/* * Copyright 2025, Haiku, Inc. All rights reserved. * Copyright 2007-2013, Ingo Weinhold, ingo_weinhold@gmx.de. * Copyright 2003-2010, Axel Dörfler, axeld@pinc-software.de. * Distributed under the terms of the MIT License. */ #include "fifo.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include //#define TRACE_FIFO #ifdef TRACE_FIFO # define TRACE(x...) dprintf(x) #else # define TRACE(x...) #endif namespace fifo { struct file_cookie; class Inode; static object_cache* sRingBufferCache; class RingBuffer { public: RingBuffer(); ~RingBuffer(); status_t CreateBuffer(); void DeleteBuffer(); ssize_t Write(const void* buffer, size_t length, size_t minimum, bool isUser, bool* wasEmpty); ssize_t Read(void* buffer, size_t length, bool isUser, bool* wasFull); ssize_t DebugPeek(size_t offset, uint8* out) const; size_t Readable() const; size_t Writable() const; private: uint8* fBuffer; uint32 fBufferSize; mutex fWriteLock; uint32 fWriteHead; uint32 fWriteAvailable; uint32 fReadHead; }; class ReadRequest : public DoublyLinkedListLinkImpl { public: ReadRequest(file_cookie* cookie) : fThread(thread_get_current_thread()), fCookie(cookie), fNotified(true) { B_INITIALIZE_SPINLOCK(&fLock); } bool IsNotified() { InterruptsSpinLocker _(fLock); return fNotified; } void SetNotified(bool notified) { InterruptsSpinLocker _(fLock); fNotified = notified; } void Notify(status_t status = B_OK) { InterruptsSpinLocker spinLocker(fLock); TRACE("ReadRequest %p::Notify(), fNotified %d\n", this, fNotified); if (!fNotified) { fNotified = true; thread_unblock(fThread, status); } } Thread* GetThread() const { return fThread; } file_cookie* Cookie() const { return fCookie; } private: spinlock fLock; Thread* fThread; file_cookie* fCookie; bool fNotified; }; class WriteRequest : public DoublyLinkedListLinkImpl { public: WriteRequest(Thread* thread, size_t minimalWriteCount) : fThread(thread), fMinimalWriteCount(minimalWriteCount) { } Thread* GetThread() const { return fThread; } size_t MinimalWriteCount() const { return fMinimalWriteCount; } private: Thread* fThread; size_t fMinimalWriteCount; }; typedef DoublyLinkedList ReadRequestList; typedef DoublyLinkedList WriteRequestList; class Inode { public: Inode(); ~Inode(); status_t InitCheck(); bool IsActive() const { return fActive; } timespec CreationTime() const { return fCreationTime; } void SetCreationTime(timespec creationTime) { fCreationTime = creationTime; } timespec ModificationTime() const { return fModificationTime; } void SetModificationTime(timespec modificationTime) { fModificationTime = modificationTime; } rw_lock* ChangeLock() { return &fChangeLock; } status_t Write(const void* data, size_t* _length, bool nonBlocking, bool isUser); status_t ReadDataFromBuffer(void* data, size_t* _length, bool nonBlocking, bool isUser, ReadRequest& request); size_t BytesAvailable() const { return fBuffer.Readable(); } size_t BytesWritable() const { return fBuffer.Writable(); } void AddReadRequest(ReadRequest& request); void RemoveReadRequest(ReadRequest& request); status_t WaitForReadRequest(ReadRequest& request); void NotifyBytesRead(bool wasFull, size_t bytes); void NotifyReadDone(); void NotifyBytesWritten(bool wasEmpty); void NotifyEndClosed(bool writer); status_t Open(int openMode); void Close(file_cookie* cookie); int32 ReaderCount() const { return fReaderCount; } int32 WriterCount() const { return fWriterCount; } status_t Select(uint8 event, selectsync* sync, int openMode); status_t Deselect(uint8 event, selectsync* sync, int openMode); void Dump(bool dumpData) const; static int Dump(int argc, char** argv); private: timespec fCreationTime; timespec fModificationTime; RingBuffer fBuffer; spinlock fReadRequestsLock; spinlock fWriteRequestsLock; ReadRequestList fReadRequests; WriteRequestList fWriteRequests; rw_lock fChangeLock; ConditionVariable fActiveCondition; int32 