdr);
if (alloc == 0)
{
elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
return TRUE;
}
phdrs = bfd_alloc2 (abfd, alloc, sizeof (Elf_Internal_Phdr));
elf_tdata (abfd)->phdr = phdrs;
if (phdrs == NULL)
return FALSE;
maxpagesize = 1;
if ((abfd->flags & D_PAGED) != 0)
maxpagesize = bed->maxpagesize;
off = bed->s->sizeof_ehdr;
off += alloc * bed->s->sizeof_phdr;
for (m = elf_tdata (abfd)->segment_map, p = phdrs, j = 0;
m != NULL;
m = m->next, p++, j++)
{
asection **secpp;
bfd_vma off_adjust;
bfd_boolean no_contents;
sections may not be correctly ordered. NOTE: sorting should
not be done to the PT_NOTE section of a corefile, which may
contain several pseudo-sections artificially created by bfd.
Sorting these pseudo-sections breaks things badly. */
if (m->count > 1
&& !(elf_elfheader (abfd)->e_type == ET_CORE
&& m->p_type == PT_NOTE))
qsort (m->sections, (size_t) m->count, sizeof (asection *),
elf_sort_sections);
number of sections with contents contributing to both p_filesz
and p_memsz, followed by a number of sections with no contents
that just contribute to p_memsz. In this loop, OFF tracks next
available file offset for PT_LOAD and PT_NOTE segments. */
p->p_type = m->p_type;
p->p_flags = m->p_flags;
if (m->count == 0)
p->p_vaddr = 0;
else
p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
if (m->p_paddr_valid)
p->p_paddr = m->p_paddr;
else if (m->count == 0)
p->p_paddr = 0;
else
p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
if (p->p_type == PT_LOAD
&& (abfd->flags & D_PAGED) != 0)
{
the maximum page size. When copying an executable with
objcopy, we set m->p_align from the input file. Use this
value for maxpagesize rather than bed->maxpagesize, which
may be different. Note that we use maxpagesize for PT_TLS
segment alignment later in this function, so we are relying
on at least one PT_LOAD segment appearing before a PT_TLS
segment. */
if (m->p_align_valid)
maxpagesize = m->p_align;
p->p_align = maxpagesize;
}
else if (m->p_align_valid)
p->p_align = m->p_align;
else if (m->count == 0)
p->p_align = 1 << bed->s->log_file_align;
else
p->p_align = 0;
no_contents = FALSE;
off_adjust = 0;
if (p->p_type == PT_LOAD
&& m->count > 0)
{
bfd_size_type align;
unsigned int align_power = 0;
if (m->p_align_valid)
align = p->p_align;
else
{
for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
{
unsigned int secalign;
secalign = bfd_get_section_alignment (abfd, *secpp);
if (secalign > align_power)
align_power = secalign;
}
align = (bfd_size_type) 1 << align_power;
if (align < maxpagesize)
align = maxpagesize;
}
for (i = 0; i < m->count; i++)
if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
it must be SHT_NOBITS regardless of what we've
set via struct bfd_elf_special_section. */
elf_section_type (m->sections[i]) = SHT_NOBITS;
sections. */
no_contents = TRUE;
for (i = 0; i < m->count; i++)
if (elf_section_type (m->sections[i]) != SHT_NOBITS)
{
no_contents = FALSE;
break;
}
off_adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
off += off_adjust;
if (no_contents)
{
the segment doesn't need file space, but the gABI
arguably requires the alignment and glibc ld.so
checks it. So to comply with the alignment
requirement but not waste file space, we adjust
p_offset for just this segment. (OFF_ADJUST is
subtracted from OFF later.) This may put p_offset
past the end of file, but that shouldn't matter. */
}
else
off_adjust = 0;
}
PT_DYNAMIC segment. */
else if (p->p_type == PT_DYNAMIC
&& m->count > 1
&& strcmp (m->sections[0]->name, ".dynamic") != 0)
{
_bfd_error_handler
(_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
abfd);
bfd_set_error (bfd_error_bad_value);
return FALSE;
}
else if (p->p_type == PT_NOTE)
for (i = 0; i < m->count; i++)
elf_section_type (m->sections[i]) = SHT_NOTE;
p->p_offset = 0;
p->p_filesz = 0;
p->p_memsz = 0;
if (m->includes_filehdr)
{
if (!m->p_flags_valid)
p->p_flags |= PF_R;
p->p_filesz = bed->s->sizeof_ehdr;
p->p_memsz = bed->s->sizeof_ehdr;
if (m->count > 0)
{
BFD_ASSERT (p->p_type == PT_LOAD);
if (p->p_vaddr < (bfd_vma) off)
{
(*_bfd_error_handler)
(_("%B: Not enough room for program headers, try linking with -N"),
abfd);
bfd_set_error (bfd_error_bad_value);
return FALSE;
}
p->p_vaddr -= off;
if (!m->p_paddr_valid)
p->p_paddr -= off;
}
}
if (m->includes_phdrs)
{
if (!m->p_flags_valid)
p->p_flags |= PF_R;
if (!m->includes_filehdr)
{
p->p_offset = bed->s->sizeof_ehdr;
if (m->count > 0)
{
BFD_ASSERT (p->p_type == PT_LOAD);
p->p_vaddr -= off - p->p_offset;
if (!m->p_paddr_valid)
p->p_paddr -= off - p->p_offset;
}
}
p->p_filesz += alloc * bed->s->sizeof_phdr;
p->p_memsz += alloc * bed->s->sizeof_phdr;
}
if (p->p_type == PT_LOAD
|| (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
{
if (!m->includes_filehdr && !m->includes_phdrs)
p->p_offset = off;
else
{
file_ptr adjust;
adjust = off - (p->p_offset + p->p_filesz);
if (!no_contents)
p->p_filesz += adjust;
p->p_memsz += adjust;
}
}
maps. Set filepos for sections in PT_LOAD segments, and in
core files, for sections in PT_NOTE segments.
assign_file_positions_for_non_load_sections will set filepos
for other sections and update p_filesz for other segments. */
for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
{
asection *sec;
bfd_size_type align;
Elf_Internal_Shdr *this_hdr;
sec = *secpp;
this_hdr = &elf_section_data (sec)->this_hdr;
align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
if ((p->p_type == PT_LOAD
|| p->p_type == PT_TLS)
&& (this_hdr->sh_type != SHT_NOBITS
|| ((this_hdr->sh_flags & SHF_ALLOC) != 0
&& ((this_hdr->sh_flags & SHF_TLS) == 0
|| p->p_type == PT_TLS))))
{
bfd_signed_vma adjust = sec->vma - (p->p_vaddr + p->p_memsz);
if (adjust < 0)
{
(*_bfd_error_handler)
(_("%B: section %A vma 0x%lx overlaps previous sections"),
abfd, sec, (unsigned long) sec->vma);
adjust = 0;
}
p->p_memsz += adjust;
if (this_hdr->sh_type != SHT_NOBITS)
{
off += adjust;
p->p_filesz += adjust;
}
}
if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
{
everything. */
if (i == 0)
{
this_hdr->sh_offset = sec->filepos = off;
off += this_hdr->sh_size;
p->p_filesz = this_hdr->sh_size;
p->p_memsz = 0;
p->p_align = 1;
}
else
{
sec->filepos = 0;
sec->size = 0;
sec->flags = 0;
continue;
}
}
else
{
if (p->p_type == PT_LOAD)
{
this_hdr->sh_offset = sec->filepos = off;
if (this_hdr->sh_type != SHT_NOBITS)
off += this_hdr->sh_size;
}
if (this_hdr->sh_type != SHT_NOBITS)
{
p->p_filesz += this_hdr->sh_size;
a note section in a PT_NOTE segment. These take
file space but are not loaded into memory. */
if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
p->p_memsz += this_hdr->sh_size;
}
else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
{
if (p->p_type == PT_TLS)
p->p_memsz += this_hdr->sh_size;
normal segments. */
else if ((this_hdr->sh_flags & SHF_TLS) == 0)
p->p_memsz += this_hdr->sh_size;
}
if (align > p->p_align
&& !m->p_align_valid
&& (p->p_type != PT_LOAD
|| (abfd->flags & D_PAGED) == 0))
p->p_align = align;
}
if (!m->p_flags_valid)
{
p->p_flags |= PF_R;
if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
p->p_flags |= PF_X;
if ((this_hdr->sh_flags & SHF_WRITE) != 0)
p->p_flags |= PF_W;
}
}
off -= off_adjust;
Don't check funky gdb generated core files. */
if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
{
Elf_Internal_Shdr *this_hdr;
asection *sec;
sec = *secpp;
this_hdr = &(elf_section_data(sec)->this_hdr);
if (this_hdr->sh_size != 0
&& !ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, p))
{
(*_bfd_error_handler)
(_("%B: section `%A' can't be allocated in segment %d"),
abfd, sec, j);
print_segment_map (m);
bfd_set_error (bfd_error_bad_value);
return FALSE;
}
}
}
elf_tdata (abfd)->next_file_pos = off;
return TRUE;
}
static bfd_boolean
assign_file_positions_for_non_load_sections (bfd *abfd,
struct bfd_link_info *link_info)
{
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
Elf_Internal_Shdr **i_shdrpp;
Elf_Internal_Shdr **hdrpp;
Elf_Internal_Phdr *phdrs;
Elf_Internal_Phdr *p;
struct elf_segment_map *m;
bfd_vma filehdr_vaddr, filehdr_paddr;
bfd_vma phdrs_vaddr, phdrs_paddr;
file_ptr off;
unsigned int num_sec;
unsigned int i;
unsigned int count;
i_shdrpp = elf_elfsections (abfd);
num_sec = elf_numsections (abfd);
off = elf_tdata (abfd)->next_file_pos;
for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
{
struct elf_obj_tdata *tdata = elf_tdata (abfd);
Elf_Internal_Shdr *hdr;
hdr = *hdrpp;
if (hdr->bfd_section != NULL
&& (hdr->bfd_section->filepos != 0
|| (hdr->sh_type == SHT_NOBITS
&& hdr->contents == NULL)))
BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
else if ((hdr->sh_flags & SHF_ALLOC) != 0)
{
if (hdr->sh_size != 0)
((*_bfd_error_handler)
(_("%B: warning: allocated section `%s' not in segment"),
abfd,
(hdr->bfd_section == NULL
? "*unknown*"
: hdr->bfd_section->name)));
if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
off += vma_page_aligned_bias (hdr->sh_addr, off,
bed->maxpagesize);
else
off += vma_page_aligned_bias (hdr->sh_addr, off,
hdr->sh_addralign);
off = _bfd_elf_assign_file_position_for_section (hdr, off,
FALSE);
}
else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
&& hdr->bfd_section == NULL)
|| hdr == i_shdrpp[tdata->symtab_section]
|| hdr == i_shdrpp[tdata->symtab_shndx_section]
|| hdr == i_shdrpp[tdata->strtab_section])
hdr->sh_offset = -1;
else
off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
}
the file positions for the non PT_LOAD segments. */
count = 0;
filehdr_vaddr = 0;
filehdr_paddr = 0;
phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
phdrs_paddr = 0;
phdrs = elf_tdata (abfd)->phdr;
for (m = elf_tdata (abfd)->segment_map, p = phdrs;
m != NULL;
m = m->next, p++)
{
++count;
if (p->p_type != PT_LOAD)
continue;
if (m->includes_filehdr)
{
filehdr_vaddr = p->p_vaddr;
filehdr_paddr = p->p_paddr;
}
if (m->includes_phdrs)
{
phdrs_vaddr = p->p_vaddr;
phdrs_paddr = p->p_paddr;
if (m->includes_filehdr)
{
phdrs_vaddr += bed->s->sizeof_ehdr;
phdrs_paddr += bed->s->sizeof_ehdr;
}
}
}
for (m = elf_tdata (abfd)->segment_map, p = phdrs;
m != NULL;
m = m->next, p++)
{
if (m->count != 0)
{
if (p->p_type != PT_LOAD
&& (p->p_type != PT_NOTE
|| bfd_get_format (abfd) != bfd_core))
{
Elf_Internal_Shdr *hdr;
asection *sect;
BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
sect = m->sections[m->count - 1];
hdr = &elf_section_data (sect)->this_hdr;
p->p_filesz = sect->filepos - m->sections[0]->filepos;
if (hdr->sh_type != SHT_NOBITS)
p->p_filesz += hdr->sh_size;
if (p->p_type == PT_GNU_RELRO)
{
or shared library. But we need to use the same
linker logic. */
Elf_Internal_Phdr *lp;
for (lp = phdrs; lp < phdrs + count; ++lp)
{
if (lp->p_type == PT_LOAD
&& lp->p_paddr == p->p_paddr)
break;
}
if (lp < phdrs + count)
{
may contain the first few bytes of the next
SEC_ALLOC section. */
if (m->p_size_valid)
p->p_filesz = m->p_size;
else
abort ();
p->p_vaddr = lp->p_vaddr;
p->p_offset = lp->p_offset;
p->p_memsz = p->p_filesz;
p->p_align = 1;
}
else
abort ();
}
else
p->p_offset = m->sections[0]->filepos;
}
}
else
{
if (m->includes_filehdr)
{
p->p_vaddr = filehdr_vaddr;
if (! m->p_paddr_valid)
p->p_paddr = filehdr_paddr;
}
else if (m->includes_phdrs)
{
p->p_vaddr = phdrs_vaddr;
if (! m->p_paddr_valid)
p->p_paddr = phdrs_paddr;
}
else if (p->p_type == PT_GNU_RELRO)
{
Elf_Internal_Phdr *lp;
for (lp = phdrs; lp < phdrs + count; ++lp)
{
if (lp->p_type == PT_LOAD
&& lp->p_vaddr <= link_info->relro_end
&& lp->p_vaddr >= link_info->relro_start
&& (lp->p_vaddr + lp->p_filesz
>= link_info->relro_end))
break;
}
if (lp < phdrs + count
&& link_info->relro_end > lp->p_vaddr)
{
p->p_vaddr = lp->p_vaddr;
p->p_paddr = lp->p_paddr;
p->p_offset = lp->p_offset;
p->p_filesz = link_info->relro_end - lp->p_vaddr;
p->p_memsz = p->p_filesz;
p->p_align = 1;
p->p_flags = (lp->p_flags & ~PF_W);
}
else
{
memset (p, 0, sizeof *p);
p->p_type = PT_NULL;
}
}
}
}
elf_tdata (abfd)->next_file_pos = off;
return TRUE;
}
_bfd_elf_compute_section_file_positions. All the section sizes and
VMAs must be known before this is called.
Reloc sections come in two flavours: Those processed specially as
"side-channel" data attached to a section to which they apply, and
those that bfd doesn't process as relocations. The latter sort are
stored in a normal bfd section by bfd_section_from_shdr. We don't
consider the former sort here, unless they form part of the loadable
image. Reloc sections not assigned here will be handled later by
assign_file_positions_for_relocs.
We also don't set the positions of the .symtab and .strtab here. */
static bfd_boolean
assign_file_positions_except_relocs (bfd *abfd,
struct bfd_link_info *link_info)
{
struct elf_obj_tdata *tdata = elf_tdata (abfd);
Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
file_ptr off;
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
&& bfd_get_format (abfd) != bfd_core)
{
Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
unsigned int num_sec = elf_numsections (abfd);
Elf_Internal_Shdr **hdrpp;
unsigned int i;
off = i_ehdrp->e_ehsize;
not creating a program header, and that the actual order of
the sections in the file is unimportant. */
for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
{
Elf_Internal_Shdr *hdr;
hdr = *hdrpp;
if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
&& hdr->bfd_section == NULL)
|| i == tdata->symtab_section
|| i == tdata->symtab_shndx_section
|| i == tdata->strtab_section)
{
hdr->sh_offset = -1;
}
else
off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
}
}
else
{
unsigned int alloc;
assignment of sections to segments. */
if (!assign_file_positions_for_load_sections (abfd, link_info))
return FALSE;
if (!assign_file_positions_for_non_load_sections (abfd, link_info))
return FALSE;
if (bed->elf_backend_modify_program_headers != NULL)
{
if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
return FALSE;
}
alloc = tdata->program_header_size / bed->s->sizeof_phdr;
if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
|| bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
return FALSE;
off = tdata->next_file_pos;
}
off = align_file_position (off, 1 << bed->s->log_file_align);
i_ehdrp->e_shoff = off;
off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
tdata->next_file_pos = off;
return TRUE;
}
static bfd_boolean
prep_headers (bfd *abfd)
{
Elf_Internal_Ehdr *i_ehdrp;
Elf_Internal_Phdr *i_phdrp = 0;
struct elf_strtab_hash *shstrtab;
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
i_ehdrp = elf_elfheader (abfd);
shstrtab = _bfd_elf_strtab_init ();
if (shstrtab == NULL)
return FALSE;
elf_shstrtab (abfd) = shstrtab;
i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
i_ehdrp->e_ident[EI_DATA] =
bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
if ((abfd->flags & DYNAMIC) != 0)
i_ehdrp->e_type = ET_DYN;
else if ((abfd->flags & EXEC_P) != 0)
i_ehdrp->e_type = ET_EXEC;
else if (bfd_get_format (abfd) == bfd_core)
i_ehdrp->e_type = ET_CORE;
else
i_ehdrp->e_type = ET_REL;
switch (bfd_get_arch (abfd))
{
case bfd_arch_unknown:
i_ehdrp->e_machine = EM_NONE;
break;
e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
in the corresponding bfd definition. To avoid duplication,
the switch was removed. Machines that need special handling
can generally do it in elf_backend_final_write_processing(),
unless they need the information earlier than the final write.
Such need can generally be supplied by replacing the tests for
e_machine with the conditions used to determine it. */
default:
i_ehdrp->e_machine = bed->elf_machine_code;
}
i_ehdrp->e_version = bed->s->ev_current;
i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
i_ehdrp->e_phoff = 0;
i_ehdrp->e_phentsize = 0;
i_ehdrp->e_phnum = 0;
i_ehdrp->e_entry = bfd_get_start_address (abfd);
i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
if (abfd->flags & EXEC_P)
;
else
{
i_ehdrp->e_phentsize = 0;
i_phdrp = 0;
i_ehdrp->e_phoff = 0;
}
elf_tdata (abfd)->symtab_hdr.sh_name =
(unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
elf_tdata (abfd)->strtab_hdr.sh_name =
(unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
elf_tdata (abfd)->shstrtab_hdr.sh_name =
(unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
|| elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
|| elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
return FALSE;
return TRUE;
}
of the loadable file image. */
void
_bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
{
file_ptr off;
unsigned int i, num_sec;
Elf_Internal_Shdr **shdrpp;
off = elf_tdata (abfd)->next_file_pos;
num_sec = elf_numsections (abfd);
for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
{
Elf_Internal_Shdr *shdrp;
shdrp = *shdrpp;
if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
&& shdrp->sh_offset == -1)
off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
}
elf_tdata (abfd)->next_file_pos = off;
}
bfd_boolean
_bfd_elf_write_object_contents (bfd *abfd)
{
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
Elf_Internal_Ehdr *i_ehdrp;
Elf_Internal_Shdr **i_shdrp;
bfd_boolean failed;
unsigned int count, num_sec;
if (! abfd->output_has_begun
&& ! _bfd_elf_compute_section_file_positions (abfd, NULL))
return FALSE;
i_shdrp = elf_elfsections (abfd);
i_ehdrp = elf_elfheader (abfd);
failed = FALSE;
bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
if (failed)
return FALSE;
_bfd_elf_assign_file_positions_for_relocs (abfd);
num_sec = elf_numsections (abfd);
for (count = 1; count < num_sec; count++)
{
if (bed->elf_backend_section_processing)
(*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
if (i_shdrp[count]->contents)
{
bfd_size_type amt = i_shdrp[count]->sh_size;
if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
|| bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
return FALSE;
}
}
if (elf_shstrtab (abfd) != NULL
&& (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
|| !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
return FALSE;
if (bed->elf_backend_final_write_processing)
(*bed->elf_backend_final_write_processing) (abfd,
elf_tdata (abfd)->linker);
if (!bed->s->write_shdrs_and_ehdr (abfd))
return FALSE;
if (elf_tdata (abfd)->after_write_object_contents)
return (*elf_tdata (abfd)->after_write_object_contents) (abfd);
return TRUE;
}
bfd_boolean
_bfd_elf_write_corefile_contents (bfd *abfd)
{
return _bfd_elf_write_object_contents (abfd);
}
unsigned int
_bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
{
const struct elf_backend_data *bed;
unsigned int index;
if (elf_section_data (asect) != NULL
&& elf_section_data (asect)->this_idx != 0)
return elf_section_data (asect)->this_idx;
if (bfd_is_abs_section (asect))
index = SHN_ABS;
else if (bfd_is_com_section (asect))
index = SHN_COMMON;
else if (bfd_is_und_section (asect))
index = SHN_UNDEF;
else
index = SHN_BAD;
bed = get_elf_backend_data (abfd);
if (bed->elf_backend_section_from_bfd_section)
{
int retval = index;
if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
return retval;
}
if (index == SHN_BAD)
bfd_set_error (bfd_error_nonrepresentable_section);
return index;
}
on error. */
int
_bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
{
asymbol *asym_ptr = *asym_ptr_ptr;
int idx;
flagword flags = asym_ptr->flags;
own symbol for the section, but does put the symbol into the
symbol chain, so udata is 0. When the linker is generating
relocatable output, this section symbol may be for one of the
input sections rather than the output section. */
if (asym_ptr->udata.i == 0
&& (flags & BSF_SECTION_SYM)
&& asym_ptr->section)
{
asection *sec;
int indx;
sec = asym_ptr->section;
if (sec->owner != abfd && sec->output_section != NULL)
sec = sec->output_section;
if (sec->owner == abfd
&& (indx = sec->index) < elf_num_section_syms (abfd)
&& elf_section_syms (abfd)[indx] != NULL)
asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
}
idx = asym_ptr->udata.i;
if (idx == 0)
{
which is used in a relocation entry. */
(*_bfd_error_handler)
(_("%B: symbol `%s' required but not present"),
abfd, bfd_asymbol_name (asym_ptr));
bfd_set_error (bfd_error_no_symbols);
return -1;
}
#if DEBUG & 4
{
fprintf (stderr,
"elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
(long) asym_ptr, asym_ptr->name, idx, flags,
elf_symbol_flags (flags));
fflush (stderr);
}
#endif
return idx;
}
static bfd_boolean
rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
{
Elf_Internal_Ehdr *iehdr;
struct elf_segment_map *map;
struct elf_segment_map *map_first;
struct elf_segment_map **pointer_to_map;
Elf_Internal_Phdr *segment;
asection *section;
unsigned int i;
unsigned int num_segments;
bfd_boolean phdr_included = FALSE;
bfd_boolean p_paddr_valid;
bfd_vma maxpagesize;
struct elf_segment_map *phdr_adjust_seg = NULL;
unsigned int phdr_adjust_num = 0;
const struct elf_backend_data *bed;
bed = get_elf_backend_data (ibfd);
iehdr = elf_elfheader (ibfd);
map_first = NULL;
pointer_to_map = &map_first;
num_segments = elf_elfheader (ibfd)->e_phnum;
maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
#define SEGMENT_END(segment, start) \
(start + (segment->p_memsz > segment->p_filesz \
? segment->p_memsz : segment->p_filesz))
#define SECTION_SIZE(section, segment) \
(((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
!= SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
? section->size : 0)
the given segment. VMA addresses are compared. */
#define IS_CONTAINED_BY_VMA(section, segment) \
(section->vma >= segment->p_vaddr \
&& (section->vma + SECTION_SIZE (section, segment) \
<= (SEGMENT_END (segment, segment->p_vaddr))))
the given segment. LMA addresses are compared. */
#define IS_CONTAINED_BY_LMA(section, segment, base) \
(section->lma >= base \
&& (section->lma + SECTION_SIZE (section, segment) \
<= SEGMENT_END (segment, base)))
#define IS_NOTE(p, s) \
(p->p_type == PT_NOTE \
&& elf_section_type (s) == SHT_NOTE \
&& (bfd_vma) s->filepos >= p->p_offset \
&& ((bfd_vma) s->filepos + s->size \
<= p->p_offset + p->p_filesz))
etc. */
#define IS_COREFILE_NOTE(p, s) \
(IS_NOTE (p, s) \
&& bfd_get_format (ibfd) == bfd_core \
&& s->vma == 0 \
&& s->lma == 0)
linker, which generates a PT_INTERP section with p_vaddr and
p_memsz set to 0. */
#define IS_SOLARIS_PT_INTERP(p, s) \
(p->p_vaddr == 0 \
&& p->p_paddr == 0 \
&& p->p_memsz == 0 \
&& p->p_filesz > 0 \
&& (s->flags & SEC_HAS_CONTENTS) != 0 \
&& s->size > 0 \
&& (bfd_vma) s->filepos >= p->p_offset \
&& ((bfd_vma) s->filepos + s->size \
<= p->p_offset + p->p_filesz))
A section will be included if:
1. It is within the address space of the segment -- we use the LMA
if that is set for the segment and the VMA otherwise,
2. It is an allocated section or a NOTE section in a PT_NOTE
segment.
3. There is an output section associated with it,
4. The section has not already been allocated to a previous segment.
5. PT_GNU_STACK segments do not include any sections.
6. PT_TLS segment includes only SHF_TLS sections.
7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
8. PT_DYNAMIC should not contain empty sections at the beginning
(with the possible exception of .dynamic). */
#define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
((((segment->p_paddr \
? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
: IS_CONTAINED_BY_VMA (section, segment)) \
&& (section->flags & SEC_ALLOC) != 0) \
|| IS_NOTE (segment, section)) \
&& segment->p_type != PT_GNU_STACK \
&& (segment->p_type != PT_TLS \
|| (section->flags & SEC_THREAD_LOCAL)) \
&& (segment->p_type == PT_LOAD \
|| segment->p_type == PT_TLS \
|| (section->flags & SEC_THREAD_LOCAL) == 0) \
&& (segment->p_type != PT_DYNAMIC \
|| SECTION_SIZE (section, segment) > 0 \
|| (segment->p_paddr \
? segment->p_paddr != section->lma \
: segment->p_vaddr != section->vma) \
|| (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
== 0)) \
&& !section->segment_mark)
it is removed from the corresponding output segment. */
#define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
(IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
&& section->output_section != NULL)
#define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
(seg1->field >= SEGMENT_END (seg2, seg2->field))
their VMA address ranges and their LMA address ranges overlap.