fReaderCount; int32 fWriterCount; bool fActive; select_sync_pool* fReadSelectSyncPool; select_sync_pool* fWriteSelectSyncPool; }; class FIFOInode : public Inode { public: FIFOInode(fs_vnode* vnode) : Inode(), fSuperVnode(*vnode) { } fs_vnode* SuperVnode() { return &fSuperVnode; } private: fs_vnode fSuperVnode; }; struct file_cookie { int open_mode; // guarded by Inode::fChangeLock void SetNonBlocking(bool nonBlocking) { if (nonBlocking) open_mode |= O_NONBLOCK; else open_mode &= ~(int)O_NONBLOCK; } }; // #pragma mark - RingBuffer::RingBuffer() : fBuffer(NULL) { mutex_init(&fWriteLock, "fifo ring write"); } RingBuffer::~RingBuffer() { DeleteBuffer(); mutex_destroy(&fWriteLock); } status_t RingBuffer::CreateBuffer() { if (fBuffer != NULL) return B_OK; fBuffer = (uint8*)object_cache_alloc(sRingBufferCache, 0); if (fBuffer == NULL) return B_NO_MEMORY; fWriteAvailable = fBufferSize = VFS_FIFO_BUFFER_CAPACITY; fReadHead = fWriteHead = 0; return B_OK; } void RingBuffer::DeleteBuffer() { if (fBuffer != NULL) { object_cache_free(sRingBufferCache, fBuffer, 0); fBuffer = NULL; } } inline ssize_t RingBuffer::Write(const void* data, size_t length, size_t minimum, bool isUser, bool* wasEmpty) { if (fBuffer == NULL) return B_NO_MEMORY; if (isUser && !IS_USER_ADDRESS(data)) return B_BAD_ADDRESS; MutexLocker _(fWriteLock); uint32 writeAvailable = atomic_get((int32*)&fWriteAvailable); if (writeAvailable == 0 || writeAvailable < minimum) return 0; if (length > writeAvailable) length = writeAvailable; uint32 position = fWriteHead; if ((position + length) <= fBufferSize) { // simple copy if (isUser) { if (user_memcpy(fBuffer + position, data, length) != B_OK) return B_BAD_ADDRESS; } else memcpy(fBuffer + position, data, length); } else { // need to copy both ends uint32 upper = fBufferSize - position; uint32 lower = length - upper; if (isUser) { if (user_memcpy(fBuffer + position, data, upper) != B_OK || user_memcpy(fBuffer, (uint8*)data + upper, lower) != B_OK) return B_BAD_ADDRESS; } else { memcpy(fBuffer + position, data, upper); memcpy(fBuffer, (uint8*)data + upper, lower); } } atomic_set((int32*)&fWriteHead, (fWriteHead + length) % fBufferSize); uint32 previouslyAvailable = atomic_add((int32*)&fWriteAvailable, -length); if (wasEmpty != NULL) *wasEmpty = (previouslyAvailable == fBufferSize); return length; } inline ssize_t RingBuffer::Read(void* data, size_t length, bool isUser, bool* wasFull) { if (fBuffer == NULL) return B_NO_MEMORY; if (isUser && !IS_USER_ADDRESS(data)) return B_BAD_ADDRESS; uint32 readHead = 0; uint32 readable = 0; for (int retries = 3; retries != 0; retries--) { // atomic ordering shouldn't matter, so long as // the add() at the end comes after the test_and_set() uint32 readEnd = atomic_get((int32*)&fWriteHead); readHead = atomic_get((int32*)&fReadHead); if (readEnd < readHead || (readEnd == readHead && fWriteAvailable == 0)) readEnd += fBufferSize; readable = readEnd - readHead; if (readable == 0) break; if (readable > length) readable = length; // move the read head forwards if ((uint32)atomic_test_and_set((int32*)&fReadHead, (readHead + length) % fBufferSize, readHead) == readHead) break; readable = 0; } if (readable == 0) return 0; length = readable; status_t status = B_OK; if ((readHead + length) <= fBufferSize) { // simple copy if (isUser) { if (user_memcpy(data, fBuffer + readHead, length) != B_OK) status = B_BAD_ADDRESS; } else memcpy(data, fBuffer + readHead, length); } else { // need to copy both ends size_t upper = fBufferSize - readHead; size_t lower = length - upper; if (isUser) { if (user_memcpy(data, fBuffer + readHead, upper) != B_OK || user_memcpy((uint8*)data + upper, fBuffer, lower) != B_OK) status = B_BAD_ADDRESS; } else { memcpy(data, fBuffer + readHead, upper); memcpy((uint8*)data + upper, fBuffer, lower); } } // release the buffer space uint32 previouslyAvailable = atomic_add((int32*)&fWriteAvailable, length); if (status != B_OK) return status; if (wasFull != NULL) *wasFull = (previouslyAvailable == 0); return length; } inline ssize_t RingBuffer::DebugPeek(size_t offset, uint8* out) const { if (fBuffer == NULL) return B_NO_MEMORY; uint32 readEnd = fWriteHead; if (readEnd < fReadHead || (readEnd == fReadHead && fWriteAvailable == 0)) readEnd += fBufferSize; if ((fReadHead + offset) >= readEnd) return 0; *out = fBuffer[(fReadHead + offset) % fBufferSize]; return 1; } inline size_t RingBuffer::Readable() const { // This is slightly inaccurate, as any currently-in-progress reads // will not be accounted for here. return fBufferSize - atomic_get((int32*)&fWriteAvailable); } inline size_t RingBuffer::Writable() const { return atomic_get((int32*)&fWriteAvailable); } // #pragma mark - Inode::Inode() : fReadRequestsLock(B_SPINLOCK_INITIALIZER), fWriteRequestsLock(B_SPINLOCK_INITIALIZER), fReadRequests(), fWriteRequests(), fReaderCount(0), fWriterCount(0), fActive(false), fReadSelectSyncPool(NULL), fWriteSelectSyncPool(NULL) { rw_lock_init(&fChangeLock, "fifo change"); fActiveCondition.Init(this, "fifo"); bigtime_t time = real_time_clock(); fModificationTime.tv_sec = time / 1000000; fModificationTime.tv_nsec = (time % 1000000) * 1000; fCreationTime = fModificationTime; } Inode::~Inode() { rw_lock_destroy(&fChangeLock); } status_t Inode::InitCheck() { return B_OK; } /*! Writes the specified data bytes to the inode's ring buffer. The request lock must be held when calling this method. Notifies readers if necessary, so that blocking readers will get started. Returns B_OK for success, B_BAD_ADDRESS if copying from the buffer failed, and various semaphore errors (like B_WOULD_BLOCK in non-blocking mode). If the returned length is > 0, the returned error code can be ignored. */ status_t Inode::Write(const void* _data, size_t* _length, bool nonBlocking, bool isUser) { const uint8* data = (const uint8*)_data; size_t dataSize = *_length; size_t& written = *_length; written = 0; TRACE("Inode %p::Write(data = %p, bytes = %zu)\n", this, data, dataSize); ReadLocker changeLocker(ChangeLock()); // A request up to VFS_FIFO_ATOMIC_WRITE_SIZE bytes shall not be // interleaved with other writer's data. size_t minToWrite = 1; if (dataSize <= VFS_FIFO_ATOMIC_WRITE_SIZE) minToWrite = dataSize; while (dataSize > 0) { // Wait until enough space in the buffer is available. while (!fActive || (fBuffer.Writable() < minToWrite && fReaderCount > 0)) { if (nonBlocking) return B_WOULD_BLOCK; ConditionVariableEntry entry; fActiveCondition.Add(&entry); InterruptsSpinLocker writeRequestsLocker(fWriteRequestsLock); WriteRequest request(thread_get_current_thread(), minToWrite); fWriteRequests.Add(&request); writeRequestsLocker.Unlock(); TRACE("Inode %p::%s(): wait for writable, request %p\n", this, __FUNCTION__, &request); status_t status = B_OK; // the situation might have changed, recheck before waiting if (!fActive || (fBuffer.Writable() < minToWrite && fReaderCount > 0)) { changeLocker.Unlock(); status = entry.Wait(B_CAN_INTERRUPT); changeLocker.Lock(); } writeRequestsLocker.Lock(); fWriteRequests.Remove(&request); writeRequestsLocker.Unlock(); if (status != B_OK) return status; } // write only as long as there are readers left if (fActive && fReaderCount == 0) { if (written == 0) send_signal(find_thread(NULL), SIGPIPE); return EPIPE; } // write as much as we can size_t toWrite = (fActive ? fBuffer.Writable() : 0); if (toWrite > dataSize) toWrite = dataSize; if (toWrite == 0) continue; bool wasEmpty = false; ssize_t bytesWritten = fBuffer.Write(data, toWrite, minToWrite, isUser, &wasEmpty); if (bytesWritten < 0) return bytesWritten; if (bytesWritten == 0) continue; data += bytesWritten; dataSize -= bytesWritten; written += bytesWritten; NotifyBytesWritten(wasEmpty); } return B_OK; } status_t Inode::ReadDataFromBuffer(void* data, size_t* _length, bool nonBlocking, bool isUser, ReadRequest& request) { size_t dataSize = *_length; *_length = 0; // wait until our request is first in queue status_t error; if (fReadRequests.Head() != &request) { if (nonBlocking) return B_WOULD_BLOCK; TRACE("Inode %p::%s(): wait for request %p to become the first " "request.