It is possible to have overlapping VMA ranges without overlapping LMA
ranges. RedBoot images for example can have both .data and .bss mapped
to the same VMA range, but with the .data section mapped to a different
LMA. */
#define SEGMENT_OVERLAPS(seg1, seg2) \
( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
|| SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
&& !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
|| SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
for (section = ibfd->sections; section != NULL; section = section->next)
section->segment_mark = FALSE;
p_paddr fields are zero. When we try to objcopy or strip such a
file, we get confused. Check for this case, and if we find it
don't set the p_paddr_valid fields. */
p_paddr_valid = FALSE;
for (i = 0, segment = elf_tdata (ibfd)->phdr;
i < num_segments;
i++, segment++)
if (segment->p_paddr != 0)
{
p_paddr_valid = TRUE;
break;
}
of the input BFD. For this first scan we look for overlaps
in the loadable segments. These can be created by weird
parameters to objcopy. Also, fix some solaris weirdness. */
for (i = 0, segment = elf_tdata (ibfd)->phdr;
i < num_segments;
i++, segment++)
{
unsigned int j;
Elf_Internal_Phdr *segment2;
if (segment->p_type == PT_INTERP)
for (section = ibfd->sections; section; section = section->next)
if (IS_SOLARIS_PT_INTERP (segment, section))
{
assignment code will work. */
segment->p_vaddr = section->vma;
break;
}
if (segment->p_type != PT_LOAD)
{
if (segment->p_type == PT_GNU_RELRO)
segment->p_type = PT_NULL;
continue;
}
for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
{
bfd_signed_vma extra_length;
if (segment2->p_type != PT_LOAD
|| !SEGMENT_OVERLAPS (segment, segment2))
continue;
if (segment2->p_vaddr < segment->p_vaddr)
{
SEGMENT. */
extra_length = (SEGMENT_END (segment, segment->p_vaddr)
- SEGMENT_END (segment2, segment2->p_vaddr));
if (extra_length > 0)
{
segment2->p_memsz += extra_length;
segment2->p_filesz += extra_length;
}
segment->p_type = PT_NULL;
i = 0;
segment = elf_tdata (ibfd)->phdr;
break;
}
else
{
SEGMENT2. */
extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
- SEGMENT_END (segment, segment->p_vaddr));
if (extra_length > 0)
{
segment->p_memsz += extra_length;
segment->p_filesz += extra_length;
}
segment2->p_type = PT_NULL;
}
}
}
for (i = 0, segment = elf_tdata (ibfd)->phdr;
i < num_segments;
i++, segment++)
{
unsigned int section_count;
asection **sections;
asection *output_section;
unsigned int isec;
bfd_vma matching_lma;
bfd_vma suggested_lma;
unsigned int j;
bfd_size_type amt;
asection *first_section;
bfd_boolean first_matching_lma;
bfd_boolean first_suggested_lma;
if (segment->p_type == PT_NULL)
continue;
first_section = NULL;
for (section = ibfd->sections, section_count = 0;
section != NULL;
section = section->next)
{
removed from the corresponding output segment. */
if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
{
if (first_section == NULL)
first_section = section;
if (section->output_section != NULL)
++section_count;
}
}
all of the sections we have selected. */
amt = sizeof (struct elf_segment_map);
amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
map = bfd_zalloc (obfd, amt);
if (map == NULL)
return FALSE;
using the physical address of the segment in the input BFD. */
map->next = NULL;
map->p_type = segment->p_type;
map->p_flags = segment->p_flags;
map->p_flags_valid = 1;
no need to preserve segment physical address in the corresponding
output segment. */
if (!first_section || first_section->output_section != NULL)
{
map->p_paddr = segment->p_paddr;
map->p_paddr_valid = p_paddr_valid;
}
and if it contains the program headers themselves. */
map->includes_filehdr = (segment->p_offset == 0
&& segment->p_filesz >= iehdr->e_ehsize);
map->includes_phdrs = 0;
if (!phdr_included || segment->p_type != PT_LOAD)
{
map->includes_phdrs =
(segment->p_offset <= (bfd_vma) iehdr->e_phoff
&& (segment->p_offset + segment->p_filesz
>= ((bfd_vma) iehdr->e_phoff
+ iehdr->e_phnum * iehdr->e_phentsize)));
if (segment->p_type == PT_LOAD && map->includes_phdrs)
phdr_included = TRUE;
}
if (section_count == 0)
{
no sections, but ordinary, loadable segments should contain
something. They are allowed by the ELF spec however, so only
a warning is produced. */
if (segment->p_type == PT_LOAD)
(*_bfd_error_handler) (_("%B: warning: Empty loadable segment"
" detected, is this intentional ?\n"),
ibfd);
map->count = 0;
*pointer_to_map = map;
pointer_to_map = &map->next;
continue;
}
to add their corresponding output sections to the segment map.
The problem here is how to handle an output section which has
been moved (ie had its LMA changed). There are four possibilities:
1. None of the sections have been moved.
In this case we can continue to use the segment LMA from the
input BFD.
2. All of the sections have been moved by the same amount.
In this case we can change the segment's LMA to match the LMA
of the first section.
3. Some of the sections have been moved, others have not.
In this case those sections which have not been moved can be
placed in the current segment which will have to have its size,
and possibly its LMA changed, and a new segment or segments will
have to be created to contain the other sections.
4. The sections have been moved, but not by the same amount.
In this case we can change the segment's LMA to match the LMA
of the first section and we will have to create a new segment
or segments to contain the other sections.
In order to save time, we allocate an array to hold the section
pointers that we are interested in. As these sections get assigned
to a segment, they are removed from this array. */
sections = bfd_malloc2 (section_count, sizeof (asection *));
if (sections == NULL)
return FALSE;
Also add the sections to the section array allocated above.
Also add the sections to the current segment. In the common
case, where the sections have not been moved, this means that
we have completely filled the segment, and there is nothing
more to do. */
isec = 0;
matching_lma = 0;
suggested_lma = 0;
first_matching_lma = TRUE;
first_suggested_lma = TRUE;
for (section = ibfd->sections;
section != NULL;
section = section->next)
if (section == first_section)
break;
for (j = 0; section != NULL; section = section->next)
{
if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
{
output_section = section->output_section;
sections[j++] = section;
We try to catch that case here, and set it to the
correct value. Note - some backends require that
p_paddr be left as zero. */
if (!p_paddr_valid
&& segment->p_vaddr != 0
&& !bed->want_p_paddr_set_to_zero
&& isec == 0
&& output_section->lma != 0
&& output_section->vma == (segment->p_vaddr
+ (map->includes_filehdr
? iehdr->e_ehsize
: 0)
+ (map->includes_phdrs
? (iehdr->e_phnum
* iehdr->e_phentsize)
: 0)))
map->p_paddr = segment->p_vaddr;
LMA address of the output section. */
if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
|| IS_COREFILE_NOTE (segment, section)
|| (bed->want_p_paddr_set_to_zero
&& IS_CONTAINED_BY_VMA (output_section, segment)))
{
if (first_matching_lma || output_section->lma < matching_lma)
{
matching_lma = output_section->lma;
first_matching_lma = FALSE;
}
then it does not overlap any other section within that
segment. */
map->sections[isec++] = output_section;
}
else if (first_suggested_lma)
{
suggested_lma = output_section->lma;
first_suggested_lma = FALSE;
}
if (j == section_count)
break;
}
}
BFD_ASSERT (j == section_count);
if necessary. */
if (isec == section_count)
{
specified. This is the default case. Add the segment to
the list of built segments and carry on to process the next
program header in the input BFD. */
map->count = section_count;
*pointer_to_map = map;
pointer_to_map = &map->next;
if (p_paddr_valid
&& !bed->want_p_paddr_set_to_zero
&& matching_lma != map->p_paddr
&& !map->includes_filehdr
&& !map->includes_phdrs)
segment. So, we must account for that in the output
segment's vma. */
map->p_vaddr_offset = matching_lma - map->p_paddr;
free (sections);
continue;
}
else
{
if (!first_matching_lma)
{
Keep it, but modify its physical address to match the
LMA of the first section that fitted. */
map->p_paddr = matching_lma;
}
else
{
Change the current segment's physical address to match
the LMA of the first section. */
map->p_paddr = suggested_lma;
}
to allow for space taken up by elf headers. */
if (map->includes_filehdr)
{
if (map->p_paddr >= iehdr->e_ehsize)
map->p_paddr -= iehdr->e_ehsize;
else
{
map->includes_filehdr = FALSE;
map->includes_phdrs = FALSE;
}
}
if (map->includes_phdrs)
{
if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
{
map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
of program headers that we will need. Make a note
here of the number we used and the segment we chose
to hold these headers, so that we can adjust the
offset when we know the correct value. */
phdr_adjust_num = iehdr->e_phnum;
phdr_adjust_seg = map;
}
else
map->includes_phdrs = FALSE;
}
}
those that fit to the current segment and removing them from the
sections array; but making sure not to leave large gaps. Once all
possible sections have been assigned to the current segment it is
added to the list of built segments and if sections still remain
to be assigned, a new segment is constructed before repeating
the loop. */
isec = 0;
do
{
map->count = 0;
suggested_lma = 0;
first_suggested_lma = TRUE;
for (j = 0; j < section_count; j++)
{
section = sections[j];
if (section == NULL)
continue;
output_section = section->output_section;
BFD_ASSERT (output_section != NULL);
if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
|| IS_COREFILE_NOTE (segment, section))
{
if (map->count == 0)
{
the beginning of the segment, then something is
wrong. */
if (output_section->lma
!= (map->p_paddr
+ (map->includes_filehdr ? iehdr->e_ehsize : 0)
+ (map->includes_phdrs
? iehdr->e_phnum * iehdr->e_phentsize
: 0)))
abort ();
}
else
{
asection *prev_sec;
prev_sec = map->sections[map->count - 1];
and the start of this section is more than
maxpagesize then we need to start a new segment. */
if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
maxpagesize)
< BFD_ALIGN (output_section->lma, maxpagesize))
|| (prev_sec->lma + prev_sec->size
> output_section->lma))
{
if (first_suggested_lma)
{
suggested_lma = output_section->lma;
first_suggested_lma = FALSE;
}
continue;
}
}
map->sections[map->count++] = output_section;
++isec;
sections[j] = NULL;
section->segment_mark = TRUE;
}
else if (first_suggested_lma)
{
suggested_lma = output_section->lma;
first_suggested_lma = FALSE;
}
}
BFD_ASSERT (map->count > 0);
*pointer_to_map = map;
pointer_to_map = &map->next;
if (isec < section_count)
{
segments. Create a new segment here, initialise it
and carry on looping. */
amt = sizeof (struct elf_segment_map);
amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
map = bfd_alloc (obfd, amt);
if (map == NULL)
{
free (sections);
return FALSE;
}
physical address to the LMA of the first section that has
not yet been assigned. */
map->next = NULL;
map->p_type = segment->p_type;
map->p_flags = segment->p_flags;
map->p_flags_valid = 1;
map->p_paddr = suggested_lma;
map->p_paddr_valid = p_paddr_valid;
map->includes_filehdr = 0;
map->includes_phdrs = 0;
}
}
while (isec < section_count);
free (sections);
}
elf_tdata (obfd)->segment_map = map_first;
going to be needed, then check our estimate now and adjust
the offset if necessary. */
if (phdr_adjust_seg != NULL)
{
unsigned int count;
for (count = 0, map = map_first; map != NULL; map = map->next)
count++;
if (count > phdr_adjust_num)
phdr_adjust_seg->p_paddr
-= (count - phdr_adjust_num) * iehdr->e_phentsize;
}
#undef SEGMENT_END
#undef SECTION_SIZE
#undef IS_CONTAINED_BY_VMA
#undef IS_CONTAINED_BY_LMA
#undef IS_NOTE
#undef IS_COREFILE_NOTE
#undef IS_SOLARIS_PT_INTERP
#undef IS_SECTION_IN_INPUT_SEGMENT
#undef INCLUDE_SECTION_IN_SEGMENT
#undef SEGMENT_AFTER_SEGMENT
#undef SEGMENT_OVERLAPS
return TRUE;
}
static bfd_boolean
copy_elf_program_header (bfd *ibfd, bfd *obfd)
{
Elf_Internal_Ehdr *iehdr;
struct elf_segment_map *map;
struct elf_segment_map *map_first;
struct elf_segment_map **pointer_to_map;
Elf_Internal_Phdr *segment;
unsigned int i;
unsigned int num_segments;
bfd_boolean phdr_included = FALSE;
bfd_boolean p_paddr_valid;
iehdr = elf_elfheader (ibfd);
map_first = NULL;
pointer_to_map = &map_first;
map->p_paddr_valid. */
p_paddr_valid = FALSE;
num_segments = elf_elfheader (ibfd)->e_phnum;
for (i = 0, segment = elf_tdata (ibfd)->phdr;
i < num_segments;
i++, segment++)
if (segment->p_paddr != 0)
{
p_paddr_valid = TRUE;
break;
}
for (i = 0, segment = elf_tdata (ibfd)->phdr;
i < num_segments;
i++, segment++)
{
asection *section;
unsigned int section_count;
bfd_size_type amt;
Elf_Internal_Shdr *this_hdr;
asection *first_section = NULL;
asection *lowest_section = NULL;
for (section = ibfd->sections, section_count = 0;
section != NULL;
section = section->next)
{
this_hdr = &(elf_section_data(section)->this_hdr);
if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
{
if (!first_section)
first_section = lowest_section = section;
if (section->lma < lowest_section->lma)
lowest_section = section;
section_count++;
}
}
all of the sections we have selected. */
amt = sizeof (struct elf_segment_map);
if (section_count != 0)
amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
map = bfd_zalloc (obfd, amt);
if (map == NULL)
return FALSE;
input segment. */
map->next = NULL;
map->p_type = segment->p_type;
map->p_flags = segment->p_flags;
map->p_flags_valid = 1;
map->p_paddr = segment->p_paddr;
map->p_paddr_valid = p_paddr_valid;
map->p_align = segment->p_align;
map->p_align_valid = 1;
map->p_vaddr_offset = 0;
if (map->p_type == PT_GNU_RELRO
&& segment->p_filesz == segment->p_memsz)
{
bytes in the .got.plt section even if the whole .got.plt
section isn't in the PT_GNU_RELRO segment. We won't
change the size of the PT_GNU_RELRO segment. */
map->p_size = segment->p_filesz;
map->p_size_valid = 1;
}
and if it contains the program headers themselves. */
map->includes_filehdr = (segment->p_offset == 0
&& segment->p_filesz >= iehdr->e_ehsize);
map->includes_phdrs = 0;
if (! phdr_included || segment->p_type != PT_LOAD)
{
map->includes_phdrs =
(segment->p_offset <= (bfd_vma) iehdr->e_phoff
&& (segment->p_offset + segment->p_filesz
>= ((bfd_vma) iehdr->e_phoff
+ iehdr->e_phnum * iehdr->e_phentsize)));
if (segment->p_type == PT_LOAD && map->includes_phdrs)
phdr_included = TRUE;
}
if (!map->includes_phdrs
&& !map->includes_filehdr
&& map->p_paddr_valid)
map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
- segment->p_paddr);
if (section_count != 0)
{
unsigned int isec = 0;
for (section = first_section;
section != NULL;
section = section->next)
{
this_hdr = &(elf_section_data(section)->this_hdr);
if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
{
map->sections[isec++] = section->output_section;
if (isec == section_count)
break;
}
}
}
map->count = section_count;
*pointer_to_map = map;
pointer_to_map = &map->next;
}
elf_tdata (obfd)->segment_map = map_first;
return TRUE;
}
information. */
static bfd_boolean
copy_private_bfd_data (bfd *ibfd, bfd *obfd)
{
if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
|| bfd_get_flavour (obfd) != bfd_target_elf_flavour)
return TRUE;
if (elf_tdata (ibfd)->phdr == NULL)
return TRUE;
if (ibfd->xvec == obfd->xvec)
{
covered by ELF program header have changed. */
Elf_Internal_Phdr *segment;
asection *section, *osec;
unsigned int i, num_segments;
Elf_Internal_Shdr *this_hdr;
const struct elf_backend_data *bed;
bed = get_elf_backend_data (ibfd);
if (bed->want_p_paddr_set_to_zero)
goto rewrite;
for (section = obfd->sections; section != NULL;
section = section->next)
section->segment_mark = FALSE;
num_segments = elf_elfheader (ibfd)->e_phnum;
for (i = 0, segment = elf_tdata (ibfd)->phdr;
i < num_segments;
i++, segment++)
{
and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
which severly confuses things, so always regenerate the segment
map in this case. */
if (segment->p_paddr == 0
&& segment->p_memsz == 0
&& (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
goto rewrite;
for (section = ibfd->sections;
section != NULL; section = section->next)
{
from the input BFD. */
osec = section->output_section;
if (osec)
osec->segment_mark = TRUE;
this_hdr = &(elf_section_data(section)->this_hdr);
if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
{
removed. What else do we need to check? */
if (osec == NULL
|| section->flags != osec->flags
|| section->lma != osec->lma
|| section->vma != osec->vma
|| section->size != osec->size
|| section->rawsize != osec->rawsize
|| section->alignment_power != osec->alignment_power)
goto rewrite;
}
}
}
input BFD. */
for (section = obfd->sections; section != NULL;
section = section->next)
{
if (section->segment_mark == FALSE)
goto rewrite;
else
section->segment_mark = FALSE;
}
return copy_elf_program_header (ibfd, obfd);
}
rewrite:
return rewrite_elf_program_header (ibfd, obfd);
}
bfd_boolean
_bfd_elf_init_private_section_data (bfd *ibfd,
asection *isec,
bfd *obfd,
asection *osec,
struct bfd_link_info *link_info)
{
Elf_Internal_Shdr *ihdr, *ohdr;
bfd_boolean need_group = link_info == NULL || link_info->relocatable;
if (ibfd->xvec->flavour != bfd_target_elf_flavour
|| obfd->xvec->flavour != bfd_target_elf_flavour)
return TRUE;
output BFD section flags have been set to something different.