\n", this, __FUNCTION__, &request); error = WaitForReadRequest(request); if (error != B_OK) return error; } while (dataSize > 0) { // wait until data are available while (fBuffer.Readable() == 0) { if (nonBlocking) return B_WOULD_BLOCK; if (fActive && fWriterCount == 0) return B_OK; TRACE("Inode %p::%s(): wait for data, request %p\n", this, __FUNCTION__, &request); request.SetNotified(false); // the situation might have changed, recheck before waiting if (fBuffer.Readable() != 0) { request.SetNotified(true); break; } error = WaitForReadRequest(request); if (error != B_OK) return error; } // read as much as we can size_t toRead = fBuffer.Readable(); if (toRead > dataSize) toRead = dataSize; bool wasFull = false; ssize_t bytesRead = fBuffer.Read(data, toRead, isUser, &wasFull); if (bytesRead < 0) return bytesRead; if (bytesRead == 0) continue; NotifyBytesRead(wasFull, bytesRead); *_length = bytesRead; break; } return B_OK; } void Inode::AddReadRequest(ReadRequest& request) { InterruptsSpinLocker _(fReadRequestsLock); fReadRequests.Add(&request); } void Inode::RemoveReadRequest(ReadRequest& request) { InterruptsSpinLocker _(fReadRequestsLock); fReadRequests.Remove(&request); } status_t Inode::WaitForReadRequest(ReadRequest& request) { // add the entry to wait on thread_prepare_to_block(thread_get_current_thread(), B_CAN_INTERRUPT, THREAD_BLOCK_TYPE_OTHER, "fifo read request"); if (request.IsNotified()) return B_OK; // wait rw_lock_read_unlock(&fChangeLock); status_t status = thread_block(); if (status != B_OK) { // Before going to lock again, we need to make sure no one tries to // unblock us. Otherwise that would screw with mutex_lock(). request.SetNotified(true); } rw_lock_read_lock(&fChangeLock); return status; } void Inode::NotifyBytesRead(bool wasFull, size_t bytes) { // notify writer, if something can be written now size_t writable = fBuffer.Writable(); if (bytes > 0) { // notify select()ors only, if nothing was writable before if (wasFull) { if (fWriteSelectSyncPool != NULL) notify_select_event_pool(fWriteSelectSyncPool, B_SELECT_WRITE); } // If any of the waiting writers has a minimal write count that has // now become satisfied, we notify all of them (condition variables // don't support doing that selectively). InterruptsSpinLocker _(fWriteRequestsLock); WriteRequest* request; WriteRequestList::Iterator iterator = fWriteRequests.GetIterator(); while ((request = iterator.Next()) != NULL) { size_t minWriteCount = request->MinimalWriteCount(); if (minWriteCount > 0 && minWriteCount <= writable && minWriteCount > writable - bytes) { fActiveCondition.NotifyAll(); break; } } } } void Inode::NotifyReadDone() { // notify next reader, if there's still something to be read if (fBuffer.Readable() > 0) { InterruptsSpinLocker _(fReadRequestsLock); if (ReadRequest* request = fReadRequests.First()) request->Notify(); } } void Inode::NotifyBytesWritten(bool wasEmpty) { // notify reader, if something can be read now if (wasEmpty && fBuffer.Readable() > 0) { if (fReadSelectSyncPool != NULL) notify_select_event_pool(fReadSelectSyncPool, B_SELECT_READ); InterruptsSpinLocker _(fReadRequestsLock); if (ReadRequest* request = fReadRequests.First()) request->Notify(); } } void Inode::NotifyEndClosed(bool writer) { TRACE("Inode %p::%s(%s)\n", this, __FUNCTION__, writer ? "writer" : "reader"); if (writer) { // Our last writer has been closed; if the pipe // contains no data, unlock all waiting readers TRACE(" buffer readable: %zu\n", fBuffer.Readable()); if (fBuffer.Readable() == 0) { InterruptsSpinLocker readRequestsLocker(fReadRequestsLock); ReadRequestList::Iterator iterator = fReadRequests.GetIterator(); while (ReadRequest* request = iterator.Next()) request->Notify(); readRequestsLocker.Unlock(); if (fReadSelectSyncPool != NULL) notify_select_event_pool(fReadSelectSyncPool, B_SELECT_DISCONNECTED); } } else { // Last reader is gone. Wake up all writers. fActiveCondition.NotifyAll(); if (fWriteSelectSyncPool != NULL) notify_select_event_pool(fWriteSelectSyncPool, B_SELECT_ERROR); } } status_t Inode::Open(int openMode) { WriteLocker locker(ChangeLock()); if ((openMode & O_ACCMODE) == O_WRONLY || (openMode & O_ACCMODE) == O_RDWR) fWriterCount++; if ((openMode & O_ACCMODE) == O_RDONLY || (openMode & O_ACCMODE) == O_RDWR) fReaderCount++; bool shouldWait = false; if ((openMode & O_ACCMODE) == O_WRONLY && fReaderCount == 0) { if ((openMode & O_NONBLOCK) != 0) return ENXIO; shouldWait = true; } if ((openMode & O_ACCMODE) == O_RDONLY && fWriterCount == 0 && (openMode & O_NONBLOCK) == 0) { shouldWait = true; } if (shouldWait) { // prepare for waiting for the condition variable. ConditionVariableEntry waitEntry; fActiveCondition.Add(&waitEntry); locker.Unlock(); status_t status = waitEntry.Wait(B_CAN_INTERRUPT); if (status != B_OK) return status; locker.Lock(); } if (fReaderCount > 0 && fWriterCount > 0) { TRACE("Inode %p::Open(): fifo becomes active\n", this); fBuffer.CreateBuffer(); fActive = true; // notify all waiting writers that they can start if (fWriteSelectSyncPool != NULL) notify_select_event_pool(fWriteSelectSyncPool, B_SELECT_WRITE); fActiveCondition.NotifyAll(); } return B_OK; } void Inode::Close(file_cookie* cookie) { WriteLocker locker(ChangeLock()); int openMode = cookie->open_mode; TRACE("Inode %p::Close(openMode = %" B_PRId32 ")\n", this, openMode); // Notify all currently reading file descriptors ReadRequestList::Iterator iterator = fReadRequests.GetIterator(); while (ReadRequest* request = iterator.Next()) { if (request->Cookie() == cookie) request->Notify(B_FILE_ERROR); } if ((openMode & O_ACCMODE) == O_WRONLY || (openMode & O_ACCMODE) == O_RDWR) { if (--fWriterCount == 0) NotifyEndClosed(true); } if ((openMode & O_ACCMODE) == O_RDONLY || (openMode & O_ACCMODE) == O_RDWR) { if (--fReaderCount == 0) NotifyEndClosed(false); } if (fWriterCount == 0) { // Notify any still reading writers to stop // TODO: This only works reliable if there is only one writer - we could // do the same thing done for the read requests. fActiveCondition.NotifyAll(B_FILE_ERROR); } if (fReaderCount == 0 && fWriterCount == 0) { fActive = false; fBuffer.DeleteBuffer(); } } status_t Inode::Select(uint8 event, selectsync* sync, int openMode) { WriteLocker locker(ChangeLock()); bool writer = true; select_sync_pool** pool; // B_SELECT_READ can happen on write-only opened fds, so restrain B_SELECT_READ to O_RDWR if ((event == B_SELECT_READ && (openMode & O_RWMASK) == O_RDWR) || (openMode & O_RWMASK) == O_RDONLY) { pool = &fReadSelectSyncPool; writer = false; } else if ((openMode & O_RWMASK) == O_RDWR || (openMode & O_RWMASK) == O_WRONLY) { pool = &fWriteSelectSyncPool; } else return B_NOT_ALLOWED; if (add_select_sync_pool_entry(pool, sync, event) != B_OK) return B_ERROR; // signal right away, if the condition holds already if (writer) { if ((event == B_SELECT_WRITE && fBuffer.Writable() > 0) || (event == B_SELECT_ERROR && fReaderCount == 0)) { return notify_select_event(sync, event); } } else { if ((event == B_SELECT_READ && fBuffer.Readable() > 0) || (event == B_SELECT_DISCONNECTED && fWriterCount == 0)) { return notify_select_event(sync, event); } } return B_OK; } status_t Inode::Deselect(uint8 event, selectsync* sync, int openMode) { WriteLocker locker(ChangeLock()); select_sync_pool** pool; if ((event == B_SELECT_READ && (openMode & O_RWMASK) == O_RDWR) || (openMode & O_RWMASK) == O_RDONLY) { pool = &fReadSelectSyncPool; } else if ((openMode & O_RWMASK) == O_RDWR || (openMode & O_RWMASK) == O_WRONLY) { pool = &fWriteSelectSyncPool; } else return B_NOT_ALLOWED; remove_select_sync_pool_entry(pool, sync, event); return B_OK; } void Inode::Dump(bool dumpData) const { kprintf("FIFO %p\n", this); kprintf(" active: %s\n", fActive ? "true" : "false"); kprintf(" readers: %" B_PRId32 "\n", fReaderCount); kprintf(" writers: %" B_PRId32 "\n", fWriterCount); if (!fReadRequests.IsEmpty()) { kprintf(" pending readers:\n"); for (ReadRequestList::ConstIterator it = fReadRequests.GetIterator(); ReadRequest* request = it.Next();) { kprintf(" %p: thread %" B_PRId32 ", cookie: %p\n", request, request->GetThread()->id, request->Cookie()); } } if (!fWriteRequests.IsEmpty()) { kprintf(" pending writers:\n"); for (WriteRequestList::ConstIterator it = fWriteRequests.GetIterator(); WriteRequest* request = it.Next();) { kprintf(" %p: thread %" B_PRId32 ", min count: %zu\n", request, request->GetThread()->id, request->MinimalWriteCount()); } } kprintf(" %zu bytes buffered\n", fBuffer.Readable()); if (dumpData && fBuffer.Readable() > 0) { struct DataProvider : BKernel::HexDumpDataProvider { DataProvider(const RingBuffer& buffer) : fBuffer(buffer), fOffset(0) { } virtual bool HasMoreData() const { return fOffset < fBuffer.Readable(); } virtual uint8 NextByte() { uint8 byte = '\0'; if (fOffset < fBuffer.Readable()) { fBuffer.DebugPeek(fOffset, &byte); fOffset++; } return byte; } virtual bool GetAddressString(char* buffer, size_t bufferSize) const { snprintf(buffer, bufferSize, " %4zx", fOffset); return true; } private: const RingBuffer& fBuffer; size_t fOffset; }; DataProvider dataProvider(fBuffer); BKernel::print_hex_dump(dataProvider, fBuffer.Readable()); } } /*static*/ int Inode::Dump(int argc, char** argv) { bool dumpData = false; int argi = 1; if (argi < argc && strcmp(argv[argi], "-d") == 0) { dumpData = true; argi++; } if (argi >= argc || argi + 2 < argc) { print_debugger_command_usage(argv[0]); return 0; } Inode* node = (Inode*)parse_expression(argv[argi]); if (IS_USER_ADDRESS(node)) { kprintf("invalid FIFO address\n"); return 0; } node->Dump(dumpData); return 0; } // #pragma mark - vnode API static status_t fifo_put_vnode(fs_volume* volume, fs_vnode* vnode, bool reenter) { FIFOInode* fifo = (FIFOInode*)vnode->private_node; fs_vnode* superVnode = fifo->SuperVnode(); status_t error = B_OK; if (superVnode->ops->put_vnode != NULL) error = superVnode->ops->put_vnode(volume, superVnode, reenter); delete fifo; return error; } static status_t fifo_remove_vnode(fs_volume* volume, fs_vnode* vnode, bool reenter) { FIFOInode* fifo = (FIFOInode*)vnode->private_node; fs_vnode* superVnode = fifo->SuperVnode(); status_t error = B_OK; if (superVnode->ops->remove_vnode != NULL) error = superVnode->ops->remove_vnode(volume, superVnode, reenter); delete fifo; return error; } static status_t fifo_open(fs_volume* _volume, fs_vnode* _node, int openMode, void** _cookie) { Inode* inode = (Inode*)_node->private_node; TRACE("fifo_open(): node = %p, openMode = %d\n", inode, openMode); file_cookie* cookie = (file_cookie*)malloc(sizeof(file_cookie)); if (cookie == NULL) return B_NO_MEMORY; TRACE(" open cookie = %p\n", cookie); cookie->open_mode = openMode; status_t status = inode->Open(openMode); if (status != B_OK) { free(cookie); return status; } *_cookie = (void*)cookie; return B_OK; } static status_t fifo_close(fs_volume* volume, fs_vnode* vnode, void* _cookie) { file_cookie* cookie = (file_cookie*)_cookie; FIFOInode* fifo = (FIFOInode*)vnode->private_node; fifo->Close(cookie); return B_OK; } static status_t fifo_free_cookie(fs_volume* _volume, fs_vnode* _node, void* _cookie) { file_cookie* cookie = (file_cookie*)_cookie; TRACE("fifo_freecookie: entry vnode %p, cookie %p\n", _node, _cookie); free(cookie); return B_OK; } static status_t fifo_fsync(fs_volume* _volume, fs_vnode* _node, bool dataOnly) { return B_BAD_VALUE; } static status_t fifo_read(fs_volume* _volume, fs_vnode* _node, void* _cookie, off_t /*pos*/, void* buffer, size_t* _length) { file_cookie* cookie = (file_cookie*)_cookie; Inode* inode = (Inode*)_node->private_node; TRACE("fifo_read(vnode = %p, cookie = %p, length = %lu, mode = %d)\n", inode, cookie, *_length, cookie->open_mode); ReadLocker _(inode->ChangeLock()); if (inode->IsActive() && inode->WriterCount() == 0) { // as long there is no writer, and the pipe is empty, // we always just return 0 to indicate end of file if (inode->BytesAvailable() == 0) { *_length = 0; return B_OK; } } // issue read request ReadRequest request(cookie); inode->AddReadRequest(request); TRACE(" issue read request %p\n", &request); size_t length = *_length; status_t status = inode->ReadDataFromBuffer(buffer, &length, (cookie->open_mode & O_NONBLOCK) != 0, is_called_via_syscall(), request); inode->RemoveReadRequest(request); inode->NotifyReadDone(); TRACE(" done reading request %p, length %zu\n", &request, length); if (length > 0) status = B_OK; *_length = length; return status; } static status_t fifo_write(fs_volume* _volume, fs_vnode* _node, void* _cookie, off_t /*pos*/, const void* buffer, size_t* _length) { file_cookie* cookie = (file_cookie*)_cookie; Inode* inode = (Inode*)_node->private_node; TRACE("fifo_write(vnode = %p, cookie = %p, length = %lu)\n", _node, cookie, *_length); size_t length = *_length; if (length == 0) return B_OK; // copy data into ring buffer status_t status = inode->Write(buffer, &length, (cookie->open_mode & O_NONBLOCK) != 0, is_called_via_syscall()); if (length > 0) status = B_OK; *_length = length; return status; } static status_t fifo_read_stat(fs_volume* volume, fs_vnode* vnode, struct ::stat* st) { FIFOInode* fifo = (FIFOInode*)vnode->private_node; fs_vnode* superVnode = fifo->SuperVnode(); if (superVnode->ops->read_stat == NULL) return B_BAD_VALUE; status_t error = superVnode->ops->read_stat(volume, superVnode, st); if (error != B_OK) return error; ReadLocker _(fifo->ChangeLock()); st->st_size = fifo->BytesAvailable(); st->st_blksize = 4096; // TODO: Just pass the changes to our modification time on to the super node. st->st_atim.tv_sec = time(NULL); st->st_atim.tv_nsec = 0; st->st_mtim = st->st_ctim = fifo->ModificationTime(); return B_OK; } static status_t fifo_write_stat(fs_volume* volume, fs_vnode* vnode, const struct ::stat* st, uint32 statMask) { // we cannot change the size of anything if ((statMask & B_STAT_SIZE) != 0) return B_BAD_VALUE; FIFOInode* fifo = (FIFOInode*)vnode->private_node; fs_vnode* superVnode = fifo->SuperVnode(); if (superVnode->ops->write_stat == NULL) return B_BAD_VALUE; status_t error = superVnode->ops->write_stat(volume, superVnode, st, statMask); if (error != B_OK) return error; return B_OK; } static status_t fifo_ioctl(fs_volume* _volume, fs_vnode* _node, void* _cookie, uint32 op, void* buffer, size_t length) { file_cookie* cookie = (file_cookie*)_cookie; Inode* inode = (Inode*)_node->private_node; TRACE("fifo_ioctl: vnode %p, cookie %p, op %" B_PRId32 ", buf %p, len %ld\n", _node, _cookie, op, buffer, length); switch (op) { case FIONREAD: { if (buffer == NULL) return B_BAD_VALUE; int available = (int)inode->BytesAvailable(); if (is_called_via_syscall()) { if (!IS_USER_ADDRESS(buffer) || user_memcpy(buffer, &available, sizeof(available)) != B_OK) { return B_BAD_ADDRESS; } } else *(int*)buffer = available; return B_OK; } case B_SET_BLOCKING_IO: case B_SET_NONBLOCKING_IO: { WriteLocker locker(inode->ChangeLock()); cookie->SetNonBlocking(op == B_SET_NONBLOCKING_IO); return B_OK; } } return EINVAL; } static status_t fifo_set_flags(fs_volume* _volume, fs_vnode* _node, void* _cookie, int flags) { Inode* inode = (Inode*)_node->private_node; file_cookie* cookie = (file_cookie*)_cookie; TRACE("fifo_set_flags(vnode = %p, flags = %x)\n", _node, flags); WriteLocker locker(inode->ChangeLock()); cookie->open_mode = (cookie->open_mode & ~(O_APPEND | O_NONBLOCK)) | flags; return B_OK; } static status_t fifo_select(fs_volume* _volume, fs_vnode* _node, void* _cookie, uint8 event, selectsync* sync) { file_cookie* cookie = (file_cookie*)_cookie; TRACE("fifo_select(vnode = %p)\n", _node); Inode* inode = (Inode*)_node->private_node; if (!inode) return B_ERROR; return inode->Select(event, sync, cookie->open_mode); } static status_t fifo_deselect(fs_volume* _volume, fs_vnode* _node, void* _cookie, uint8 event, selectsync* sync) { file_cookie* cookie = (file_cookie*)_cookie; TRACE("fifo_deselect(vnode = %p)\n", _node); Inode* inode = (Inode*)_node->private_node; if (inode == NULL) return B_ERROR; return inode->Deselect(event, sync, cookie->open_mode); } static bool fifo_can_page(fs_volume* _volume, fs_vnode* _node, void* cookie) { return false; } static status_t fifo_read_pages(fs_volume* _volume, fs_vnode* _node, void* cookie, off_t pos, const iovec* vecs, size_t count, size_t* _numBytes) { return B_NOT_ALLOWED; } static status_t fifo_write_pages(fs_volume* _volume, fs_vnode* _node, void* cookie, off_t pos, const iovec* vecs, size_t count, size_t* _numBytes) { return B_NOT_ALLOWED; } static status_t fifo_get_super_vnode(fs_volume* volume, fs_vnode* vnode, fs_volume* superVolume, fs_vnode* _superVnode) { FIFOInode* fifo = (FIFOInode*)vnode->private_node; fs_vnode* superVnode = fifo->SuperVnode(); if (superVnode->ops->get_super_vnode != NULL) { return superVnode->ops->get_super_vnode(volume, superVnode, superVolume, _superVnode); } *_superVnode = *superVnode; return B_OK; } static fs_vnode_ops sFIFOVnodeOps = { NULL, // lookup NULL, // get_vnode_name // TODO: This is suboptimal! We'd need to forward the // super node's hook, if it has got one. &fifo_put_vnode, &fifo_remove_vnode, &fifo_can_page, &fifo_read_pages, &fifo_write_pages, NULL, // io() NULL, // cancel_io() NULL, // get_file_map /* common */ &fifo_ioctl, &fifo_set_flags, &fifo_select, &fifo_deselect, &fifo_fsync, NULL, // fs_read_link NULL, // fs_symlink NULL, // fs_link NULL, // unlink NULL, // rename NULL, // fs_access() &fifo_read_stat, &fifo_write_stat, NULL, /* file */ NULL, // create() &fifo_open, &fifo_close, &fifo_free_cookie, &fifo_read, &fifo_write, /* directory */ NULL, // create_dir NULL, // remove_dir NULL, // open_dir NULL, // close_dir NULL, // free_dir_cookie NULL, // read_dir NULL, // rewind_dir /* attribute directory operations */ NULL, // open_attr_dir NULL, // close_attr_dir NULL, // free_attr_dir_cookie NULL, // read_attr_dir NULL, // rewind_attr_dir /* attribute operations */ NULL, // create_attr NULL, // open_attr NULL, // close_attr NULL, // free_attr_cookie NULL, // read_attr NULL, // write_attr NULL, // read_attr_stat NULL, // write_attr_stat NULL, // rename_attr NULL, // remove_attr /* support for node and FS layers */ NULL, // create_special_node &fifo_get_super_vnode, }; } // namespace fifo using namespace fifo; // #pragma mark - status_t create_fifo_vnode(fs_volume* superVolume, fs_vnode* vnode) { FIFOInode* fifo = new(std::nothrow) FIFOInode(vnode); if (fifo == NULL) return B_NO_MEMORY; status_t status = fifo->InitCheck(); if (status != B_OK) { delete fifo; return status; } vnode->private_node = fifo; vnode->ops = &sFIFOVnodeOps; return B_OK; } void fifo_init() { sRingBufferCache = create_object_cache("fifo ring buffers", VFS_FIFO_BUFFER_CAPACITY, CACHE_NO_DEPOT); add_debugger_command_etc("fifo", &Inode::Dump, "Print info about the specified FIFO node", "[ \"-d\" ]
\n" "Prints information about the FIFO node specified by address\n" "
. If \"-d\" is given, the data in the FIFO's ring buffer\n" "hexdumped as well.\n", 0); }