elf_fake_sections will set ELF section type based on BFD
section flags. */
if (elf_section_type (osec) == SHT_NULL
&& (osec->flags == isec->flags || !osec->flags))
elf_section_type (osec) = elf_section_type (isec);
elf_section_flags (osec) |= (elf_section_flags (isec)
& (SHF_MASKOS | SHF_MASKPROC));
SHT_GROUP section will have its elf_next_in_group pointing back
to the input group members. Ignore linker created group section.
See elfNN_ia64_object_p in elfxx-ia64.c. */
if (need_group)
{
if (elf_sec_group (isec) == NULL
|| (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
{
if (elf_section_flags (isec) & SHF_GROUP)
elf_section_flags (osec) |= SHF_GROUP;
elf_next_in_group (osec) = elf_next_in_group (isec);
elf_group_name (osec) = elf_group_name (isec);
}
}
ihdr = &elf_section_data (isec)->this_hdr;
don't use the output section of the linked-to section since it
may be NULL at this point. */
if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
{
ohdr = &elf_section_data (osec)->this_hdr;
ohdr->sh_flags |= SHF_LINK_ORDER;
elf_linked_to_section (osec) = elf_linked_to_section (isec);
}
osec->use_rela_p = isec->use_rela_p;
return TRUE;
}
field, and sometimes the info field. */
bfd_boolean
_bfd_elf_copy_private_section_data (bfd *ibfd,
asection *isec,
bfd *obfd,
asection *osec)
{
Elf_Internal_Shdr *ihdr, *ohdr;
if (ibfd->xvec->flavour != bfd_target_elf_flavour
|| obfd->xvec->flavour != bfd_target_elf_flavour)
return TRUE;
ihdr = &elf_section_data (isec)->this_hdr;
ohdr = &elf_section_data (osec)->this_hdr;
ohdr->sh_entsize = ihdr->sh_entsize;
if (ihdr->sh_type == SHT_SYMTAB
|| ihdr->sh_type == SHT_DYNSYM
|| ihdr->sh_type == SHT_GNU_verneed
|| ihdr->sh_type == SHT_GNU_verdef)
ohdr->sh_info = ihdr->sh_info;
return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
NULL);
}
bfd_boolean
_bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
{
asection *isec;
if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
|| bfd_get_flavour (obfd) != bfd_target_elf_flavour)
return TRUE;
This must be done here, rather than in the copy_private_bfd_data
entry point, because the latter is called after the section
contents have been set, which means that the program headers have
already been worked out. */
if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
{
if (! copy_private_bfd_data (ibfd, obfd))
return FALSE;
}
but this might be wrong if we deleted the group section. */
for (isec = ibfd->sections; isec != NULL; isec = isec->next)
if (elf_section_type (isec) == SHT_GROUP
&& isec->output_section == NULL)
{
asection *first = elf_next_in_group (isec);
asection *s = first;
while (s != NULL)
{
if (s->output_section != NULL)
{
elf_section_flags (s->output_section) &= ~SHF_GROUP;
elf_group_name (s->output_section) = NULL;
}
s = elf_next_in_group (s);
if (s == first)
break;
}
}
return TRUE;
}
which we did not map into a BFD section, try to map the section
index correctly. We use special macro definitions for the mapped
section indices; these definitions are interpreted by the
swap_out_syms function. */
#define MAP_ONESYMTAB (SHN_HIOS + 1)
#define MAP_DYNSYMTAB (SHN_HIOS + 2)
#define MAP_STRTAB (SHN_HIOS + 3)
#define MAP_SHSTRTAB (SHN_HIOS + 4)
#define MAP_SYM_SHNDX (SHN_HIOS + 5)
bfd_boolean
_bfd_elf_copy_private_symbol_data (bfd *ibfd,
asymbol *isymarg,
bfd *obfd,
asymbol *osymarg)
{
elf_symbol_type *isym, *osym;
if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
|| bfd_get_flavour (obfd) != bfd_target_elf_flavour)
return TRUE;
isym = elf_symbol_from (ibfd, isymarg);
osym = elf_symbol_from (obfd, osymarg);
if (isym != NULL
&& isym->internal_elf_sym.st_shndx != 0
&& osym != NULL
&& bfd_is_abs_section (isym->symbol.section))
{
unsigned int shndx;
shndx = isym->internal_elf_sym.st_shndx;
if (shndx == elf_onesymtab (ibfd))
shndx = MAP_ONESYMTAB;
else if (shndx == elf_dynsymtab (ibfd))
shndx = MAP_DYNSYMTAB;
else if (shndx == elf_tdata (ibfd)->strtab_section)
shndx = MAP_STRTAB;
else if (shndx == elf_tdata (ibfd)->shstrtab_section)
shndx = MAP_SHSTRTAB;
else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
shndx = MAP_SYM_SHNDX;
osym->internal_elf_sym.st_shndx = shndx;
}
return TRUE;
}
static bfd_boolean
swap_out_syms (bfd *abfd,
struct bfd_strtab_hash **sttp,
int relocatable_p)
{
const struct elf_backend_data *bed;
int symcount;
asymbol **syms;
struct bfd_strtab_hash *stt;
Elf_Internal_Shdr *symtab_hdr;
Elf_Internal_Shdr *symtab_shndx_hdr;
Elf_Internal_Shdr *symstrtab_hdr;
bfd_byte *outbound_syms;
bfd_byte *outbound_shndx;
int idx;
bfd_size_type amt;
bfd_boolean name_local_sections;
if (!elf_map_symbols (abfd))
return FALSE;
stt = _bfd_elf_stringtab_init ();
if (stt == NULL)
return FALSE;
bed = get_elf_backend_data (abfd);
symcount = bfd_get_symcount (abfd);
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
symtab_hdr->sh_type = SHT_SYMTAB;
symtab_hdr->sh_entsize = bed->s->sizeof_sym;
symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
symstrtab_hdr->sh_type = SHT_STRTAB;
outbound_syms = bfd_alloc2 (abfd, 1 + symcount, bed->s->sizeof_sym);
if (outbound_syms == NULL)
{
_bfd_stringtab_free (stt);
return FALSE;
}
symtab_hdr->contents = outbound_syms;
outbound_shndx = NULL;
symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
if (symtab_shndx_hdr->sh_name != 0)
{
amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
outbound_shndx = bfd_zalloc2 (abfd, 1 + symcount,
sizeof (Elf_External_Sym_Shndx));
if (outbound_shndx == NULL)
{
_bfd_stringtab_free (stt);
return FALSE;
}
symtab_shndx_hdr->contents = outbound_shndx;
symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
symtab_shndx_hdr->sh_size = amt;
symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
}
{
Elf_Internal_Sym sym;
sym.st_name = 0;
sym.st_value = 0;
sym.st_size = 0;
sym.st_info = 0;
sym.st_other = 0;
sym.st_shndx = SHN_UNDEF;
bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
outbound_syms += bed->s->sizeof_sym;
if (outbound_shndx != NULL)
outbound_shndx += sizeof (Elf_External_Sym_Shndx);
}
name_local_sections
= (bed->elf_backend_name_local_section_symbols
&& bed->elf_backend_name_local_section_symbols (abfd));
syms = bfd_get_outsymbols (abfd);
for (idx = 0; idx < symcount; idx++)
{
Elf_Internal_Sym sym;
bfd_vma value = syms[idx]->value;
elf_symbol_type *type_ptr;
flagword flags = syms[idx]->flags;
int type;
if (!name_local_sections
&& (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
{
sym.st_name = 0;
}
else
{
sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
syms[idx]->name,
TRUE, FALSE);
if (sym.st_name == (unsigned long) -1)
{
_bfd_stringtab_free (stt);
return FALSE;
}
}
type_ptr = elf_symbol_from (abfd, syms[idx]);
if ((flags & BSF_SECTION_SYM) == 0
&& bfd_is_com_section (syms[idx]->section))
{
and the size into the `size' field. This is backwards from
how BFD handles it, so reverse it here. */
sym.st_size = value;
if (type_ptr == NULL
|| type_ptr->internal_elf_sym.st_value == 0)
sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
else
sym.st_value = type_ptr->internal_elf_sym.st_value;
sym.st_shndx = _bfd_elf_section_from_bfd_section
(abfd, syms[idx]->section);
}
else
{
asection *sec = syms[idx]->section;
unsigned int shndx;
if (sec->output_section)
{
value += sec->output_offset;
sec = sec->output_section;
}
if (! relocatable_p)
value += sec->vma;
sym.st_value = value;
sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
if (bfd_is_abs_section (sec)
&& type_ptr != NULL
&& type_ptr->internal_elf_sym.st_shndx != 0)
{
not create as a BFD section. Undo the mapping done
by copy_private_symbol_data. */
shndx = type_ptr->internal_elf_sym.st_shndx;
switch (shndx)
{
case MAP_ONESYMTAB:
shndx = elf_onesymtab (abfd);
break;
case MAP_DYNSYMTAB:
shndx = elf_dynsymtab (abfd);
break;
case MAP_STRTAB:
shndx = elf_tdata (abfd)->strtab_section;
break;
case MAP_SHSTRTAB:
shndx = elf_tdata (abfd)->shstrtab_section;
break;
case MAP_SYM_SHNDX:
shndx = elf_tdata (abfd)->symtab_shndx_section;
break;
default:
break;
}
}
else
{
shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
if (shndx == SHN_BAD)
{
asection *sec2;
we had some decent documentation on bfd, and
knew what to expect of the library, and what to
demand of applications. For example, it
appears that `objcopy' might not set the
section of a symbol to be a section that is
actually in the output file. */
sec2 = bfd_get_section_by_name (abfd, sec->name);
if (sec2 == NULL)
{
_bfd_error_handler (_("\
Unable to find equivalent output section for symbol '%s' from section '%s'"),
syms[idx]->name ? syms[idx]->name : "<Local sym>",
sec->name);
bfd_set_error (bfd_error_invalid_operation);
_bfd_stringtab_free (stt);
return FALSE;
}
shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
BFD_ASSERT (shndx != SHN_BAD);
}
}
sym.st_shndx = shndx;
}
if ((flags & BSF_THREAD_LOCAL) != 0)
type = STT_TLS;
else if ((flags & BSF_FUNCTION) != 0)
type = STT_FUNC;
else if ((flags & BSF_OBJECT) != 0)
type = STT_OBJECT;
else if ((flags & BSF_RELC) != 0)
type = STT_RELC;
else if ((flags & BSF_SRELC) != 0)
type = STT_SRELC;
else
type = STT_NOTYPE;
if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
type = STT_TLS;
if (type_ptr != NULL
&& bed->elf_backend_get_symbol_type)
type = ((*bed->elf_backend_get_symbol_type)
(&type_ptr->internal_elf_sym, type));
if (flags & BSF_SECTION_SYM)
{
if (flags & BSF_GLOBAL)
sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
else
sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
}
else if (bfd_is_com_section (syms[idx]->section))
{
#ifdef USE_STT_COMMON
if (type == STT_OBJECT)
sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_COMMON);
else
#else
sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
#endif
}
else if (bfd_is_und_section (syms[idx]->section))
sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
? STB_WEAK
: STB_GLOBAL),
type);
else if (flags & BSF_FILE)
sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
else
{
int bind = STB_LOCAL;
if (flags & BSF_LOCAL)
bind = STB_LOCAL;
else if (flags & BSF_WEAK)
bind = STB_WEAK;
else if (flags & BSF_GLOBAL)
bind = STB_GLOBAL;
sym.st_info = ELF_ST_INFO (bind, type);
}
if (type_ptr != NULL)
sym.st_other = type_ptr->internal_elf_sym.st_other;
else
sym.st_other = 0;
bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
outbound_syms += bed->s->sizeof_sym;
if (outbound_shndx != NULL)
outbound_shndx += sizeof (Elf_External_Sym_Shndx);
}
*sttp = stt;
symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
symstrtab_hdr->sh_type = SHT_STRTAB;
symstrtab_hdr->sh_flags = 0;
symstrtab_hdr->sh_addr = 0;
symstrtab_hdr->sh_entsize = 0;
symstrtab_hdr->sh_link = 0;
symstrtab_hdr->sh_info = 0;
symstrtab_hdr->sh_addralign = 1;
return TRUE;
}
Note that we base it on the count plus 1, since we will null terminate
the vector allocated based on this size. However, the ELF symbol table
always has a dummy entry as symbol #0, so it ends up even. */
long
_bfd_elf_get_symtab_upper_bound (bfd *abfd)
{
long symcount;
long symtab_size;
Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
symtab_size = (symcount + 1) * (sizeof (asymbol *));
if (symcount > 0)
symtab_size -= sizeof (asymbol *);
return symtab_size;
}
long
_bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
{
long symcount;
long symtab_size;
Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
if (elf_dynsymtab (abfd) == 0)
{
bfd_set_error (bfd_error_invalid_operation);
return -1;
}
symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
symtab_size = (symcount + 1) * (sizeof (asymbol *));
if (symcount > 0)
symtab_size -= sizeof (asymbol *);
return symtab_size;
}
long
_bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
sec_ptr asect)
{
return (asect->reloc_count + 1) * sizeof (arelent *);
}
long
_bfd_elf_canonicalize_reloc (bfd *abfd,
sec_ptr section,
arelent **relptr,
asymbol **symbols)
{
arelent *tblptr;
unsigned int i;
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
return -1;
tblptr = section->relocation;
for (i = 0; i < section->reloc_count; i++)
*relptr++ = tblptr++;
*relptr = NULL;
return section->reloc_count;
}
long
_bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
{
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
if (symcount >= 0)
bfd_get_symcount (abfd) = symcount;
return symcount;
}
long
_bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
asymbol **allocation)
{
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
if (symcount >= 0)
bfd_get_dynamic_symcount (abfd) = symcount;
return symcount;
}
section that was actually installed in the BFD, and has type SHT_REL
or SHT_RELA, and uses the dynamic symbol table, is considered to be a
dynamic reloc section. */
long
_bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
{
long ret;
asection *s;
if (elf_dynsymtab (abfd) == 0)
{
bfd_set_error (bfd_error_invalid_operation);
return -1;
}
ret = sizeof (arelent *);
for (s = abfd->sections; s != NULL; s = s->next)
if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
&& (elf_section_data (s)->this_hdr.sh_type == SHT_REL
|| elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
* sizeof (arelent *));
return ret;
}
dynamic relocations as a single block, although they are actually
associated with particular sections; the interface, which was
designed for SunOS style shared libraries, expects that there is only
one set of dynamic relocs. Any loadable section that was actually
installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
dynamic symbol table, is considered to be a dynamic reloc section. */
long
_bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
arelent **storage,
asymbol **syms)
{
bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
asection *s;
long ret;
if (elf_dynsymtab (abfd) == 0)
{
bfd_set_error (bfd_error_invalid_operation);
return -1;
}
slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
ret = 0;
for (s = abfd->sections; s != NULL; s = s->next)
{
if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
&& (elf_section_data (s)->this_hdr.sh_type == SHT_REL
|| elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
{
arelent *p;
long count, i;
if (! (*slurp_relocs) (abfd, s, syms, TRUE))
return -1;
count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
p = s->relocation;
for (i = 0; i < count; i++)
*storage++ = p++;
ret += count;
}
}
*storage = NULL;
return ret;
}
bfd_boolean
_bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
{
bfd_byte *contents = NULL;
unsigned int freeidx = 0;
if (elf_dynverref (abfd) != 0)
{
Elf_Internal_Shdr *hdr;
Elf_External_Verneed *everneed;
Elf_Internal_Verneed *iverneed;
unsigned int i;
bfd_byte *contents_end;
hdr = &elf_tdata (abfd)->dynverref_hdr;
elf_tdata (abfd)->verref = bfd_zalloc2 (abfd, hdr->sh_info,
sizeof (Elf_Internal_Verneed));
if (elf_tdata (abfd)->verref == NULL)
goto error_return;
elf_tdata (abfd)->cverrefs = hdr->sh_info;
contents = bfd_malloc (hdr->sh_size);
if (contents == NULL)
{
error_return_verref:
elf_tdata (abfd)->verref = NULL;
elf_tdata (abfd)->cverrefs = 0;
goto error_return;
}
if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
|| bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
goto error_return_verref;
if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
goto error_return_verref;
BFD_ASSERT (sizeof (Elf_External_Verneed)
== sizeof (Elf_External_Vernaux));
contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
everneed = (Elf_External_Verneed *) contents;
iverneed = elf_tdata (abfd)->verref;
for (i = 0; i < hdr->sh_info; i++, iverneed++)
{
Elf_External_Vernaux *evernaux;
Elf_Internal_Vernaux *ivernaux;
unsigned int j;
_bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
iverneed->vn_bfd = abfd;
iverneed->vn_filename =
bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
iverneed->vn_file);
if (iverneed->vn_filename == NULL)
goto error_return_verref;
if (iverneed->vn_cnt == 0)
iverneed->vn_auxptr = NULL;
else
{
iverneed->vn_auxptr = bfd_alloc2 (abfd, iverneed->vn_cnt,
sizeof (Elf_Internal_Vernaux));
if (iverneed->vn_auxptr == NULL)
goto error_return_verref;
}
if (iverneed->vn_aux
> (size_t) (contents_end - (bfd_byte *) everneed))
goto error_return_verref;
evernaux = ((Elf_External_Vernaux *)
((bfd_byte *) everneed + iverneed->vn_aux));
ivernaux = iverneed->vn_auxptr;
for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
{
_bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
ivernaux->vna_nodename =
bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
ivernaux->vna_name);
if (ivernaux->vna_nodename == NULL)
goto error_return_verref;
if (j + 1 < iverneed->vn_cnt)
ivernaux->vna_nextptr = ivernaux + 1;
else
ivernaux->vna_nextptr = NULL;
if (ivernaux->vna_next
> (size_t) (contents_end - (bfd_byte *) evernaux))
goto error_return_verref;
evernaux = ((Elf_External_Vernaux *)
((bfd_byte *) evernaux + ivernaux->vna_next));
if (ivernaux->vna_other > freeidx)
freeidx = ivernaux->vna_other;
}
if (i + 1 < hdr->sh_info)
iverneed->vn_nextref = iverneed + 1;
else
iverneed->vn_nextref = NULL;
if (iverneed->vn_next
> (size_t) (contents_end - (bfd_byte *) everneed))
goto error_return_verref;
everneed = ((Elf_External_Verneed *)
((bfd_byte *) everneed + iverneed->vn_next));
}
free (contents);
contents = NULL;
}
if (elf_dynverdef (abfd) != 0)
{
Elf_Internal_Shdr *hdr;
Elf_External_Verdef *everdef;
Elf_Internal_Verdef *iverdef;
Elf_Internal_Verdef *iverdefarr;
Elf_Internal_Verdef iverdefmem;
unsigned int i;
unsigned int maxidx;
bfd_byte *contents_end_def, *contents_end_aux;
hdr = &elf_tdata (abfd)->dynverdef_hdr;
contents = bfd_malloc (hdr->sh_size);
if (contents == NULL)
goto error_return;
if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
|| bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
goto error_return;
if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
goto error_return;
BFD_ASSERT (sizeof (Elf_External_Verdef)
>= sizeof (Elf_External_Verdaux));
contents_end_def = contents + hdr->sh_size
- sizeof (Elf_External_Verdef);
contents_end_aux = contents + hdr->sh_size
- sizeof (Elf_External_Verdaux);
index. Therefore we have to run through all entries and find
the maximum. */
everdef = (Elf_External_Verdef *) contents;
maxidx = 0;
for (i = 0; i < hdr->sh_info; ++i)
{
_bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
if (iverdefmem.vd_next
> (size_t) (contents_end_def - (bfd_byte *) everdef))
goto error_return;
everdef = ((Elf_External_Verdef *)
((bfd_byte *) everdef + iverdefmem.vd_next));
}
if (default_imported_symver)
{
if (freeidx > maxidx)
maxidx = ++freeidx;
else
freeidx = ++maxidx;
}
elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, maxidx,
sizeof (Elf_Internal_Verdef));
if (elf_tdata (abfd)->verdef == NULL)
goto error_return;
elf_tdata (abfd)->cverdefs = maxidx;
everdef = (Elf_External_Verdef *) contents;
iverdefarr = elf_tdata (abfd)->verdef;
for (i = 0; i < hdr->sh_info; i++)
{
Elf_External_Verdaux *everdaux;
Elf_Internal_Verdaux *iverdaux;
unsigned int j;
_bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
{
error_return_verdef:
elf_tdata (abfd)->verdef = NULL;
elf_tdata (abfd)->cverdefs = 0;
goto error_return;
}
iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
iverdef->vd_bfd = abfd;
if (iverdef->vd_cnt == 0)
iverdef->vd_auxptr = NULL;
else
{
iverdef->vd_auxptr = bfd_alloc2 (abfd, iverdef->vd_cnt,
sizeof (Elf_Internal_Verdaux));
if (iverdef->vd_auxptr == NULL)
goto error_return_verdef;
}
if (iverdef->vd_aux
> (size_t) (contents_end_aux - (bfd_byte *) everdef))
goto error_return_verdef;
everdaux = ((Elf_External_Verdaux *)
((bfd_byte *) everdef + iverdef->vd_aux));
iverdaux = iverdef->vd_auxptr;
for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
{
_bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
iverdaux->vda_nodename =
bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
iverdaux->vda_name);
if (iverdaux->vda_nodename == NULL)
goto error_return_verdef;
if (j + 1 < iverdef->vd_cnt)
iverdaux->vda_nextptr = iverdaux + 1;
else
iverdaux->vda_nextptr = NULL;
if (iverdaux->vda_next
> (size_t) (contents_end_aux - (bfd_byte *) everdaux))
goto error_return_verdef;
everdaux = ((Elf_External_Verdaux *)
((bfd_byte *) everdaux + iverdaux->vda_next));
}
if (iverdef->vd_cnt)
iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
iverdef->vd_nextdef = iverdef + 1;
else
iverdef->vd_nextdef = NULL;
everdef = ((Elf_External_Verdef *)
((bfd_byte *) everdef + iverdef->vd_next));
}
free (contents);
contents = NULL;
}
else if (default_imported_symver)
{
if (freeidx < 3)
freeidx = 3;
else
freeidx++;
elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, freeidx,
sizeof (Elf_Internal_Verdef));
if (elf_tdata (abfd)->verdef == NULL)
goto error_return;
elf_tdata (abfd)->cverdefs = freeidx;
}
if (default_imported_symver)
{
Elf_Internal_Verdef *iverdef;
Elf_Internal_Verdaux *iverdaux;
iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
iverdef->vd_version = VER_DEF_CURRENT;
iverdef->vd_flags = 0;
iverdef->vd_ndx = freeidx;
iverdef->vd_cnt = 1;
iverdef->vd_bfd = abfd;
iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
if (iverdef->vd_nodename == NULL)
goto error_return_verdef;
iverdef->vd_nextdef = NULL;
iverdef->vd_auxptr = bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
if (iverdef->vd_auxptr == NULL)
goto error_return_verdef;
iverdaux = iverdef->vd_auxptr;
iverdaux->vda_nodename = iverdef->vd_nodename;
iverdaux->vda_nextptr = NULL;
}
return TRUE;
error_return:
if (contents != NULL)
free (contents);
return FALSE;
}
asymbol *
_bfd_elf_make_empty_symbol (bfd *abfd)
{
elf_symbol_type *newsym;
bfd_size_type amt = sizeof (elf_symbol_type);
newsym = bfd_zalloc (abfd, amt);
if (!newsym)
return NULL;
else
{
newsym->symbol.the_bfd = abfd;
return &newsym->symbol;
}
}
void
_bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
asymbol *symbol,
symbol_info *ret)
{
bfd_symbol_info (symbol, ret);
}
use this function for the is_local_label_name entry point, but some
override it. */
bfd_boolean
_bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
const char *name)
{
if (name[0] == '.' && name[1] == 'L')
return TRUE;
DWARF debugging symbols starting with ``..''. */
if (name[0] == '.' && name[1] == '.')
return TRUE;
emitting DWARF debugging output. I suspect this is actually a
small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
underscore to be emitted on some ELF targets). For ease of use,
we treat such symbols as local. */
if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
return TRUE;
return FALSE;
}
alent *
_bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
asymbol *symbol ATTRIBUTE_UNUSED)
{
abort ();
return NULL;
}
bfd_boolean
_bfd_elf_set_arch_mach (bfd *abfd,
enum bfd_architecture arch,
unsigned long machine)
{
isn't the generic backend, fail. */
if (arch != get_elf_backend_data (abfd)->arch
&& arch != bfd_arch_unknown
&& get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
return FALSE;
return bfd_default_set_arch_mach (abfd, arch, machine);
}
for error reporting. */
static bfd_boolean
elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
asection *section,
asymbol **symbols,
bfd_vma offset,
const char **filename_ptr,
const char **functionname_ptr)
{
const char *filename;
asymbol *func, *file;
bfd_vma low_func;
asymbol **p;
choose the right file name for global symbols. File symbols are
local symbols, and thus all file symbols must sort before any
global symbols. The ELF spec may be interpreted to say that a
file symbol must sort before other local symbols, but currently
ld -r doesn't do this. So, for ld -r output, it is possible to
make a better choice of file name for local symbols by ignoring
file symbols appearing after a given local symbol. */
enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
filename = NULL;
func = NULL;
file = NULL;
low_func = 0;
state = nothing_seen;
for (p = symbols; *p != NULL; p++)
{
elf_symbol_type *q;
q = (elf_symbol_type *) *p;
switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
{
default:
break;
case STT_FILE:
file = &q->symbol;
if (state == symbol_seen)
state = file_after_symbol_seen;
continue;
case STT_NOTYPE:
case STT_FUNC:
if (bfd_get_section (&q->symbol) == section
&& q->symbol.value >= low_func
&& q->symbol.value <= offset)
{
func = (asymbol *) q;
low_func = q->symbol.value;
filename = NULL;
if (file != NULL
&& (ELF_ST_BIND (q->internal_elf_sym.st_info) == STB_LOCAL
|| state != file_after_symbol_seen))
filename = bfd_asymbol_name (file);
}
break;
}
if (state == nothing_seen)
state = symbol_seen;
}
if (func == NULL)
return FALSE;
if (filename_ptr)
*filename_ptr = filename;
if (functionname_ptr)
*functionname_ptr = bfd_asymbol_name (func);
return TRUE;
}
for error reporting. */
bfd_boolean
_bfd_elf_find_nearest_line (bfd *abfd,
asection *section,
asymbol **symbols,
bfd_vma offset,
const char **filename_ptr,
const char **functionname_ptr,
unsigned int *line_ptr)
{
bfd_boolean found;
if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
filename_ptr, functionname_ptr,
line_ptr))
{
if (!*functionname_ptr)
elf_find_function (abfd, section, symbols, offset,
*filename_ptr ? NULL : filename_ptr,
functionname_ptr);
return TRUE;
}
if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
filename_ptr, functionname_ptr,
line_ptr, 0,
&elf_tdata (abfd)->dwarf2_find_line_info))
{
if (!*functionname_ptr)
elf_find_function (abfd, section, symbols, offset,
*filename_ptr ? NULL : filename_ptr,
functionname_ptr);
return TRUE;
}
if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
&found, filename_ptr,
functionname_ptr, line_ptr,
&elf_tdata (abfd)->line_info))
return FALSE;
if (found && (*functionname_ptr || *line_ptr))
return TRUE;
if (symbols == NULL)
return FALSE;
if (! elf_find_function (abfd, section, symbols, offset,
filename_ptr, functionname_ptr))
return FALSE;
*line_ptr = 0;
return TRUE;
}
bfd_boolean
_bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
const char **filename_ptr, unsigned int *line_ptr)
{
return _bfd_dwarf2_find_line (abfd, symbols, symbol,
filename_ptr, line_ptr, 0,
&elf_tdata (abfd)->dwarf2_find_line_info);
}
bfd_find_inliner_info can be used to get source information about
each level of function inlining that terminated at the address
passed to bfd_find_nearest_line. Currently this is only supported
for DWARF2 with appropriate DWARF3 extensions. */
bfd_boolean
_bfd_elf_find_inliner_info (bfd *abfd,
const char **filename_ptr,
const char **functionname_ptr,
unsigned int *line_ptr)
{
bfd_boolean found;
found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
functionname_ptr, line_ptr,
& elf_tdata (abfd)->dwarf2_find_line_info);
return found;
}
int
_bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
{
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
int ret = bed->s->sizeof_ehdr;
if (!info->relocatable)
{
bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
if (phdr_size == (bfd_size_type) -1)
{
struct elf_segment_map *m;
phdr_size = 0;
for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
phdr_size += bed->s->sizeof_phdr;
if (phdr_size == 0)
phdr_size = get_program_header_size (abfd, info);
}
elf_tdata (abfd)->program_header_size = phdr_size;
ret += phdr_size;
}
return ret;
}
bfd_boolean
_bfd_elf_set_section_contents (bfd *abfd,
sec_ptr section,
const void *location,
file_ptr offset,
bfd_size_type count)
{
Elf_Internal_Shdr *hdr;
bfd_signed_vma pos;
if (! abfd->output_has_begun
&& ! _bfd_elf_compute_section_file_positions (abfd, NULL))
return FALSE;
hdr = &elf_section_data (section)->this_hdr;
pos = hdr->sh_offset + offset;
if (bfd_seek (abfd, pos, SEEK_SET) != 0
|| bfd_bwrite (location, count, abfd) != count)
return FALSE;
return TRUE;
}
void
_bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
arelent *cache_ptr ATTRIBUTE_UNUSED,
Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
{
abort ();
}
bfd_boolean
_bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
{
if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
{
bfd_reloc_code_real_type code;
reloc_howto_type *howto;
equivalent ELF reloc. */
if (areloc->howto->pc_relative)
{
switch (areloc->howto->bitsize)
{
case 8:
code = BFD_RELOC_8_PCREL;
break;
case 12:
code = BFD_RELOC_12_PCREL;
break;
case 16:
code = BFD_RELOC_16_PCREL;
break;
case 24:
code = BFD_RELOC_24_PCREL;
break;
case 32:
code = BFD_RELOC_32_PCREL;
break;
case 64:
code = BFD_RELOC_64_PCREL;
break;
default:
goto fail;
}
howto = bfd_reloc_type_lookup (abfd, code);
if (areloc->howto->pcrel_offset != howto->pcrel_offset)
{
if (howto->pcrel_offset)
areloc->addend += areloc->address;
else
areloc->addend -= areloc->address;
}
}
else
{
switch (areloc->howto->bitsize)
{
case 8:
code = BFD_RELOC_8;
break;
case 14:
code = BFD_RELOC_14;
break;
case 16:
code = BFD_RELOC_16;
break;
case 26:
code = BFD_RELOC_26;
break;
case 32:
code = BFD_RELOC_32;
break;
case 64:
code = BFD_RELOC_64;
break;
default:
goto fail;
}
howto = bfd_reloc_type_lookup (abfd, code);
}
if (howto)
areloc->howto = howto;
else
goto fail;
}
return TRUE;
fail:
(*_bfd_error_handler)
(_("%B: unsupported relocation type %s"),
abfd, areloc->howto->name);
bfd_set_error (bfd_error_bad_value);
return FALSE;
}
bfd_boolean
_bfd_elf_close_and_cleanup (bfd *abfd)
{
if (bfd_get_format (abfd) == bfd_object)
{
if (elf_tdata (abfd) != NULL && elf_shstrtab (abfd) != NULL)
_bfd_elf_strtab_free (elf_shstrtab (abfd));
_bfd_dwarf2_cleanup_debug_info (abfd);
}
return _bfd_generic_close_and_cleanup (abfd);
}
in the relocation's offset. Thus we cannot allow any sort of sanity
range-checking to interfere. There is nothing else to do in processing
this reloc. */
bfd_reloc_status_type
_bfd_elf_rel_vtable_reloc_fn
(bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
{
return bfd_reloc_ok;
}
toolchains, since we rely on knowing the
machine-dependent procfs structure in order to pick
out details about the corefile. */
#ifdef HAVE_SYS_PROCFS_H
# include <sys/procfs.h>
#endif
static int
elfcore_make_pid (bfd *abfd)
{
return ((elf_tdata (abfd)->core_lwpid << 16)
+ (elf_tdata (abfd)->core_pid));
}
data from SECT. Note, this function will generate a
reference to NAME, so you shouldn't deallocate or
overwrite it. */
static bfd_boolean
elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
{
asection *sect2;
if (bfd_get_section_by_name (abfd, name) != NULL)
return TRUE;
sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
if (sect2 == NULL)
return FALSE;
sect2->size = sect->size;
sect2->filepos = sect->filepos;
sect2->alignment_power = sect->alignment_power;
return TRUE;
}
actually creates up to two pseudosections:
- For the single-threaded case, a section named NAME, unless
such a section already exists.
- For the multi-threaded case, a section named "NAME/PID", where
PID is elfcore_make_pid (abfd).
Both pseudosections have identical contents. */
bfd_boolean
_bfd_elfcore_make_pseudosection (bfd *abfd,
char *name,
size_t size,
ufile_ptr filepos)
{
char buf[100];
char *threaded_name;
size_t len;
asection *sect;
sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
len = strlen (buf) + 1;
threaded_name = bfd_alloc (abfd, len);
if (threaded_name == NULL)
return FALSE;
memcpy (threaded_name, buf, len);
sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
SEC_HAS_CONTENTS);
if (sect == NULL)
return FALSE;
sect->size = size;
sect->filepos = filepos;
sect->alignment_power = 2;
return elfcore_maybe_make_sect (abfd, name, sect);
}
solaris 2.5+
linux 2.[01] + glibc
unixware 4.2
*/
#if defined (HAVE_PRSTATUS_T)
static bfd_boolean
elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
{
size_t size;
int offset;
if (note->descsz == sizeof (prstatus_t))
{
prstatus_t prstat;
size = sizeof (prstat.pr_reg);
offset = offsetof (prstatus_t, pr_reg);
memcpy (&prstat, note->descdata, sizeof (prstat));
has already been set by another thread. */
if (elf_tdata (abfd)->core_signal == 0)
elf_tdata (abfd)->core_signal = prstat.pr_cursig;
elf_tdata (abfd)->core_pid = prstat.pr_pid;
solaris 2.5+
unixware 4.2
pr_who doesn't exist on:
linux 2.[01]
*/
#if defined (HAVE_PRSTATUS_T_PR_WHO)
elf_tdata (abfd)->core_lwpid = prstat.pr_who;
#endif
}
#if defined (HAVE_PRSTATUS32_T)
else if (note->descsz == sizeof (prstatus32_t))
{
prstatus32_t prstat;
size = sizeof (prstat.pr_reg);
offset = offsetof (prstatus32_t, pr_reg);
memcpy (&prstat, note->descdata, sizeof (prstat));
has already been set by another thread. */
if (elf_tdata (abfd)->core_signal == 0)
elf_tdata (abfd)->core_signal = prstat.pr_cursig;
elf_tdata (abfd)->core_pid = prstat.pr_pid;
solaris 2.5+
unixware 4.2
pr_who doesn't exist on:
linux 2.[01]
*/
#if defined (HAVE_PRSTATUS32_T_PR_WHO)
elf_tdata (abfd)->core_lwpid = prstat.pr_who;
#endif
}
#endif
else
{
note size (ie. data object type). */
return TRUE;
}
return _bfd_elfcore_make_pseudosection (abfd, ".reg",
size, note->descpos + offset);
}
#endif
static bfd_boolean
elfcore_make_note_pseudosection (bfd *abfd,
char *name,
Elf_Internal_Note *note)
{
return _bfd_elfcore_make_pseudosection (abfd, name,
note->descsz, note->descpos);
}
but it doesn't matter, because we don't have to pick this
data structure apart. */
static bfd_boolean
elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
{
return elfcore_make_note_pseudosection (abfd, ".reg2", note);
}
type of NT_PRXFPREG. Just include the whole note's contents
literally. */
static bfd_boolean
elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
{
return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
}
static bfd_boolean
elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
{
return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
}
static bfd_boolean
elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
{
return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
}
#if defined (HAVE_PRPSINFO_T)
typedef prpsinfo_t elfcore_psinfo_t;
#if defined (HAVE_PRPSINFO32_T)
typedef prpsinfo32_t elfcore_psinfo32_t;
#endif
#endif
#if defined (HAVE_PSINFO_T)
typedef psinfo_t elfcore_psinfo_t;
#if defined (HAVE_PSINFO32_T)
typedef psinfo32_t elfcore_psinfo32_t;
#endif
#endif
most MAX bytes long, possibly without a terminating '\0'.
the copy will always have a terminating '\0'. */
char *
_bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
{
char *dups;
char *end = memchr (start, '\0', max);
size_t len;
if (end == NULL)
len = max;
else
len = end - start;
dups = bfd_alloc (abfd, len + 1);
if (dups == NULL)
return NULL;
memcpy (dups, start, len);
dups[len] = '\0';
return dups;
}
#if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
static bfd_boolean
elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
{
if (note->descsz == sizeof (elfcore_psinfo_t))
{
elfcore_psinfo_t psinfo;
memcpy (&psinfo, note->descdata, sizeof (psinfo));
elf_tdata (abfd)->core_program
= _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
sizeof (psinfo.pr_fname));
elf_tdata (abfd)->core_command
= _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
sizeof (psinfo.pr_psargs));
}
#if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
else if (note->descsz == sizeof (elfcore_psinfo32_t))
{
elfcore_psinfo32_t psinfo;
memcpy (&psinfo, note->descdata, sizeof (psinfo));
elf_tdata (abfd)->core_program
= _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
sizeof (psinfo.pr_fname));
elf_tdata (abfd)->core_command
= _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
sizeof (psinfo.pr_psargs));
}
#endif
else
{
note size (ie. data object type). */
return TRUE;
}
onto the end of the args in some (at least one anyway)
implementations, so strip it off if it exists. */
{
char *command = elf_tdata (abfd)->core_command;
int n = strlen (command);
if (0 < n && command[n - 1] == ' ')
command[n - 1] = '\0';
}
return TRUE;
}
#endif
#if defined (HAVE_PSTATUS_T)
static bfd_boolean
elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
{
if (note->descsz == sizeof (pstatus_t)
#if defined (HAVE_PXSTATUS_T)
|| note->descsz == sizeof (pxstatus_t)
#endif
)
{
pstatus_t pstat;
memcpy (&pstat, note->descdata, sizeof (pstat));
elf_tdata (abfd)->core_pid = pstat.pr_pid;
}
#if defined (HAVE_PSTATUS32_T)
else if (note->descsz == sizeof (pstatus32_t))
{
pstatus32_t pstat;
memcpy (&pstat, note->descdata, sizeof (pstat));
elf_tdata (abfd)->core_pid = pstat.pr_pid;
}
#endif
lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
NT_LWPSTATUS note, presumably. */
return TRUE;
}
#endif
#if defined (HAVE_LWPSTATUS_T)
static bfd_boolean
elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
{
lwpstatus_t lwpstat;
char buf[100];
char *name;
size_t len;
asection *sect;
if (note->descsz != sizeof (lwpstat)
#if defined (HAVE_LWPXSTATUS_T)
&& note->descsz != sizeof (lwpxstatus_t)
#endif
)
return TRUE;
memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
len = strlen (buf) + 1;
name = bfd_alloc (abfd, len);
if (name == NULL)
return FALSE;
memcpy (name, buf, len);
sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
if (sect == NULL)
return FALSE;
#if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
sect->filepos = note->descpos
+ offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
#endif
#if defined (HAVE_LWPSTATUS_T_PR_REG)
sect->size = sizeof (lwpstat.pr_reg);
sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
#endif
sect->alignment_power = 2;
if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
return FALSE;
sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
len = strlen (buf) + 1;
name = bfd_alloc (abfd, len);
if (name == NULL)
return FALSE;
memcpy (name, buf, len);
sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
if (sect == NULL)
return FALSE;
#if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
sect->filepos = note->descpos
+ offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
#endif
#if defined (HAVE_LWPSTATUS_T_PR_FPREG)
sect->size = sizeof (lwpstat.pr_fpreg);
sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
#endif
sect->alignment_power = 2;
return elfcore_maybe_make_sect (abfd, ".reg2", sect);
}
#endif
static bfd_boolean
elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
{
char buf[30];
char *name;
size_t len;
asection *sect;
int type;
int is_active_thread;
bfd_vma base_addr;
if (note->descsz < 728)
return TRUE;
if (! CONST_STRNEQ (note->namedata, "win32"))
return TRUE;
type = bfd_get_32 (abfd, note->descdata);
switch (type)
{
case 1 :
elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 8);
elf_tdata (abfd)->core_signal = bfd_get_32 (abfd, note->descdata + 12);
break;
case 2 :
sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
len = strlen (buf) + 1;
name = bfd_alloc (abfd, len);
if (name == NULL)
return FALSE;
memcpy (name, buf, len);
sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
if (sect == NULL)
return FALSE;
sect->size = 716;
sect->filepos = note->descpos + 12;
sect->alignment_power = 2;
is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
if (is_active_thread)
if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
return FALSE;
break;
case 3 :
base_addr = bfd_get_32 (abfd, note->descdata + 4);
sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
len = strlen (buf) + 1;
name = bfd_alloc (abfd, len);
if (name == NULL)
return FALSE;
memcpy (name, buf, len);
sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
if (sect == NULL)
return FALSE;
sect->size = note->descsz;
sect->filepos = note->descpos;
sect->alignment_power = 2;
break;
default:
return TRUE;
}
return TRUE;
}
static bfd_boolean
elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
{
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
switch (note->type)
{
default:
return TRUE;
case NT_PRSTATUS:
if (bed->elf_backend_grok_prstatus)
if ((*bed->elf_backend_grok_prstatus) (abfd, note))
return TRUE;
#if defined (HAVE_PRSTATUS_T)
return elfcore_grok_prstatus (abfd, note);
#else
return TRUE;
#endif
#if defined (HAVE_PSTATUS_T)
case NT_PSTATUS:
return elfcore_grok_pstatus (abfd, note);
#endif
#if defined (HAVE_LWPSTATUS_T)
case NT_LWPSTATUS:
return elfcore_grok_lwpstatus (abfd, note);
#endif
case NT_FPREGSET:
return elfcore_grok_prfpreg (abfd, note);
case NT_WIN32PSTATUS:
return elfcore_grok_win32pstatus (abfd, note);
case NT_PRXFPREG:
if (note->namesz == 6
&& strcmp (note->namedata, "LINUX") == 0)
return elfcore_grok_prxfpreg (abfd, note);
else
return TRUE;
case NT_PPC_VMX:
if (note->namesz == 6
&& strcmp (note->namedata, "LINUX") == 0)
return elfcore_grok_ppc_vmx (abfd, note);
else
return TRUE;
case NT_PPC_VSX:
if (note->namesz == 6
&& strcmp (note->namedata, "LINUX") == 0)
return elfcore_grok_ppc_vsx (abfd, note);
else
return TRUE;
case NT_PRPSINFO:
case NT_PSINFO:
if (bed->elf_backend_grok_psinfo)
if ((*bed->elf_backend_grok_psinfo) (abfd, note))
return TRUE;
#if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
return elfcore_grok_psinfo (abfd, note);
#else
return TRUE;
#endif
case NT_AUXV:
{
asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
SEC_HAS_CONTENTS);
if (sect == NULL)
return FALSE;
sect->size = note->descsz;
sect->filepos = note->descpos;
sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
return TRUE;
}
}
}
static bfd_boolean
elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
{
elf_tdata (abfd)->build_id_size = note->descsz;
elf_tdata (abfd)->build_id = bfd_alloc (abfd, note->descsz);
if (elf_tdata (abfd)->build_id == NULL)
return FALSE;
memcpy (elf_tdata (abfd)->build_id, note->descdata, note->descsz);
return TRUE;
}
static bfd_boolean
elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
{
switch (note->type)
{
default:
return TRUE;
case NT_GNU_BUILD_ID:
return elfobj_grok_gnu_build_id (abfd, note);
}
}
static bfd_boolean
elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
{
char *cp;
cp = strchr (note->namedata, '@');
if (cp != NULL)
{
*lwpidp = atoi(cp + 1);
return TRUE;
}
return FALSE;
}
static bfd_boolean
elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
{
elf_tdata (abfd)->core_signal
= bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
elf_tdata (abfd)->core_pid
= bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
elf_tdata (abfd)->core_command
= _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
note);
}
static bfd_boolean
elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
{
int lwp;
if (elfcore_netbsd_get_lwpid (note, &lwp))
elf_tdata (abfd)->core_lwpid = lwp;
if (note->type == NT_NETBSDCORE_PROCINFO)
{
find this note before any of the others, which is fine,
since the kernel writes this note out first when it
creates a core file. */
return elfcore_grok_netbsd_procinfo (abfd, note);
}
defined for NetBSD core files. If the note type is less
than the start of the machine-dependent note types, we don't
understand it. */
if (note->type < NT_NETBSDCORE_FIRSTMACH)
return TRUE;
switch (bfd_get_arch (abfd))
{
PT_GETFPREGS == mach+2. */
case bfd_arch_alpha:
case bfd_arch_sparc:
switch (note->type)
{
case NT_NETBSDCORE_FIRSTMACH+0:
return elfcore_make_note_pseudosection (abfd, ".reg", note);
case NT_NETBSDCORE_FIRSTMACH+2:
return elfcore_make_note_pseudosection (abfd, ".reg2", note);
default:
return TRUE;
}
PT_GETFPREGS == mach+3. */
default:
switch (note->type)
{
case NT_NETBSDCORE_FIRSTMACH+1:
return elfcore_make_note_pseudosection (abfd, ".reg", note);
case NT_NETBSDCORE_FIRSTMACH+3:
return elfcore_make_note_pseudosection (abfd, ".reg2", note);
default:
return TRUE;
}
}
}
static bfd_boolean
elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
{
void *ddata = note->descdata;
char buf[100];
char *name;
asection *sect;
short sig;
unsigned flags;
elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
*tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
{
elf_tdata (abfd)->core_signal = sig;
elf_tdata (abfd)->core_lwpid = *tid;
}
do not come from signals so we make sure we set the current
thread just in case. */
if (flags & 0x00000080)
elf_tdata (abfd)->core_lwpid = *tid;
sprintf (buf, ".qnx_core_status/%ld", *tid);
name = bfd_alloc (abfd, strlen (buf) + 1);
if (name == NULL)
return FALSE;
strcpy (name, buf);
sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
if (sect == NULL)
return FALSE;
sect->size = note->descsz;
sect->filepos = note->descpos;
sect->alignment_power = 2;
return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
}
static bfd_boolean
elfcore_grok_nto_regs (bfd *abfd,
Elf_Internal_Note *note,
long tid,
char *base)
{
char buf[100];
char *name;
asection *sect;
sprintf (buf, "%s/%ld", base, tid);
name = bfd_alloc (abfd, strlen (buf) + 1);
if (name == NULL)
return FALSE;
strcpy (name, buf);
sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
if (sect == NULL)
return FALSE;
sect->size = note->descsz;
sect->filepos = note->descpos;
sect->alignment_power = 2;
if (elf_tdata (abfd)->core_lwpid == tid)
return elfcore_maybe_make_sect (abfd, base, sect);
return TRUE;
}
#define BFD_QNT_CORE_INFO 7
#define BFD_QNT_CORE_STATUS 8
#define BFD_QNT_CORE_GREG 9
#define BFD_QNT_CORE_FPREG 10
static bfd_boolean
elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
{
tid from the previous call to pass down to the next gregs
function. */
static long tid = 1;
switch (note->type)
{
case BFD_QNT_CORE_INFO:
return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
case BFD_QNT_CORE_STATUS:
return elfcore_grok_nto_status (abfd, note, &tid);
case BFD_QNT_CORE_GREG:
return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
case BFD_QNT_CORE_FPREG:
return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
default:
return TRUE;
}
}
static bfd_boolean
elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
{
char *name;
asection *sect;
size_t len;
len = note->namesz;
name = bfd_alloc (abfd, len);
if (name == NULL)
return FALSE;
memcpy (name, note->namedata, len);
name[len - 1] = '\0';
sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
if (sect == NULL)
return FALSE;
sect->size = note->descsz;
sect->filepos = note->descpos;
sect->alignment_power = 1;
return TRUE;
}
Inputs:
buffer to hold note, and current size of buffer
name of note
type of note
data for note
size of data for note
Writes note to end of buffer. ELF64 notes are written exactly as
for ELF32, despite the current (as of 2006) ELF gabi specifying
that they ought to have 8-byte namesz and descsz field, and have
8-byte alignment. Other writers, eg. Linux kernel, do the same.
Return:
Pointer to realloc'd buffer, *BUFSIZ updated. */
char *
elfcore_write_note (bfd *abfd,
char *buf,
int *bufsiz,
const char *name,
int type,
const void *input,
int size)
{
Elf_External_Note *xnp;
size_t namesz;
size_t newspace;
char *dest;
namesz = 0;
if (name != NULL)
namesz = strlen (name) + 1;
newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
buf = realloc (buf, *bufsiz + newspace);
if (buf == NULL)
return buf;
dest = buf + *bufsiz;
*bufsiz += newspace;
xnp = (Elf_External_Note *) dest;
H_PUT_32 (abfd, namesz, xnp->namesz);
H_PUT_32 (abfd, size, xnp->descsz);
H_PUT_32 (abfd, type, xnp->type);
dest = xnp->name;
if (name != NULL)
{
memcpy (dest, name, namesz);
dest += namesz;
while (namesz & 3)
{
*dest++ = '\0';
++namesz;
}
}
memcpy (dest, input, size);
dest += size;
while (size & 3)
{
*dest++ = '\0';
++size;
}
return buf;
}
#if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
char *
elfcore_write_prpsinfo (bfd *abfd,
char *buf,
int *bufsiz,
const char *fname,
const char *psargs)
{
const char *note_name = "CORE";
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
if (bed->elf_backend_write_core_note != NULL)
{
char *ret;
ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
NT_PRPSINFO, fname, psargs);
if (ret != NULL)
return ret;
}
#if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
if (bed->s->elfclass == ELFCLASS32)
{
#if defined (HAVE_PSINFO32_T)
psinfo32_t data;
int note_type = NT_PSINFO;
#else
prpsinfo32_t data;
int note_type = NT_PRPSINFO;
#endif
memset (&data, 0, sizeof (data));
strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
return elfcore_write_note (abfd, buf, bufsiz,
note_name, note_type, &data, sizeof (data));
}
else
#endif
{
#if defined (HAVE_PSINFO_T)
psinfo_t data;
int note_type = NT_PSINFO;
#else
prpsinfo_t data;
int note_type = NT_PRPSINFO;
#endif
memset (&data, 0, sizeof (data));
strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
return elfcore_write_note (abfd, buf, bufsiz,
note_name, note_type, &data, sizeof (data));
}
}
#endif
#if defined (HAVE_PRSTATUS_T)
char *
elfcore_write_prstatus (bfd *abfd,
char *buf,
int *bufsiz,
long pid,
int cursig,
const void *gregs)
{
const char *note_name = "CORE";
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
if (bed->elf_backend_write_core_note != NULL)
{
char *ret;
ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
NT_PRSTATUS,
pid, cursig, gregs);
if (ret != NULL)
return ret;
}
#if defined (HAVE_PRSTATUS32_T)
if (bed->s->elfclass == ELFCLASS32)
{
prstatus32_t prstat;
memset (&prstat, 0, sizeof (prstat));
prstat.pr_pid = pid;
prstat.pr_cursig = cursig;
memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
return elfcore_write_note (abfd, buf, bufsiz, note_name,
NT_PRSTATUS, &prstat, sizeof (prstat));
}
else
#endif
{
prstatus_t prstat;
memset (&prstat, 0, sizeof (prstat));
prstat.pr_pid = pid;
prstat.pr_cursig = cursig;
memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
return elfcore_write_note (abfd, buf, bufsiz, note_name,
NT_PRSTATUS, &prstat, sizeof (prstat));
}
}
#endif
#if defined (HAVE_LWPSTATUS_T)
char *
elfcore_write_lwpstatus (bfd *abfd,
char *buf,
int *bufsiz,
long pid,
int cursig,
const void *gregs)
{
lwpstatus_t lwpstat;
const char *note_name = "CORE";
memset (&lwpstat, 0, sizeof (lwpstat));
lwpstat.pr_lwpid = pid >> 16;
lwpstat.pr_cursig = cursig;
#if defined (HAVE_LWPSTATUS_T_PR_REG)
memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
#elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
#if !defined(gregs)
memcpy (lwpstat.pr_context.uc_mcontext.gregs,
gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
#else
memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
#endif
#endif
return elfcore_write_note (abfd, buf, bufsiz, note_name,
NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
}
#endif
#if defined (HAVE_PSTATUS_T)
char *
elfcore_write_pstatus (bfd *abfd,
char *buf,
int *bufsiz,
long pid,
int cursig ATTRIBUTE_UNUSED,
const void *gregs ATTRIBUTE_UNUSED)
{
const char *note_name = "CORE";
#if defined (HAVE_PSTATUS32_T)
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
if (bed->s->elfclass == ELFCLASS32)
{
pstatus32_t pstat;
memset (&pstat, 0, sizeof (pstat));
pstat.pr_pid = pid & 0xffff;
buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
NT_PSTATUS, &pstat, sizeof (pstat));
return buf;
}
else
#endif
{
pstatus_t pstat;
memset (&pstat, 0, sizeof (pstat));
pstat.pr_pid = pid & 0xffff;
buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
NT_PSTATUS, &pstat, sizeof (pstat));
return buf;
}
}
#endif
char *
elfcore_write_prfpreg (bfd *abfd,
char *buf,
int *bufsiz,
const void *fpregs,
int size)
{
const char *note_name = "CORE";
return elfcore_write_note (abfd, buf, bufsiz,
note_name, NT_FPREGSET, fpregs, size);
}
char *
elfcore_write_prxfpreg (bfd *abfd,
char *buf,
int *bufsiz,
const void *xfpregs,
int size)
{
char *note_name = "LINUX";
return elfcore_write_note (abfd, buf, bufsiz,
note_name, NT_PRXFPREG, xfpregs, size);
}
char *
elfcore_write_ppc_vmx (bfd *abfd,
char *buf,
int *bufsiz,
const void *ppc_vmx,
int size)
{
char *note_name = "LINUX";
return elfcore_write_note (abfd, buf, bufsiz,
note_name, NT_PPC_VMX, ppc_vmx, size);
}
char *
elfcore_write_ppc_vsx (bfd *abfd,
char *buf,
int *bufsiz,
const void *ppc_vsx,
int size)
{
char *note_name = "LINUX";
return elfcore_write_note (abfd, buf, bufsiz,
note_name, NT_PPC_VSX, ppc_vsx, size);
}
char *
elfcore_write_register_note (bfd *abfd,
char *buf,
int *bufsiz,
const char *section,
const void *data,
int size)
{
if (strcmp (section, ".reg2") == 0)
return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
if (strcmp (section, ".reg-xfp") == 0)
return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
if (strcmp (section, ".reg-ppc-vmx") == 0)
return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
if (strcmp (section, ".reg-ppc-vsx") == 0)
return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
return NULL;
}
static bfd_boolean
elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
{
char *p;
p = buf;
while (p < buf + size)
{
Elf_External_Note *xnp = (Elf_External_Note *) p;
Elf_Internal_Note in;
if (offsetof (Elf_External_Note, name) > buf - p + size)
return FALSE;
in.type = H_GET_32 (abfd, xnp->type);
in.namesz = H_GET_32 (abfd, xnp->namesz);
in.namedata = xnp->name;
if (in.namesz > buf - in.namedata + size)
return FALSE;
in.descsz = H_GET_32 (abfd, xnp->descsz);
in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
in.descpos = offset + (in.descdata - buf);
if (in.descsz != 0
&& (in.descdata >= buf + size
|| in.descsz > buf - in.descdata + size))
return FALSE;
switch (bfd_get_format (abfd))
{
default:
return TRUE;
case bfd_core:
if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
{
if (! elfcore_grok_netbsd_note (abfd, &in))
return FALSE;
}
else if (CONST_STRNEQ (in.namedata, "QNX"))
{
if (! elfcore_grok_nto_note (abfd, &in))
return FALSE;
}
else if (CONST_STRNEQ (in.namedata, "SPU/"))
{
if (! elfcore_grok_spu_note (abfd, &in))
return FALSE;
}
else
{
if (! elfcore_grok_note (abfd, &in))
return FALSE;
}
break;
case bfd_object:
if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
{
if (! elfobj_grok_gnu_note (abfd, &in))
return FALSE;
}
break;
}
p = in.descdata + BFD_ALIGN (in.descsz, 4);
}
return TRUE;
}
static bfd_boolean
elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
{
char *buf;
if (size <= 0)
return TRUE;
if (bfd_seek (abfd, offset, SEEK_SET) != 0)
return FALSE;
buf = bfd_malloc (size);
if (buf == NULL)
return FALSE;
if (bfd_bread (buf, size, abfd) != size
|| !elf_parse_notes (abfd, buf, size, offset))
{
free (buf);
return FALSE;
}
free (buf);
return TRUE;
}
copy of ABFD's program header table entries. Return -1 if an error
occurs; bfd_get_error will return an appropriate code. */
long
bfd_get_elf_phdr_upper_bound (bfd *abfd)
{
if (abfd->xvec->flavour != bfd_target_elf_flavour)
{
bfd_set_error (bfd_error_wrong_format);
return -1;
}
return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
}
will be stored as an array of Elf_Internal_Phdr structures, as
defined in include/elf/internal.h. To find out how large the
buffer needs to be, call bfd_get_elf_phdr_upper_bound.
Return the number of program header table entries read, or -1 if an
error occurs; bfd_get_error will return an appropriate code. */
int
bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
{
int num_phdrs;
if (abfd->xvec->flavour != bfd_target_elf_flavour)
{
bfd_set_error (bfd_error_wrong_format);
return -1;
}
num_phdrs = elf_elfheader (abfd)->e_phnum;
memcpy (phdrs, elf_tdata (abfd)->phdr,
num_phdrs * sizeof (Elf_Internal_Phdr));
return num_phdrs;
}
enum elf_reloc_type_class
_bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
{
return reloc_class_normal;
}
relocation against a local symbol. */
bfd_vma
_bfd_elf_rela_local_sym (bfd *abfd,
Elf_Internal_Sym *sym,
asection **psec,
Elf_Internal_Rela *rel)
{
asection *sec = *psec;
bfd_vma relocation;
relocation = (sec->output_section->vma
+ sec->output_offset
+ sym->st_value);
if ((sec->flags & SEC_MERGE)
&& ELF_ST_TYPE (sym->st_info) == STT_SECTION
&& sec->sec_info_type == ELF_INFO_TYPE_MERGE)
{
rel->r_addend =
_bfd_merged_section_offset (abfd, psec,
elf_section_data (sec)->sec_info,
sym->st_value + rel->r_addend);
if (sec != *psec)
{
marked with SEC_EXCLUDE, it means that the original
SEC_MERGE section has been completely subsumed in some
other SEC_MERGE section. In this case, we need to leave
some info around for --emit-relocs. */
if ((sec->flags & SEC_EXCLUDE) != 0)
sec->kept_section = *psec;
sec = *psec;
}
rel->r_addend -= relocation;
rel->r_addend += sec->output_section->vma + sec->output_offset;
}
return relocation;
}
bfd_vma
_bfd_elf_rel_local_sym (bfd *abfd,
Elf_Internal_Sym *sym,
asection **psec,
bfd_vma addend)
{
asection *sec = *psec;
if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
return sym->st_value + addend;
return _bfd_merged_section_offset (abfd, psec,
elf_section_data (sec)->sec_info,
sym->st_value + addend);
}
bfd_vma
_bfd_elf_section_offset (bfd *abfd,
struct bfd_link_info *info,
asection *sec,
bfd_vma offset)
{
switch (sec->sec_info_type)
{
case ELF_INFO_TYPE_STABS:
return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
offset);
case ELF_INFO_TYPE_EH_FRAME:
return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
default:
return offset;
}
}
reconstruct an ELF file by reading the segments out of remote memory
based on the ELF file header at EHDR_VMA and the ELF program headers it
points to. If not null, *LOADBASEP is filled in with the difference
between the VMAs from which the segments were read, and the VMAs the
file headers (and hence BFD's idea of each section's VMA) put them at.
The function TARGET_READ_MEMORY is called to copy LEN bytes from the
remote memory at target address VMA into the local buffer at MYADDR; it
should return zero on success or an `errno' code on failure. TEMPL must
be a BFD for an ELF target with the word size and byte order found in
the remote memory. */
bfd *
bfd_elf_bfd_from_remote_memory
(bfd *templ,
bfd_vma ehdr_vma,
bfd_vma *loadbasep,
int (*target_read_memory) (bfd_vma, bfd_byte *, int))
{
return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
(templ, ehdr_vma, loadbasep, target_read_memory);
}
long
_bfd_elf_get_synthetic_symtab (bfd *abfd,
long symcount ATTRIBUTE_UNUSED,
asymbol **syms ATTRIBUTE_UNUSED,
long dynsymcount,
asymbol **dynsyms,
asymbol **ret)
{
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
asection *relplt;
asymbol *s;
const char *relplt_name;
bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
arelent *p;
long count, i, n;
size_t size;
Elf_Internal_Shdr *hdr;
char *names;
asection *plt;
*ret = NULL;
if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
return 0;
if (dynsymcount <= 0)
return 0;
if (!bed->plt_sym_val)
return 0;
relplt_name = bed->relplt_name;
if (relplt_name == NULL)
relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
relplt = bfd_get_section_by_name (abfd, relplt_name);
if (relplt == NULL)
return 0;
hdr = &elf_section_data (relplt)->this_hdr;
if (hdr->sh_link != elf_dynsymtab (abfd)
|| (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
return 0;
plt = bfd_get_section_by_name (abfd, ".plt");
if (plt == NULL)
return 0;
slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
return -1;
count = relplt->size / hdr->sh_entsize;
size = count * sizeof (asymbol);
p = relplt->relocation;
for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
s = *ret = bfd_malloc (size);
if (s == NULL)
return -1;
names = (char *) (s + count);
p = relplt->relocation;
n = 0;
for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
{
size_t len;
bfd_vma addr;
addr = bed->plt_sym_val (i, plt, p);
if (addr == (bfd_vma) -1)
continue;
*s = **p->sym_ptr_ptr;
we are defining a symbol, ensure one of them is set. */
if ((s->flags & BSF_LOCAL) == 0)
s->flags |= BSF_GLOBAL;
s->flags |= BSF_SYNTHETIC;
s->section = plt;
s->value = addr - plt->vma;
s->name = names;
s->udata.p = NULL;
len = strlen ((*p->sym_ptr_ptr)->name);
memcpy (names, (*p->sym_ptr_ptr)->name, len);
names += len;
memcpy (names, "@plt", sizeof ("@plt"));
names += sizeof ("@plt");
++s, ++n;
}
return n;
}
asection _bfd_elf_large_com_section
= BFD_FAKE_SECTION (_bfd_elf_large_com_section,
SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
void
_bfd_elf_set_osabi (bfd * abfd,
struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
{
Elf_Internal_Ehdr * i_ehdrp;
i_ehdrp = elf_elfheader (abfd);
i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
}
This is the default version of this function, which is sufficient for
most targets. It returns true if TYPE is STT_FUNC. */
bfd_boolean
_bfd_elf_is_function_type (unsigned int type)
{
return (type == STT_FUNC);
}